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ABSTRACT
We present a type-theoretic framework for data stream process-
ing for real-time decision making, where the desired computation
involves a mix of sequential computation, such as smoothing and
detection of peaks and surges, and naturally parallel computation,
such as relational operations, key-based partitioning, and map-
reduce. Our framework unifies sequential (ordered) and relational
(unordered) data models. In particular, we define synchronization
schemas as types, and series-parallel streams (SPS) as objects of these
types. A synchronization schema imposes a hierarchical structure
over relational types that succinctly captures ordering and syn-
chronization requirements among different kinds of data items.
Series-parallel streams naturally model objects such as relations,
sequences, sequences of relations, sets of streams indexed by key
values, time-based and event-based windows, and more complex
structures obtained by nesting of these. We introduce series-parallel
stream transformers (SPST) as a domain-specific language for modu-
lar specification of deterministic transformations over such streams.
SPSTs provably specify only monotonic transformations allowing
streamability, have a modular structure that can be exploited for
correct parallel implementation, and are composable allowing spec-
ification of complex queries as a pipeline of transformations.

CCS CONCEPTS
• Information systems → Data streams; • Theory of compu-
tation→ Database theory; • Computing methodologies→ Par-
allel programming languages.

KEYWORDS
Stream processing, database query languages, synchronization schemas,
parallelism, streams, relations, series-parallel partial orders
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1 INTRODUCTION
Emerging applications in the IoT era, in domains such as health
monitoring, transportation, and smart homes, require the ability
to interact with the physical world using sensors, continuously
process collected data, and make decisions in a feedback loop in
a timely manner. This requires revisiting models for distributed
stream processing — with an emphasis on integrating machine
learning and quality checking algorithms into processing pipelines,
computing both at the edge and on the cloud, and (rather than
simple data acquisition and summarization) providing low-latency
feedback to the user on their low-energy device. To facilitate the
design and implementation of such applications, stream processing
systems should ideally allow programmers to describe the decision
logic conveniently and modularly in a high-level query language,
and support compilation of queries to distributed platforms with
correctness guarantees, low latency, and energy efficiency.

To design query languages and optimizing compilers for stream-
ing computations, we need mathematically precise definitions of
data streams and transformations over them. A natural, and clas-
sical, definition of a stream is to view it as a (linearly ordered)
sequence of data items. A stream transformation, then, is a mono-
tonic—with respect to prefix ordering over sequences, function from
input streams to output streams. Such transformations compose
naturally, and form the basis of a number proposals for event-driven
reactive programming (e.g., [69]). However, assuming a strict linear
order over input data items is not ideal for two reasons. First, in a
distributed implementation, there may be a high overhead to im-
pose a consistent linear ordering among items arriving at different
processing nodes. Second, the sequential view hides opportunities
for parallel evaluation. For example, consider the computation that
partitions the input data into sub-streams based on key values—
for example, IP-addresses of source nodes in network traffic, and
processes each sub-stream independently. While such key-based
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partitioning is a common pattern for queries, and can be paral-
lelized naturally, it is not supported in purely sequential languages
for streaming computation.

A contrasting formalization of a data stream is to view it as a
relation that gets incrementally updated with each new input item.
The mature theory and practice of relational query languages and
query processing makes such a relational view appealing. However,
as noted in the early papers on streaming data processing [10], a
purely relational view is inadequate in the streaming context. As an
example, consider the computation that, given an input stream of
measurements from a monitoring device, emits each minute some
aggregate of measurements during the past minute. For specifying
this computation, the input stream of measurements needs to be
augmented with end-of-minute events. Such events, sometimes
called punctuations or synchronization markers [29, 42, 46, 47, 66],
are linearly ordered, and play a central role as triggers to produce
outputs of relational queries and keep the state of computation
bounded. Consequently, existing query languages typically extend
relational query languages with a variety of windowing constructs
for selecting sub-streams [13, 36]. This state of the art is not satisfac-
tory for the following reasons. First, consider a scenario where the
input stream consists of periodic measurements from a cardiac mon-
itoring device, and the computation involves smoothing of the input
signal, detection of peaks, and detection of surge episodes. There
is no built-in support for specifying such time-series-dependent
sequential computation in SQL-extensions. The user can specify
such a computation as low-level user-defined code, but then loses
the benefits of automatic parallelization and query optimization.
Second, adding different forms of windowing constructs to rela-
tional languages is not mathematically satisfying due to lack of
generality and compelling semantic foundations. For instance, ex-
isting languages typically do not support nested windows, which
can be attributed to the mismatch in types of inputs and outputs of
the windowing constructs.

We propose to model data streams as particularly structured
directed acyclic graphs whose vertices are labeled with data items
and correspond to event occurrences, and edges correspond to
temporal ordering. More precisely, given a relational schema, that
is, relational types for data items, we define synchronization schemas
as types for input streams, and series-parallel streams (SPS) as objects
of these types. The base schema Bag(H), for a setH of relational
types, captures unordered collection of events of type H . Complex
schemas are constructed inductively using three rules. Sync(H , 𝑆)
defines a parent relation between events of typeH and events of
types appearing in the schema 𝑆 , and denotes a stream consisting
of a sequence of events of type H , that act as synchronization
markers, interspersed with sub-streams of type 𝑆 . PartitionBy(𝐾, 𝑆)
partitions a schema 𝑆 based on a set of keys 𝐾 , and denotes a set
of parallel streams of type 𝑆 , indexed by the values for the key
fields in 𝐾 . Finally, Par(𝑆1, 𝑆2) describes a sibling relation between
schemas 𝑆1 and 𝑆2, and corresponds to a parallel composition of
streams of types 𝑆1 and 𝑆2. There is a natural (and polynomial-time
computable) relaxation ordering over synchronization schemas: a
schema 𝑆 is a relaxation of another schema 𝑆 ′ if 𝑆 ′ requires more
pairwise ordering of events than 𝑆 .

Series-parallel streams can naturally model objects such as rela-
tions, sequences, sequences of relations, and time-based or event-
based windows, as well as more complex structures obtained by
arbitrary nestings of these. The tree-structure imposed by a syn-
chronization schema on data items of different types—such as data
items generated by distinct devices, succinctly captures the order-
ing requirements among them. The synchronization schema then
can be viewed as a contract between the implementation producing
input events and the query consuming them. For the producer, the
events ordered by the schema must arrive in order, which can be en-
forced using timestamps, while no such synchronization overhead
is necessary for unordered events. For the consumer, for events that
are unordered according to the schema, the result of the computa-
tion should not depend on whether they are processed sequentially
in some arbitrary order or in parallel, thus providing a blue-print
for safe parallelization.

After we define synchronization schemas and series-parallel
streams in Section 2, in Section 3 we introduce series-parallel stream
transformers (SPST), a domain-specific parallel programming lan-
guage for specifying transformations over streams. Building upon
relational transformers, reduce operators to combine results of par-
titioned computations, and standard sequential constructs such as
list iterators, SPSTs are defined inductively based on the structure
of the synchronization schema of the input stream. While defining
this model, two aspects particularly require technical care. First,
the specification of the computation of an SPST, and its semantics
as a transformers over series-parallel streams, should be modular.
This ensures that once we define a transformer overs streams of
type 𝑆 , it can be used in defining transformers over streams of
more complex types with 𝑆 as a sub-schema. Second, the semantics
of an SPST, as a function from input SPS to output SPS, must be
monotonic with prefix ordering over series-parallel streams. Mono-
tonicity is the essence of streamability, and ensuring it has been a
challenge in existing literature on formally defining semantics of
streaming computations with punctuations. We achieve modular-
ity and monotonicity by associating two types of semantics, open
semantics and closed semantics with each SPST. The distinction
between the two is informally that the latter assumes that the most
current sub-streams have been closed by a synchronizing input
item triggering the generation of corresponding outputs.

In our proposal, a user can express the desired decision logic
as a pipeline of queries, where each query can be compiled into
an SPST, such that the input schema of a query is a relaxation
of the output schema of the previous one. Note that, in contrast
to typical distributed stream processing frameworks which use
dataflow graphs for specifying computations, pipelines suffice in
our framework since parallelism is built into the types of streams
themselves. In Section 5, we present a library of queries that capture
some natural transformations over series-parallel streams. These
include SPS-analogs of relational operations such as map and filter,
windowing constructs to impart hierarchical structure, relational
and sequential aggregations, parallel streaming computations of
key-based partitioning and MapReduce, complex event process-
ing constructs such as regular-expression-based temporal markers,
time-series dependent transformations, and complex forms of joins.
In the context of rich literature on stream processing languages,
the key benefit of our framework is composability: since each query



is a deterministic function over series-parallel streams, queries can
be composed sequentially in an arbitrary manner (modulo com-
patibility of types captured by the synchronization schemas). To
illustrate this, we show how to modularly express some classical
queries from the literature such as NEXMark [65], and show spec-
ifications of some complex queries over data about COVID cases
that mix relational and temporal constructs [38], and hence are not
expressible in current frameworks as high-level queries.

This paper presents synchronization schemas, series-parallel
streams, and SPSTs as a mathematical foundation for query lan-
guages and query processing for streaming computations. We con-
clude this paper by discussing directions for future research in
Section 6. The next step is to build a prototype implementation
with a focus on exploiting parallelism, and evaluating the perfor-
mance with respect to the existing stream processing systems such
as Flink [24]. Series-parallel streams have a mathematically appeal-
ing structure, and a principled design of query languages over them
needs a theoretical investigation with a focus on expressiveness
and guarantees regarding usage of computational resources for
streaming parallel evaluation. A direction of research, of particular
relevance to IoT applications, concerns query optimization with
a focus on distributing the computation to reduce the amount of
information exchanged for query evaluation.

2 PARTIALLY ORDERED DATA STREAMS
2.1 Illustrative Example
Suppose a city is trying to monitor the average cost-per-mile being
charged by a taxi fleet, and they want to re-estimate this every hour.
Towards this goal we have a stream of data items generated by a
set of taxis consisting of GPS events describing locations of taxis
and RideCompleted events describing fares of completed rides. In
order to evaluate such a query, every hour we would need to: (1)
use the GPS data to compute the total distance travelled by each
taxi that hour, (2) add these distances across all taxis, (3) add the
costs of all completed rides during that hour, and (4) output the
aggregate cost divided by the aggregate distance.

To implement such a computation, the input stream of GPS and
RideCompleted events must be augmented with EndOfHour events
that mark the passage of one hour. Such events, called punctuations
in the literature [29, 42, 46, 47, 66], can be used to trigger the outputs,
and allow the input stream to be logically divided into a sequence of
windows, where each window consists of GPS and RideCompleted
events within the same hour. Let us make a few observations re-
garding how we can compute the desired output efficiently. First,
we can process GPS events for different taxis independently and
possibly out of order, but such events for the same taxi must be
processed sequentially, in temporal order, to be able to calculate the
total distance the taxi travels. Second, we can view RideCompleted
events within each hour as a bag (that is, a multiset), and process
them in any order. Finally, every time an EndOfHour event appears,
it acts as a synchronization marker for all events, and to process it,
we need to make sure to combine all the aggregates to produce the
correct output.

We can capture all these ordering requirements by viewing the
input stream as a partially ordered collection of events as shown in
Figure 1. In this illustration, squares, circles, and triangles indicate

Figure 1: Illustrative series-parallel stream.

EndOfHour, GPS, and RideCompleted events, respectively, different
colors correspond to different taxis, and directed edges denote event
ordering. In fact, such a stream is a particular kind of a partial order,
namely, a series-parallel directed acyclic graph labeled with data
items. The shape of such an input stream will be captured by a type,
which we call a synchronization schema, shown in Figure 2. This
schema says that the input stream consists of a sequence of sub-
streams punctuated by EndOfHour events, where each substream
is a parallel composition of a bag of RideCompleted events and a
collection of sequences, one per taxi, of GPS events.

The synchronization schema can be viewed as a contract be-
tween the implementation generating input events and the query
processing them: the events ordered by the schema must arrive in
order (which can be enforced using timestamps), and the computa-
tion corresponding to the query does not depend on the processing
order of events that are independent according to the schema. In
this particular case, the schema does not require to order events
of different taxis, thus allowing the implementation to ignore re-
orderings of events across taxis due to, say, network delays. On
the other hand, the computation does depend on the temporal or-
dering of events of the same taxi, and existing stream processing
systems do not support mixing such sequential computation with
parallelization across taxis in a convenient manner.

Note that a synchronization schema captures only the order-
ing and synchronization requirements, and not every aspect of
the desired computation. For example, if we change the query by
replacing the total distance travelled by each taxi by an arbitrary
function over the sequence of GPS events of a taxi, the synchroniza-
tion schema, and the desired shape of the input stream, will stay
unchanged.

2.2 Synchronization Schemas
We start by defining some preliminary notions from relational query
processing: headers, tuples, and header keys. We assume that tuples,
i.e. stream elements, are of finitely many possible types, where each
type is given as a relational schema or header.

Definition 1 (Headers and tuples). A header 𝐻 consists of a unique
header name 𝛼 and fields ⟨𝛼𝑖 : 𝜏𝑖 ⟩, for 1 ≤ 𝑖 ≤ 𝑛, where each 𝛼𝑖 is a
field name and 𝜏𝑖 is a field type. A tuple 𝑥 of type 𝐻 , denoted 𝑥 : 𝐻 ,
is of the form 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where each 𝑥𝑖 : 𝜏𝑖 . □

When the context is clear, we identify each header 𝐻 with its name
𝛼 and likewise each field ⟨𝛼𝑖 : 𝜏𝑖 ⟩ with its name 𝛼𝑖 . We write 𝛼𝑖 ∈ 𝐻
to mean that 𝛼𝑖 is a field of 𝐻 , and 𝑥 .𝛼𝑖 to denote the value of 𝑥 on
𝛼𝑖 . For a setH of headers, we write 𝑥 : H if 𝑥 : 𝐻 for some 𝐻 ∈ H .



Example 2. For the example introduced in Section 2.1 we have
the following three headers for the input data items. As a con-
vention, names of fields start with lowercase, and names of head-
ers start with uppercase. GPS data for each taxi is described by
the header GPS(location: pos, taxiID: int), where pos indi-
cates the type of a GPS measurement—three dimensional coordi-
nates, for instance. Completed ride data is described by the header
RideCompleted(rideID: int, taxiID: int, passengerID:
int, cost: int). Finally, end-of-hour events are used to synchro-
nize in time; these are described by the header EndOfHour(date:
date, hour: int). □

As explained in Section 2.1, the input stream can be viewed as a
partially ordered set of events, each labeled with a tuple of data.
The structure of such a stream is captured by a data type that
we call synchronization schemas. A synchronization schema is a
hierarchical forest-like structure that can be seen as an extension
of database schemas.
Definition 3 (Synchronization schema). A synchronization schema
𝑆 is inductively defined as follows:

𝑆 ::= Bag(H) | Sync(H , 𝑆) | PartitionBy(𝐾, 𝑆) | Par(𝑆, 𝑆),
where𝐾 denotes a set of field names (partition keys) andH denotes
a set of headers. □

The base rule Bag(H) defines a stream corresponding to a bag of
H -events, that is, events labeled with tuples of typeH . To combine
the base rule (leafs) in complex schemas we use the other three
rules. Sync(H , 𝑆) defines a parent relation between H -events and
𝑆-events—events labeled with any of the headers appearing in the
schema 𝑆 , and denotes a stream consisting of a sequence of H -
events that act as synchronization markers, interspersed with sub-
streams of type 𝑆 . PartitionBy(𝐾, 𝑆) partitions a schema 𝑆 based on
a set of key fields 𝐾 , and denotes a set of streams of type 𝑆 , indexed
by the values for the keys in 𝐾 . Finally, Par(𝑆1, 𝑆2) describes a
sibling relation between schemas 𝑆1 and 𝑆2, and corresponds to a
parallel composition of streams of types 𝑆1 and 𝑆2.

In the sequel, we use the following notational abbreviations.
When a set of headers consists of a single header 𝐻 , we write 𝐻
instead of {𝐻 }. We use Seq(H) for Sync(H , Bag(∅)), where ∅ is
the empty set of headers, and such a schema corresponds to a to-
tally ordered sequence ofH -events. Finally, we write Par(𝑆1, 𝑆2, 𝑆3)
for the parallel composition of three schemas, which is short for
Par(Par(𝑆1, 𝑆2), 𝑆3) (note that parallel composition is associative).
Example 4. We can define the schema for the input of the example
in Section 2.1 in a bottom up fashion in the following manner. First,
𝑆1 = PartitionBy(taxiID, Seq(GPS)) denotes that GPS events are
partitioned by the key taxiID and are totally ordered for each taxi.
Second, 𝑆2 = Bag(RideCompleted) denotes that RideCompleted
events are unordered, and can be considered to be a bag. Finally,
𝑆 = Sync(EndOfHour, Par(𝑆1, 𝑆2)) denotes that EndOfHour events
synchronize the events in 𝑆1 and 𝑆2, each of which can be processed
in parallel as they are independent. It is often helpful to visualize
schemas as forests. Figure 2 illustrates the schema for the exam-
ple. Siblings correspond to the Par(𝑆1, 𝑆2) constructor while the
rectangular box, labeled with the key fields, corresponds to the
PartitionBy(𝐾, 𝑆) constructor. A parent node with several children
corresponds to the Sync(H , 𝑆) constructor. □

EndOfHour

Seq(GPS) Bag(RideCompleted)
taxiID

Figure 2: Example synchronization schema.

We additionally require for the remainder of the document that
synchronization schemas are well-formed, as defined below. First
note that the partitioning construct PartitionBy(𝐾, 𝑆) naturally
gives rise to a concept of scope for partition keys: for each partition
key 𝑘 ∈ 𝐾 and for each header 𝐻 appearing in the schema 𝑆 , we
say that 𝐻 is in the scope of 𝑘 .

Definition 5 (Well-formed schema). A synchronization schema 𝑆
is well-formed if the following conditions hold: (1) no header 𝐻
appears in 𝑆 twice, (2) if a header 𝐻 is in the scope of a partition
key 𝑘 , then 𝑘 is a field of 𝐻 , i.e. 𝑘 ∈ 𝐻 , and (3) if a partition schema
PartitionBy(𝐾, 𝑆) is in the scope of a partition key𝑘 , then𝑘 ∉ 𝐾 . □

The first condition is necessary for unambiguous parsing, while
the latter two ensure that splitting on a key field is meaningful
in a given context. Note that it is straightforward to check the
conditions necessary for a schema to be well-formed.

2.3 Series-Parallel Streams
Now that we have defined synchronization schemas, which act as
types, we can define a natural inductive representation of streams
that are values of these types. We call these series-parallel streams,
or SPS for short. We have already seen an example of such a stream
in Figure 1 informally. Before we formalize the definition, consider
the sequence of GPS events corresponding to the red taxi. The type
of this sequence is Seq(GPS), but is more specialized since all these
events share a common value of the field taxiID. We will denote
such an instantiation of the schema with common key values as
Seq(GPS) [taxiID = red]. Such a type can be viewed as refinement
type of the schema type Seq(GPS).

If 𝑑 : 𝐻 and 𝐹 is a subset of the fields of 𝐻 , we write 𝑑 |𝐹 for
the restriction of 𝑑 to contain only those fields in 𝐹 . For a set 𝐾 of
partition keys, 𝐾 can also be considered to be a header containing
these keys as its only fields. Then, for a particular tuple 𝑣 of such a
header type𝐾 , for a schema 𝑆 , we use 𝑆 [𝑣] to denote the refinement
of schema 𝑆 to an instance where all the tuples are required to have
key values as specified by 𝑣 .

We use the following syntactic constructs to capture the struc-
ture of the desired series-parallel streams: [𝑥1, 𝑥2, . . . , 𝑥𝑛] for a
sequence (list), {𝑥1, 𝑥2, . . . , 𝑥𝑛} for a bag (with standard bag equal-
ity semantics), ⟨𝑥1, 𝑥2⟩ for a pair of 𝑥1 and 𝑥2 where 𝑥1 and 𝑥2 are
thought of as parallel instead of sequential, and 𝑣 ↦→ 𝑥 to represent
a key-indexed value.

Definition 6 (Series-Parallel Streams). Let 𝑆 be a synchroniza-
tion schema. A series-parallel stream (SPS) 𝑡 : 𝑆 [𝑣] for a specific
instantiation of key values 𝑣 : 𝐾 is inductively defined as follows:

• If 𝑑𝑖 : H such that 𝑑𝑖 |𝐾 = 𝑣 for 𝑖 = 1, . . . ,𝑚, then 𝑡 =

{𝑑1, . . . 𝑑𝑚} is an SPS of type Bag(H)[𝑣].



• If 𝑡1 : 𝑆1 [𝑣] and 𝑡2 : 𝑆2 [𝑣], then 𝑡 = ⟨𝑡1, 𝑡2⟩ is an SPS of type
Par(𝑆1, 𝑆2) [𝑣].

• If 𝑑𝑖 : H such that 𝑑𝑖 |𝐾 = 𝑣 for 𝑖 = 1, . . . ,𝑚, and if 𝑡𝑖 : 𝑆 ′[𝑣]
for 𝑖 = 0, 1, . . . ,𝑚, then 𝑡 = [𝑡0, 𝑑1, 𝑡1, . . . , 𝑑𝑚, 𝑡𝑚] is an SPS
of type Sync(H , 𝑆 ′) [𝑣].

• Suppose that𝐾 ′ is a set of partition keys disjoint from𝐾 , and
that 𝑣 ′1, 𝑣

′
2, . . . , 𝑣

′
𝑚 : 𝐾 ′ are distinct instances of key values

for 𝐾 ′. Suppose 𝑡1, 𝑡2, . . . , 𝑡𝑚 are nonempty streams such that
𝑡𝑖 : 𝑆 ′[𝑣𝑖 ], and let 𝑣𝑖 : 𝐾 ∪ 𝐾 ′ to the unique valuations such
that 𝑣𝑖 |𝐾 = 𝑣 and 𝑣𝑖 |𝐾 ′ = 𝑣 ′

𝑖
, i.e. the extension of 𝑣 ′

𝑖
with the

key values in 𝑣 . Then 𝑡 = {𝑣 ′1 ↦→ 𝑡1, 𝑣 ′2 ↦→ 𝑡2, . . . , 𝑣 ′𝑚 ↦→ 𝑡𝑚}
is an SPS of type PartitionBy(𝐾 ′, 𝑆 ′) [𝑣]. □

We write 𝑡 : 𝑆 when 𝐾 = ∅ for 𝑡 : 𝑆 [()], where () is the empty
tuple of type 𝐾 . When 𝑆 [𝑣] is clear from the context, we write
⊥ : 𝑆 [𝑣] for the empty SPS: this abbreviates {} for 𝑆 = Bag(H),
⟨⊥,⊥⟩ for 𝑆 = Par(𝑆1, 𝑆2), [⊥] for 𝑆 = Sync(H , 𝑆 ′), and {} for
𝑆 = PartitionBy(𝐾 ′, 𝑆 ′).

Example 7. Let us revisit the SPS shown in Figure 1 of the schema
defined in Example 4. The sequence of GPS events of the red taxi
within the first hour is the stream 𝑡𝑟 = [⊥, 𝑟1,⊥, 𝑟2, . . . , 𝑟𝑛,⊥],
where ⊥ is the empty stream of type Bag(∅) and 𝑟1, 𝑟2, . . . 𝑟𝑛 are
the corresponding events. The streams 𝑡𝑔 and 𝑡𝑏 of GPS events of
the green and blue taxis, respectively, have a similar structure.
The stream 𝑡1 = {red ↦→ 𝑡𝑟 , green ↦→ 𝑡𝑔 , blue ↦→ 𝑡𝑏 } then
captures all the GPS events in the first hour and is of type 𝑆1 =

PartitionBy(taxiID, Seq(GPS)). The following is the bag contain-
ing all RideCompleted events in the first hour, and is of type 𝑆2 =
Bag(RideCompleted): 𝑡 ′1 = {𝑟 ′1, . . . , 𝑔

′
1, . . . , 𝑏

′
1, . . .}. The streams 𝑡2

and 𝑡 ′2 are analogous to the streams 𝑡1 and 𝑡 ′1, respectively, and
capture the GPS and RideCompleted events in the second hour. If
eoh1, eoh2, eoh3 represent the first three EndOfHour events, then
the stream [⊥, eoh1, ⟨𝑡1, 𝑡 ′1⟩, eoh2, ⟨𝑡2, 𝑡

′
2⟩, eoh3,⊥] represents all the

events. Its type is 𝑆 = Sync(EndOfHour, Par(𝑆1, 𝑆2)). □

A few remarks regarding the technical details of this definition are
in order. The definition is set up so that a linear sequence of tuples
over the headers appearing in a schema can be uniquely parsed (that
is, interpreted) as a series-parallel stream (see Proposition 14). In
parallel composition case, the order of the components matters, and
component sub-streams may be empty. On the other hand, in key-
based partitioning, the stream is defined to be a set of non-empty
sub-streams, one per key value. To understand the case of nested hi-
erarchical structure, consider the schema Sync(𝐴, Sync(𝐵, Seq(𝐶))).
In the corresponding stream, a 𝐶-tuple may be followed by an 𝐴-
tuple without any intervening 𝐵-tuples. This requires care to make
sure that a synchronizing event is able close all open sub-streams
corresponding to its descendants.

Finally, we define concatenation, denoted ◦, of series-parallel
streams. This generalizes the notion of concatenation of sequences.
Intuitively, if we consider a cut through the series-parallel stream,
say, shown in Figure 1, such that the left stream is closed under
predecessors (and right stream is closed under successors) then
concatenating the left and right substreams should give us the
original stream.

Definition 8 (Concatenation and Prefix Ordering for SPS). Let
𝑡,𝑢 : 𝑆 [𝑣] be series-parallel streams over the same schema 𝑆 and

key valuation 𝑣 . The concatenation 𝑡 ◦ 𝑢 is defined inductively on
the structure of 𝑆 :

• If 𝑆 = Bag(H), 𝑡 = {𝑑1, . . . , 𝑑𝑚}, and 𝑢 = {𝑒1, . . . , 𝑒𝑛}, then
𝑡 ◦ 𝑢 = {𝑑1, . . . , 𝑑𝑚, 𝑒1, . . . , 𝑒𝑛}.

• If we have 𝑆 = Sync(H , 𝑆 ′), 𝑡 = [𝑡0, 𝑑1, 𝑡1, . . . , 𝑑𝑚, 𝑡𝑚], and
𝑢 = [𝑢0, 𝑒1, 𝑢1, . . . , 𝑒𝑛, 𝑢𝑛], then
𝑡 ◦ 𝑢 = [𝑡0, 𝑑1, 𝑡1, · · · , 𝑑𝑚, (𝑡𝑚 ◦ 𝑢0), 𝑒1, 𝑢1, · · · , 𝑒𝑛, 𝑢𝑛] .

• If 𝑆 = PartitionBy(𝐾, 𝑆 ′), then let the overlapping key val-
ues between 𝑡 and 𝑢 be 𝑣1, 𝑣2, . . . , 𝑣𝑙 , with additional keys
𝑣 ′1, 𝑣

′
2, . . . , 𝑣

′
𝑚 in 𝑡 only and 𝑣 ′′1 , 𝑣

′′
2 , . . . , 𝑣

′′
𝑛 in 𝑢 only. If 𝑡 =

{𝑣1 ↦→ 𝑡1, . . . , 𝑣𝑙 ↦→ 𝑡𝑙 , 𝑣
′
1 ↦→ 𝑡 ′1, . . . , 𝑣

′
𝑚 ↦→ 𝑡 ′𝑚} and 𝑢 =

{𝑣1 ↦→ 𝑢1, . . . , 𝑣𝑙 ↦→ 𝑢𝑙 , 𝑣
′′
1 ↦→ 𝑢 ′1, . . . , 𝑣

′′
𝑛 ↦→ 𝑢 ′𝑛}, then

𝑡 ◦ 𝑢 = { 𝑣1 ↦→ 𝑡1 ◦ 𝑢1, . . . , 𝑣𝑙 ↦→ 𝑡𝑙 ◦ 𝑢𝑙 ,
𝑣 ′1 ↦→ 𝑡 ′1, . . . , 𝑣

′
𝑚 ↦→ 𝑡 ′𝑚,

𝑣 ′′1 ↦→ 𝑢 ′1, . . . , 𝑣
′′
𝑛 ↦→ 𝑢 ′𝑛 . }

• If 𝑆 = Par(𝑆1, 𝑆2), 𝑡 = ⟨𝑡1, 𝑡2⟩, and 𝑢 = ⟨𝑢1, 𝑢2⟩, then
𝑡 ◦ 𝑢 = ⟨𝑡1 ◦ 𝑢1, 𝑡2 ◦ 𝑢2⟩.

For 𝑡,𝑢 : 𝑆 [𝑣], 𝑡 is said to be a prefix of 𝑢, written 𝑡 ⪯ 𝑢, if there
exists a series-parallel stream 𝑡 ′ : 𝑆 [𝑣] such that 𝑡 ◦ 𝑡 ′ equals 𝑢. □

Proposition 9. For each type 𝑆 [𝑣] and for all 𝑡, 𝑡 ′, 𝑡 ′′ : 𝑆 [𝑣], the
following hold: (1) 𝑡 ◦ ⊥ = ⊥ ◦ 𝑡 = 𝑡 . (2) (𝑡 ◦ 𝑡 ′) ◦ 𝑡 ′′ = 𝑡 ◦ (𝑡 ′ ◦ 𝑡 ′′).
(3) 𝑡 ⪯ 𝑡 . (4) If 𝑡 ⪯ 𝑡 ′ and 𝑡 ′ ⪯ 𝑡 , then 𝑡 = 𝑡 ′. (5) If 𝑡 ⪯ 𝑡 ′ and 𝑡 ′ ⪯ 𝑡 ′′,
then 𝑡 ⪯ 𝑡 ′′. □

2.4 Sequential View
Contrasting with the series-parallel view of streams provided in the
previous section, we describe here a sequential view as sequences
up to equivalence. To define the equivalence we first define a de-
pendence relation on tuples based on the given synchronization
schema: two tuples in the relation are said to be dependent if the
order between them is important.

Definition 10 (Dependence Relation). Let 𝑆 be a synchronization
schema and let headers(𝑆) be all the headers appearing in 𝑆 . The
dependence relation is a binary relation on tuples of headers(𝑆),
written 𝑥 𝐷𝑆 𝑦 for 𝑥,𝑦 : headers(𝑆), and defined inductively as
follows: (i) if 𝑆 = Bag(H), then 𝐷𝑆 is the empty set; (ii) if 𝑆 =

Sync(H , 𝑆 ′), then 𝐷𝑆 is { (𝑥,𝑦) | 𝑥 : H or 𝑦 : H or 𝑥 𝐷𝑆′ 𝑦 }; (iii)
if 𝑆 = PartitionBy(𝐾, 𝑆 ′), then 𝐷𝑆 is { (𝑥,𝑦) | (𝑥 𝐷𝑆′ 𝑦) and 𝑥 |𝐾 =

𝑦 |𝐾 }; and (iv) if 𝑆 = Par(𝑆1, 𝑆2), then 𝐷𝑆 is 𝐷𝑆1 ∪ 𝐷𝑆2 . □

The dependence relation 𝐷𝑆 over the set 𝑋 of tuples then gives rise
to the following equivalence relation on sequences 𝑠, 𝑠 ′ over 𝑋 ; this
equivalence gives an alternative representation of the partial order
on input events.

Definition 11 (Equivalent sequences). Let 𝐷 ⊆ 𝑋 × 𝑋 be a sym-
metric relation. The equivalence relation ≡𝐷 over sequences over
𝑋 is the smallest equivalence relation (i.e. reflexive, symmetric,
and transitive) such that (1) commuting independent items: for
all 𝑥,𝑦 ∈ 𝑋 , if not 𝑥 𝐷 𝑦, then 𝑥𝑦 ≡𝐷 𝑦𝑥 ; and (2) closure under
(sequence) concatenation: for 𝑠1, 𝑠 ′1, 𝑠2, 𝑠

′
2 ∈ 𝑋 ∗, if 𝑠1 ≡𝐷 𝑠 ′1 and

𝑠2 ≡𝐷 𝑠 ′2 then 𝑠1𝑠2 ≡𝐷 𝑠 ′1𝑠
′
2. For a schema 𝑆 , two sequences 𝑠, 𝑠 ′ are

equivalent with respect to 𝑆 , written 𝑠 ≡𝑆 𝑠 ′, if 𝑠 ≡𝐷𝑆
𝑠 ′. □



The structure of𝐷𝑆 reflects the hierarchical series-parallel structure
of synchronization schemas. Note that not all binary relations on
tuples of headers(𝑆) can be represented. In particular, the (sym-
metric reflexive closure of) the relations {(𝐴, 𝐵), (𝐵,𝐶), (𝐶, 𝐷)} and
{(𝐴, 𝐵), (𝐵,𝐶), (𝐶, 𝐷), (𝐷,𝐴)} do not have a hierarchical structure:
here there is no way to choose a header out of 𝐴, 𝐵,𝐶, 𝐷 to be a
root node in the synchronization schema.

We next describe a tight correspondence between sequences and
series-parallel streams via dependence relations. First we have to
define what it means for a sequence to be a flattening of a series-
parallel stream; we then show that sequences up to equivalence
exactly correspond to series-parallel streams.

Example 12. Let us revisit the schema in Example 4 (see also an
example SPS in Figure 1). Suppose 𝑟1, 𝑟2 are GPS events of the red
taxi, 𝑏1, 𝑏2 are GPS events of the blue taxi, 𝑟 ′1, 𝑟

′
2 are RideCompleted

events of the red taxi, 𝑏 ′ is a RideCompleted event of the blue taxi,
and eoh is an end-of hour event. Following equivalent sequences

𝑟1, 𝑟
′
1, 𝑏

′, 𝑏1, 𝑟 ′2, 𝑏2, 𝑟2, eoh ≡ 𝑏1, 𝑏2, 𝑟1, 𝑟2, 𝑏
′, 𝑟 ′1, 𝑟

′
2, eoh

are flattening of the SPS

[⟨{red ↦→ [⊥, 𝑟1,⊥, 𝑟2,⊥],
blue ↦→ [⊥, 𝑏1,⊥, 𝑏2,⊥]}, {𝑟 ′1, 𝑟

′
2, 𝑏

′}⟩, eoh,⊥] . □

Definition 13 (Flattening). Let 𝑆 be a synchronization schema,
and let 𝑡 be a series-parallel stream over 𝑆 . A flattening 𝑠 of 𝑡 is a
sequence of tuples of type headers(𝑆) given inductively as follows:

• If 𝑆 = Bag(H), then 𝑠 is a flattening of 𝑡 if and only if the
multiset of events in 𝑠 equals 𝑡 .

• If 𝑆 = Sync(H , 𝑆1), and suppose 𝑡 = [𝑡0, 𝑑1, 𝑡1, · · · , 𝑑𝑚, 𝑡𝑚]
for some sub-streams 𝑡𝑖 . Then 𝑠 is a flattening of 𝑡 if and
only if 𝑠 = 𝑠0𝑑1𝑠1 . . . 𝑑𝑚𝑠𝑚 for some sequences 𝑠0, 𝑠1, . . . , 𝑠𝑚
where 𝑠𝑖 is a flattening of 𝑡𝑖 for each 𝑖 .

• If 𝑆 = PartitionBy(𝐾, 𝑆 ′), and suppose 𝑡 is a set with finitely
many entries 𝑣𝑖 ↦→ 𝑡𝑖 for 𝑖 = 1, . . . ,𝑚. Then 𝑠 is a flatten-
ing of 𝑡 if and only if 𝑠 is an interleaving of the sequences
𝑠1, 𝑠2, . . . , 𝑠𝑚 where 𝑠𝑖 is a flattening of 𝑡𝑖 for each 𝑖 .

• If 𝑆 = Par(𝑆1, 𝑆2), and suppose 𝑡 is a parallel composition
of 𝑡1 and 𝑡2. Then 𝑠 is a flattening of 𝑡 if and only if 𝑠 is an
interleaving of the sequences 𝑠1 and 𝑠2 for some 𝑠1, 𝑠2 where
𝑠1 is a flattening of 𝑡1 and 𝑠2 is a flattening of 𝑡2. □

The following proposition formalizes the connection between a
series-parallel stream and its flattenings. In particular, given a se-
quence of tuples, once we fix a schema, there is a unique way to
interpret it as a series-parallel stream.

Proposition 14. Let 𝑆 be a synchronization schema. (1) For every
sequence 𝑠 of tuples of type headers(𝑆), there exists a unique (up
to equality) 𝑡 : 𝑆 such that 𝑠 is a flattening of 𝑡 . (2) For all sequences
𝑠1, 𝑠2 of tuples of type headers(𝑆) and 𝑡 : 𝑆 , (a) if 𝑠1 ≡𝑆 𝑠2 and 𝑠1 is
a flattening of 𝑡 then 𝑠2 is a flattening of 𝑡 also, and (b) if 𝑠1 and 𝑠2
are both flattenings of 𝑡 then 𝑠1 ≡𝑆 𝑠2. □

2.5 Schema Relaxation
We end the section by looking at how dependence relations defined
by synchronization schemas relate to each other: in particular, this
allows defining what it means for one synchronization schema

to be weaker or stronger than another in terms of the ordering
requirements it imposes on sequences. Relaxation can be viewed
as a sub-typing relation.

Definition 15 (Schema relaxation). For synchronization schemas
𝑆1 and 𝑆2, 𝑆1 is a relaxation of 𝑆2, written 𝑆1 ≲ 𝑆2, if headers(𝑆1) ⊇
headers(𝑆2) and for all tuples 𝑥,𝑦 : headers(𝑆2), if 𝑥𝐷𝑆1𝑦 then
𝑥𝐷𝑆2𝑦. Two synchronization schemas 𝑆1 and 𝑆2 are order-equivalent,
denoted 𝑆1 ∼ 𝑆2, if 𝐷𝑆1 = 𝐷𝑆2 . (Equivalently, if both 𝑆1 ≲ 𝑆2 and
𝑆2 ≲ 𝑆1.) □

Example 16. Revisiting the schema of Figure 2, suppose we want
to say that the ordering of GPS events of the same taxi is also not
important. This can be captured by the schema

Sync(EndOfHour, Par(PartitionBy(taxiID, Bag(GPS)), 𝑆2))
which is a relaxation of the original schema. Such a schema will
restrict the allowed computations, but increase the parallelization
opportunities. This revised schema is equivalent to the schema
Sync(EndOfHour, Bag({GPS, RideCompleted}))

Assuming that we only have the GPS events of a single taxi
together with the EndOfHour tuples, the following two schemas are
order-equivalent.

Sync(EndOfHour, Seq(GPS))
Seq({EndOfHour, GPS})

This means that they describe the same stream partial orders. Their
difference is only relevant for defining hierarchical queries. □

Proposition 17. If 𝑡 : 𝑆 and 𝑆 ′ ≲ 𝑆 , then there exists a unique
𝑡 ′ : 𝑆 ′ such that every flattening of 𝑡 is a flattening of 𝑡 ′.

Proposition 18. Schema relaxation, that is on two input schemas
𝑆1 and 𝑆2, checking if 𝑆1 ≲ 𝑆2, and consequently checking schema
equivalence, is decidable in quadratic time. □

3 SPS-TRANSFORMERS
In this section, we define SPS-transformers (SPSTs), a programming
language for computations over series-parallel streams. If synchro-
nization schemas are provided as types for the input and output
streams of a computation, then an SPST is a (deterministic) function
from the input to the output, which respects the structure given by
the types. We build on this language in Section 4 to show how it
can be used to define typical streaming transformations of interest.
Before defining the language constructs, we begin with a discussion
of our design goals: what properties should computations written in
this language satisfy? We identify the following design goals. First,
transformations over series-parallel streams should respect the par-
allelism in the input and output: parallel input events should be
processed in parallel, and parallel input threads should produce
parallel output events. For example, given an input which is two
streams in parallel, the computation should be written in such a
way that the two streams are processed separately, and outputs
corresponding to them should be unordered. Second, to allow for
the specification of potentially complex computations, we addi-
tionally want our language to be modular: it should be natural
to construct a computation by combining sub-computations. For
example, processing a stream of the hierarchical type Sync(H , 𝑆)
should be definable, both syntactically and semantically, in terms of



existing computations defined over sub-streams of type 𝑆 . Finally,
any computation in our language should be streamable: it should
process the input in one pass, producing output incrementally.

To satisfy these design goals, we make the following technical
choices. First, to satisfy the parallelism goal, we define SPSTs to
have SPS as input and output rather than sequential objects. The
input being an SPS allows us to specify the computation to exploit
parallelism, and the output being an SPS requires that we respect
parallelism when producing output events.

To understand the challenges in defining the semantics due to the
interplay between streamability and modularity, consider a trans-
former 𝑃 processing hierarchical streams of type 𝑆 = Sync(H , 𝑆 ′)
that we would like define in terms of a transformer 𝑃 ′ processing
streams of type 𝑆 ′. Consider an input stream 𝑡 = [⊥, 𝑑, 𝑡 ′] of type
𝑆 for an H -tuple 𝑑 and stream 𝑡 ′ of type 𝑆 ′. Suppose we want to
extend the input stream 𝑡 with a tuple 𝑑 ′. If the type of 𝑑 ′ is one of
the headers appearing in 𝑆 ′, then it really extends the sub-stream
𝑡 ′, and should be processed by the transformer 𝑃 ′. For streamability
we want to make sure that, while processing 𝑑 ′, 𝑃 ′ extends the
output stream only by adding new items. Formally, this means that
the output of 𝑃 ′ on the input stream 𝑡 ′ should be a prefix of its
output on the stream 𝑡 ′ ◦ 𝑑 . With this motivation, we define such a
semantics, which we call open semantics, for transformers as func-
tions from input to output streams, and ensure that it is monotonic
with respect to prefix ordering (see Theorem 25). But now sup-
pose that the item 𝑑 ′ is anH -tuple that acts as a synchronization
marker for the events in the sub-stream 𝑡 ′. Then to process it, the
transformer 𝑃 ′ should return, and let the top-level transformer 𝑃
process the item 𝑑 ′. During this return, the transformer 𝑃 ′ can do
additional computation and produce additional output items even
though the stream it has processed is still 𝑡 ′. This is a typical case
when 𝑆 ′ corresponds to key-based partitioning, and the arrival of
the synchronization marker 𝑑 ′ triggers the reduce operation that
aggregates the results of the computations of the key-indexed sub-
streams of 𝑡 ′. This though requires us to define another semantics
of the transformer 𝑃 ′ on the input stream 𝑡 ′ that extends the open
semantics and includes the results of the computation upon return.
We call it closed semantics to indicate that it is applicable when the
current stream is being closed. Note that the result of computation
of 𝑃 on the stream [⊥, 𝑑, 𝑡 ′, 𝑑 ′,⊥] can be described by relying on
the closed semantics of 𝑃 ′ on the stream 𝑡 ′. In terms of existing
work on punctuation, the closed semantics can be thought of as the
stream output on a stream terminated by an end-of-stream marker.

Finally, an SPST is a function on pairs: it takes an initial value
and an input SPS to a final value and an output SPS. We need this
for modularity: without the initial value as input, an SPS-transforer
on a sub-stream of the input could not be initialized based on the
surrounding context. Similarly, the final value (separate from the
series of output items produced) can be used to describe a summary
of the input stream to be used in the surrounding context when the
computation finishes.

We summarize all of these choices in the following definition of
the interface for an SPST. We also define subtyping for the interface,
where the output is relaxed. Each of the language constructs will
then implement this interface. In the Appendix, we give an extended
example to illustrate the formal definitions in this section.

Definition 19 (SPS-transformer interface). An SPS-transformer
(SPST) 𝑃 has:

• A type denoted (𝑋, 𝑆, 𝑋 ′, 𝑆 ′), where 𝑋 is the type for the
initialization value, 𝑆 is an input synchronization schema,
𝑋 ′ is a type for the final return value, and 𝑆 ′ is an output
synchronization schema. We write 𝑃 : (𝑋, 𝑆, 𝑋 ′, 𝑆 ′).

• An open semantics denoted J𝑃K𝑂 (𝑥, 𝑡) = 𝑡 ′, where 𝑥 : 𝑋 is
the initial value, 𝑡 : 𝑆 is the input SPS, and 𝑡 ′ : 𝑆 ′ is the
incrementally produced output SPS.

• A closed semantics denoted J𝑃K𝐶 (𝑥, 𝑡) = (𝑥 ′, 𝑡 ′), where 𝑥 ′ :
𝑋 ′ is the initial value, 𝑡 : 𝑆 is the input SPS, 𝑥 ′ : 𝑋 ′ is the final
value, and 𝑡 ′ : 𝑆 ′ is the output SPS. We additionally enforce
that the open semantics is a prefix of the closed semantics:
J𝑃K𝑂 (𝑥, 𝑡) ⪯ 𝑡 ′. □

Definition 20. If 𝑆 ′′ ≲ 𝑆 ′ (Definition 15), then (𝑋, 𝑆, 𝑋 ′, 𝑆 ′′) is
a subtype of (𝑋, 𝑆, 𝑋 ′, 𝑆 ′). If 𝑃 : (𝑋, 𝑆, 𝑋 ′, 𝑆 ′) then we also write
𝑃 : (𝑋, 𝑆, 𝑋 ′, 𝑆 ′′). The open and closed semantics are derived as the
unique output stream given by Proposition 17. □

In the remainder of the section, we give one language construct
corresponding to each constructor of the input series parallel stream.
Some additional notation: for a set of headersH , we write tup(H)
for the set of tuples 𝑥 : H . For a synchronization schema 𝑆 , we
write sps(𝑆) for the set of series-parallel streams 𝑡 : 𝑆 . We write
bag(𝑋 ) for the set of bags (multisets) of items of type 𝑋 .

3.1 Relational SPST
We start with the relational SPST, which represents a standard rela-
tional operator that can be used to process a bag of items, producing
another bag of items. Relational operators are well studied and are
commonly defined using SQL and its extensions. Our design choice
here is to not impose a particular relational base language or SQL
variant; instead, the relational operator is given as two black-box
functions, which define the open and closed semantics, respectively.
We only require that these are functions on bags (i.e. independent
of the input order), and that the open semantics is monotone and a
prefix of the closed semantics.

Definition 21 (Relational SPST). A relational SPST

𝑃 : (𝑋, Bag(H), 𝑋 ′, Bag(H ′))

consists of two fields:

𝑃 .open : 𝑋 × sps(Bag(H)) → sps(Bag(H ′))
and 𝑃 .closed : 𝑋 × sps(Bag(H)) → 𝑋 ′ × sps(Bag(H ′)) .

such that (1) 𝑃 .open is monotone: if 𝑟1 ⪯ 𝑟2, then 𝑃 .open(𝑥, 𝑟1) ⪯
𝑃 .open(𝑥, 𝑟2); and (2) 𝑃 .open is a prefix of 𝑃 .closed: if 𝑃 .closed(𝑥, 𝑟 )
= (𝑥 ′, 𝑟 ′) then 𝑃 .open(𝑥, 𝑟 ) ⪯ 𝑟 ′. The semantics of 𝑃 is defined as
J𝑃K𝑂 (𝑥, 𝑟 ) = 𝑃 .open(𝑥, 𝑟 ) and J𝑃K𝐶 (𝑥, 𝑟 ) = 𝑃 .closed(𝑥, 𝑟 ). □

3.2 Parallel SPST
We now define the inductive SPSTs. An SPST processing inputs of
type Par(𝑆1, 𝑆2) is composed two SPSTs running in parallel inde-
pendently. The question here is, can the components SPSTs produce
tuples of the same type? The answer is yes, provided such tuples,
since they get produced independently, are summarized using a



schema Bag(O), where O is a set of output headers. So the output
schema for the parallel SPST will be Par(𝑆 ′1, 𝑆

′
2, Bag(O)).

Definition 22 (Parallel SPST). Let 𝑆1, 𝑆2, 𝑆 ′1, 𝑆
′
2 be schemas. A par-

allel SPST

𝑃 : (𝑋, Par(𝑆1, 𝑆2), 𝑋 ′, Par(𝑆 ′1, 𝑆
′
2, Bag(O

′)))
consists of internal types 𝑋1, 𝑋2, 𝑋 ′

1, 𝑋
′
2 and four fields:

𝑃 .left : (𝑋1, 𝑆1, 𝑋 ′
1, Par(𝑆

′
1, Bag(O

′))),
𝑃 .right : (𝑋2, 𝑆2, 𝑋 ′

2, Par(𝑆
′
2, Bag(O

′))),
𝑃 .init : 𝑋 → 𝑋1 × 𝑋2, and 𝑃 .fin : 𝑋 ′

1 × 𝑋
′
2 → 𝑋 ′.

The semantics of 𝑃 is as follows: if we have that 𝑃 .init(𝑥) = (𝑥1, 𝑥2),
J𝑃 .leftK𝑂 (𝑥1, 𝑡1) = ⟨𝑡 ′1, 𝑟

′
1⟩, and J𝑃 .rightK𝑂 (𝑥2, 𝑡2) = ⟨𝑡 ′2, 𝑟

′
2⟩, where

𝑟 ′1, 𝑟
′
2 : Bag(O

′), and additionally J𝑃 .leftK𝐶 (𝑥1, 𝑡1) = (𝑥 ′1, ⟨𝑡
′′
1 , 𝑟

′′
1 ⟩)

and J𝑃 .rightK𝐶 (𝑥2, 𝑡2) = (𝑥 ′2, ⟨𝑡
′′
2 , 𝑟

′′
2 ⟩), then

J𝑃K𝑂 (𝑥1, 𝑡1) = ⟨⟨𝑡 ′1, 𝑡
′
2⟩, 𝑟

′
1 ∪ 𝑟

′
2⟩

J𝑃K𝐶 (𝑥1, 𝑡1) = (𝑃 .fin(𝑥 ′1, 𝑥
′
2), ⟨⟨𝑡

′′
1 , 𝑡

′′
2 ⟩, 𝑟

′′
1 ∪ 𝑟 ′′2 ⟩). □

3.3 Hierarchical SPST
When the input schema is 𝑆 = Sync(H , 𝑆1), we want to define the
corresponding SPST 𝑃 parameterized by a sub-SPST from 𝑆1 to 𝑆 ′1.
The SPST 𝑃 maintains its own state that gets updated sequentially
whenever any of the H -tuple is processed, is passed to the sub-
SPST when called, and updated when the sub-SPST returns. The
output schema of 𝑃 has the same structure as the input: it is di-
vided into synchronizing events and non-synchronizing events. On
input synchronization events, any output tuple may be produced,
including a synchronization event; but on input sub-stream events,
it would be incorrect to produce an output synchronizing event, as
this would not be produced in a consistent order. The distinction
between closed and open semantics plays a key role here: synchro-
nizing events, when processed by 𝑃 , “close” the computation of
the sub-SPST. To formalize this inductively, we introduce an auxil-
iary semantics J𝑃K𝐴𝑢𝑥 (𝑦, 𝑡) where the output is an internal states
(rather than a final values), and in which the input stream ends
with a 𝑑𝑖 event, i.e. the final 𝑡𝑖 is ⊥.

Definition 23 (Hierarchical SPST). Let 𝑆1 and 𝑆 ′1 be schemas, and
H and H ′ be a set of input and output headers, respectively. Let
𝑆 ′ = Sync(H ′, 𝑆 ′1). A hierarchical SPST

𝑃 : (𝑋, Sync(H , 𝑆1), 𝑋 ′, Sync(H ′, 𝑆 ′1))
consists of internal types 𝑋1, 𝑋 ′

1, 𝑌 and six fields:

𝑃 .sub : (𝑋1, 𝑆1, 𝑋 ′
1, 𝑆

′
1),

𝑃 .update : 𝑌 × tup(H) → 𝑌 × sps(𝑆 ′),
𝑃 .call : 𝑌 → 𝑋1, 𝑃 .return : 𝑌 × 𝑋 ′

1 → 𝑌,

𝑃 .init : 𝑋 → 𝑌, and 𝑃 .fin : 𝑌 → 𝑋 ′ × sps(𝑆 ′).

The auxiliary semantics of 𝑃 is denoted J𝑃K𝐴𝑢𝑥 (𝑦, 𝑡) = (𝑦′, 𝑡 ′),
where 𝑦,𝑦′ : 𝑌 , and defined inductively only for 𝑡 of the form
[𝑡0, 𝑑1, 𝑡1, . . . , 𝑑𝑚,⊥]. For the base case, J𝑃K𝐴𝑢𝑥 (𝑦,⊥) = (𝑦,⊥). Then
inductively, if J𝑃K𝐴𝑢𝑥 (𝑦, 𝑡) = (𝑦′, 𝑡 ′), 𝑡1 : 𝑆1, and 𝑑 : H , and if we
have 𝑃 .call(𝑦′) = 𝑥1, J𝑃 .subK𝐶 (𝑥1, 𝑡1) = (𝑥 ′1, 𝑡

′
1), 𝑃 .return(𝑦

′, 𝑥 ′1) =
𝑦′′, and 𝑃 .update(𝑦′′, 𝑑) = (𝑦′′′, 𝑡 ′′), then J𝑃K𝐴𝑢𝑥 (𝑦, 𝑡◦[𝑡1, 𝑑,⊥]) =
(𝑦′′′, 𝑡 ′ ◦ 𝑡 ′1 ◦ 𝑡 ′′). Given the auxiliary semantics, we define the

semantics of 𝑃 on a trace decomposed as 𝑡 ◦ [𝑡1], where 𝑡 ends
in an empty sub-trace. Let 𝑃 .init(𝑥) = 𝑦, J𝑃K𝐴𝑢𝑥 (𝑦, 𝑡) = (𝑦′, 𝑡 ′),
and 𝑃 .call(𝑦′) = 𝑥1. Additionally, let J𝑃 .subK𝐶 (𝑥1, 𝑡1) = (𝑥 ′1, 𝑡

′
1),

𝑃 .return(𝑦′, 𝑥 ′1) = 𝑦
′′, and 𝑃 .fin(𝑦′′) = (𝑥 ′, 𝑡 ′′). Then:

J𝑃K𝑂 (𝑥, 𝑡) = 𝑡 ′ ◦ J𝑃 .subK𝑂 (𝑥1, 𝑡1)
J𝑃K𝐶 (𝑥, 𝑡) = (𝑥 ′, 𝑡 ′ ◦ 𝑡 ′1 ◦ 𝑡

′′) . □

3.4 Partitioned SPST
Finally, we define SPST for the partition-by case. The idea here is
analogous to the parallel composition Par(𝑆1, 𝑆2) case: each sub-
stream corresponding to a different key value may produce output
corresponding to that key value, or produce output corresponding
to a common bag of tuples O′. The partitioned SPST initializes the
state of 𝑃 .sub for each key with a non empty series parallel stream
and runs the child SPST for each (non-empty) key in parallel. We
additionally need an aggregation stage (applicable to the closed
semantics only), in which we combine all of the partitioned states
using a black-box relational operator 𝑃 .agg, similar to what was
done in the relational SPST base case.

Definition 24 (Partitioned SPST). Let 𝑆 = PartitionBy(𝐾, 𝑆1) and
𝑆 ′ = PartitionBy(𝐾, 𝑆 ′1) be schemas, and O′ a set of headers. A
partitioned SPST

𝑃 : (𝑋, PartitionBy(𝐾, 𝑆1), 𝑋 ′, Par(PartitionBy(𝐾, 𝑆 ′1), Bag(O
′))

consists of internal types 𝑋1, 𝑋 ′
1 and three fields:

𝑃 .sub : (𝑋1, 𝑆1, 𝑋 ′
1, Par(𝑆

′
1, Bag(O

′))),
𝑃 .init : 𝑋 × tup(𝐾) → 𝑋1,

and 𝑃 .agg : 𝑋 × bag((tup(𝐾) × 𝑋 ′
1) → 𝑋 ′ × bag(tup(O′)) .

For the semantics, suppose 𝑡 = {𝑣1 ↦→ 𝑡1, . . . , 𝑣𝑚 ↦→ 𝑡𝑚}, and
for 𝑖 = 1, . . . ,𝑚, 𝑃 .init(𝑥, 𝑣𝑖 ) = 𝑥𝑖 , J𝑃 .subK𝐶 (𝑥𝑖 , 𝑡𝑖 ) = (𝑥 ′

𝑖
, ⟨𝑡 ′
𝑖
, 𝑟 ′
𝑖
⟩),

𝑃 .agg(𝑥, {(𝑣1, 𝑥1), . . . , (𝑣𝑚, 𝑥𝑚)}) = (𝑥 ′, 𝑟 ′0), and J𝑃 .subK𝑂 (𝑥𝑖 , 𝑡𝑖 ) =
⟨𝑡 ′′
𝑖
, 𝑟 ′′
𝑖
⟩. Then

J𝑃K𝐶 (𝑥, 𝑡) = (𝑥 ′, ⟨{𝑣1 ↦→ 𝑡 ′1, . . . , 𝑣𝑚 ↦→ 𝑡 ′𝑚}, 𝑟 ′0 ∪ 𝑟
′
1 ∪ · · · ∪ 𝑟 ′𝑚⟩

J𝑃K𝑂 (𝑥, 𝑡) = ⟨{𝑣1 ↦→ 𝑡 ′′1 , . . . , 𝑣𝑚 ↦→ 𝑡 ′′𝑚}, 𝑟 ′′1 ∪ · · · ∪ 𝑟 ′′𝑚⟩. □

3.5 Streamability
This brings us to our main theorem about SPSTs, defined using all
of the above constructs, which captures the streamability (mono-
tonicity) of the open semantics (proven in the Appendix).

Theorem 25. Let 𝑃 : (𝑋, 𝑆, 𝑋 ′, 𝑆 ′) be an SPST. Then 𝑃 is monotone
in the following sense: for any 𝑥 : 𝑋 and 𝑡,𝑢 : 𝑆 , if 𝑡 ⪯ 𝑢, then
J𝑃K𝑂 (𝑥, 𝑡) ⪯ J𝑃K𝑂 (𝑥,𝑢). □

4 SPS QUERIES
In this section we define the notion of an SPS-query, an abstrac-
tion over SPS-transformers that can be used to define computation
pipelines, and a set of useful SPS-queries that extend queries on
both relations and sequences. The set of defined SPS-queries is
analogous to a high level query language (such as SQL), the com-
ponents of which can be composed to define complex queries and
do not capture implementation details. SPS-transformers are anal-
ogous to an intermediate representation that abstractly describes
implementation and can be manipulated by a compiler or optimizer
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Figure 3: Architecture of an SPS framework.

to produce an efficient concrete implementation. An outline of a
framework for SPS-queries is shown in Figure 3; users write SPS-
queries, which are implemented as SPSTs, which are then given to
an optimizer that produces a parallel implementation. We illustrate
the expressive power of the query library by defining a few example
queries, some of which are inspired from the literature, and others
which showcase the capabilities of our framework.

We first define the SPS-query interface. An SPS-query does not
use initial and final values, but only interacts with its environment
by receiving an SPS as input and producing an SPS as output.

Definition 26 (SPS-Query). Let 𝑆 and 𝑆 ′ be input and output
schemas. An SPS-query 𝑄 : (𝑆, 𝑆 ′) is an SPST of type ((), 𝑆, (), 𝑆 ′)
where the initial and final values are of type unit. The evaluation
of 𝑄 on input 𝑡 : 𝑆 , denoted 𝑄 (𝑡), is 𝑡 ′ where 𝑡 ′ is the unique value
such that J𝑄K𝐶 ((), 𝑡) = ((), 𝑡 ′). □

As shown in Figure 3, users can sequentially compose SPS-queries
using ≫ to create a pipeline, as long as the input schema of 𝑄𝑖 is a
relaxation of the output schema of 𝑄𝑖−1.

4.1 SPS-Query Library
We start by extending standard operators from the sequential and
relational setting to the series parallel setting. This is not meant to
be an exhaustive list, but rather an illustration of the capabilities of
SPS-queries.

4.1.1 Filter. The filter SPS-query extends both the sequential no-
tion of filtering (drawn from functional languages) as well as the
where SQL operator. It is parametrized by a predicate that is used
to drop all SPS elements for which it does not hold, preserving
the hierarchical structure as is. Given a schema 𝑆 and a predicate
function 𝑝 : tup(H) → B, where H = headers(𝑆), filter(𝑆, 𝑝)
is an SPS-query with interface (𝑆, 𝑆). For reference, we show the
hierarchical case:
filter(Sync(H , 𝑆1), 𝑝) is the hierarchical SPST 𝑃 such that 𝑃 .sub =

filter(𝑆1, 𝑝), 𝑃 .update is the same as in the sequential SPST,
and the rest of the components simply return unit.

4.1.2 Map. The map SPS-query extends standard sequential func-
tional maps to the series-parallel setting and can be also used to

project fields of a tuple. It is parametrized by a function that trans-
forms a single input tuple to a single output tuple.1

Given an input schema 𝑆 and a mapping function 𝑓 : tup(H) →
tup(H ′), where H = headers(𝑆), map(𝑆, 𝑓 ) is an SPS-query with
interface (𝑆, 𝑆 ′). The schema 𝑆 ′ has the same shape as 𝑆 but all
header sets H𝑖 in 𝑆 subexpressions are replaced by header sets
H ′
𝑖
. The output header sets H ′

𝑖
must be disjoint, and produced

by 𝑓 when processing the respective input headers, i.e., if 𝑡 ∈
tup(H𝑖 ), 𝑓 (𝑡) = 𝑡 ′ then 𝑡 ′ ∈ tup(H ′

𝑖
). The SPST definition of map

is similar to filter, i.e., it is stateless and all the input, and output
types are unit. For reference, we show the hierarchical case:
map(Sync(H , 𝑆1), 𝑓 ) is the hierarchical SPST 𝑃 such that 𝑃 .sub =

map(𝑆1, 𝑓 ), 𝑃 .update((), 𝑥) = ((), [𝑓 (𝑥)]), and the rest of
the components return unit.

For the output schema to be well-formed (Definition 5), the
following requirement needs to hold for 𝑓 . If 𝑡1, 𝑡2 ∈ tup(𝑆), 𝑓 (𝑡1) =
𝑡 ′1, 𝑓 (𝑡2) = 𝑡

′
2, and 𝑡

′
1, 𝑡

′
2 ∈ H ′

𝑖
, then 𝑡1, 𝑡2 are also in the same header

set H𝑖 . Furthermore, 𝑓 needs to preserve the keys of tuples that
were in partitioned in the input, i.e., if 𝐻 is in the scope of 𝑘 in 𝑆
and 𝑡 ∈ tup(𝐻 ), then 𝑡 .𝑘 = 𝑓 (𝑡) .𝑘 . The above requirement can be
easily satisfied if for example 𝑓 is defined as the union of a function
for each header set H in each Bag(H), Sync(H , 𝑆 ′) subexpression
of the input schema.

4.1.3 Lift. It is often useful to define queries on a subschema, i.e.,
a subexpression, of the input schema. One such query could be
one that processes the bags and sequences at the leafs of the input
schema without affecting other parts of the input. We call this
higher order query lift, since it lifts a query 𝑄 on a subschema by
applying it to each substream of the subschema without affecting
the other parts of the input stream.

Given an SPS-query𝑄 : (𝑆1, 𝑆 ′1), and a schema 𝑆 such that 𝑆1 is a
subschema of 𝑆 and (headers(𝑆) \headers(𝑆1)) ∩headers(𝑆 ′1) = ∅,
lift(𝑆, 𝑆1, 𝑄) is the query with interface (𝑆, 𝑆 [𝑆 ′1/𝑆1]). The SPST that
implements lift simply applies it to each relevant subschema, and
keeps the rest of the input intact. For reference, we show two cases
of its definition, the base case, where the input schema is the same
as the target subschema, and the hierarchical case.
lift(𝑆1, 𝑆1, 𝑄) is the SPST that implements 𝑄 .
lift(Sync(H , 𝑆), 𝑆1, 𝑄) is the hierarchical SPST 𝑃 such that 𝑃 .sub =

lift(𝑆, 𝑆1, 𝑄), and the update function simply outputs each
input tuple, 𝑃 .update((), 𝑥) = ((), [𝑥]).

4.1.4 Windowing. Windowing is a way to temporally partition
input tuples in logical chunks. Windows are usually either defined
using time, e.g., each window corresponds to a day, containing the
tuples that happened during that day, or based on the values of the
input tuples, e.g., each window corresponds to a stress episode that
was identified due to unusually high values of blood pressure in
the input stream.

Given a set of headers H , a header 𝐻 ∈ H , and a schema 𝑆 =

Sync(H , 𝑆1), window(𝑆, 𝐻 ) is the SPS-query with interface (𝑆, 𝑆 ′)
where:

𝑆 ′ = Sync(𝐻, Sync(H \ {𝐻 }, 𝑆1))
1Returning a single output tuple for each input tuple is the standard map definition,
but it could be straightforwadly extended to return multiple output tuples or none
(similarly to the flatmap function in functional languages).



The window query is actually a relaxation of the input schema,
and therefore it is not implemented as an SPST but is rather han-
dled by the implementation. By combining it with lift, window
can be applied to arbitrary synchronization schemas, and not just
hierarchical ones.

4.1.5 Event Marking. Windowing restructures the input schema
to make the windowing events explicit synchronization events, but
for this to happen, we first need to introduce events that act as the
window delimiters if they are not already in the stream. One could
define several forms of sequential event marking on top of synchro-
nization schemas. For example stress episode delimiters need to be
inserted in the stream depending on the values of the input tuples,
and the time based delimiters, e.g., EndOfHour, need to be inserted
in between tuples that happened in different hours. These types
of queries are often called complex event processing and here we
focus on marking events using symbolic regular expressions.

Given a set of headersH , a symbolic regular expression is defined
by the grammar 𝑟 ::= 𝜙 | (𝑟 ∪ 𝑟 ) | (𝑟 · 𝑟 ) | (𝑟∗), where 𝜙 : tup(H) → B.
Interpreting a symbolic regular expression 𝑟 gives us a predicate on
sequences of H -tuples, namely J𝑟K : tup(H)∗ → B. As an exam-
ple, we could define a symbolic regular expression that identifies
whether the value of a field 𝑓 of a sequence of tuples crossed a
threshold ℎ two consecutive times after being below the threshold.
Let 𝜙𝑎 (𝑡) = True iff 𝑡 .𝑓 > ℎ and let 𝜙𝑏 (𝑡) = ¬𝜙𝑎 (𝑡). Then, we can
define the symbolic regex as 𝜙𝑏 · 𝜙𝑎 · 𝜙𝑎 .

Building on symbolic regular expressions, we can define a mark-
ing query that marks a tuple 𝑡 of a stream if a prefix ending in
𝑡 matches a symbolic regex 𝑟 . For example, if the input is given
as 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, . . . if 𝑟 matches 𝑡2, 𝑡3, 𝑡4, and 𝑡3, 𝑡4, 𝑡5, 𝑡6 the
query would output 𝑡1, 𝑡2, 𝑡3,𝑚(𝑡4), 𝑡5,𝑚(𝑡6), 𝑡7, . . .. Given a set of
headers H , a symbolic regular expression 𝑟 over H , a marking
function𝑚 : tup(H) → tup(H ′), and a synchronization schema
𝑆 = Sync(H , 𝑆1), where 𝐻 ′ ∩ headers(𝑆1) = ∅, mark(𝑆, 𝑟,𝑚) is the
SPS-query with interface (𝑆, 𝑆 ′), where 𝑆 ′ = Sync(H ∪H ′, 𝑆1).

4.1.6 Aggregations. Aggregate operations that combine several
data tuples to a single value are widely used in both the relational
setting (SQL offers operations such as min, max, count, etc) and the
streaming setting (usually in the form of some folding function).
Aggregations can be generalized to the SPS setting, and can be
specified using two components: (i) a way to select which part
of the stream to aggregate, and (ii) a principled way to combine
different parts of the aggregated stream subset. Synchronization
schemas provide the first component, since synchronizing tuples
are natural merge points that can finalize an aggregation of the
sub-stream in between them. Therefore the user only has to define
combination functions for different parts of the input stream.

As an example, wewill definemax, an aggregator that returns the
tuple that has the largest value with respect to a function 𝑓 for each
aggregated substream. Since max is commutative and associative,
we can define its input schema to be simply Sync(H , Bag(H1))
without loss of generality, since Bag(H1) relaxes any schema 𝑆
whereH1 = headers(𝑆).

Given two sets of headers H ,H1, and a value projection func-
tion 𝑓 : tup(H1) → N, max(𝑆, 𝑓 ) is the SPS-query with inter-
face (Sync(H , Bag(H1)), Seq(H1)). Given a relational SPST max𝑟 :
((), Bag(H1), tup(H1)?, ∅) that simply returns the input tuple with

the highest value according to 𝑓 or ⊥ if there the input is empty,
we can define max as:
max(𝑆, 𝑓 ) is the hierarchical SPST 𝑃 such that 𝑃 .sub = max𝑟 ,

𝑃 .call(_) = (), 𝑃 .ret(_,𝑚) =𝑚, and 𝑃 .update(𝑚, _) = (⊥, [𝑚]).
We could extend the above procedure for aggregators that are

not associative and commutative by defining aggregation SPSTs
starting from the leafs and combining their values moving up the
input schema. Note that we have made some choices when defining
max: (i) the synchronizing tuple is dropped completely, assuming
that it did not carry any information, e.g., if it was a time-based
window marker, and (ii) all the input tuples of headers H1 are
also dropped, assuming that they are not needed later on in the
computation. These choices depend on the exact usage of the query,
and we could define variants that preserve or drop tuples from the
input depending on whether the following queries need them.

4.1.7 Join. Join operations on relations are widely used in queries
on relational databases and can be directly lifted to our model by
using lift defined above. However, the existence of temporal dimen-
sion in our model, i.e., ordering between relations that is induced
by synchronizing events, allows us to define more expressive joins.
As a concrete instance, we will define a join SPS-query that uses a
symbolic regular expression 𝑟 to match two relations of header 𝐻
in the input stream and then joins them on the field 𝑓 .

Consider a synchronization schema Sync(H , Bag(𝐻 )), a sym-
bolic regular expression 𝑟 over H , and a field name 𝑓 ∈ 𝐻 to
join on. Suppose 𝐻 ′ is the type of the result of joining two rela-
tions of type 𝐻 on the field 𝐻.𝑓 . Then, join(H , 𝐻, 𝑟, 𝑓 ) is the SPS-
query with the interface (Sync(H , Bag(𝐻 )), Sync(H , Bag(𝐻 ′))).
The semantics of join is that when processing an input stream
𝑏𝑎𝑔1 ·𝑡1 ·𝑏𝑎𝑔2 ·𝑡2 · · ·𝑏𝑎𝑔 𝑗 ·𝑡 𝑗 , it finds the shortest sequence 𝑡𝑖 , . . . , 𝑡 𝑗
that matches 𝑟 and then it joins the 𝑏𝑎𝑔𝑖 and 𝑏𝑎𝑔 𝑗 . If no such se-
quence exists, it produces an empty bag ⊥. For example, consider
that we want to join the events of relation 𝐻 with the events of 𝐻
a week earlier. Then if EOD is a predicate that matches tuples of
header EOD (EndOfDay), we can write join(EOD, 𝐻, EOD8, 𝑓 ) On the
other hand, if we wanted to join events belonging to consecutive
sessions (delimited by SOE (StartOfSession) and EOE (EndOfSession)
tuples, we can use the following (where · denotes symbolic regex
concatenation) join({SOE, EOE}, 𝐻, EOE · SOE · EOE, 𝑓 ).

Implementation of such join queries as SPST can be done with
concrete performance bounds. In particular, it is well-known that
a symbolic regular expression can be translated to a (nondeter-
ministic) symbolic finite automaton (SFA) with a linear number of
states [68]. Using this result, evaluation of the regular expression
part of the join query can be done by keeping track of the most
recent matched relation (𝑟𝑖 corresponding to most recent 𝑡𝑖 ) at each
state. This means that evaluation of our join query requires storing
at most 𝑂 (𝑛) relations, where 𝑛 is the size of the symbolic regular
expression (3 in above example). These relations are stored as part
of the sequential state in the definition of the hierarchical SPST.

We can define a union query that performs the same symbolic
regular expressionmatching as join and only differs in the binary re-
lation operation that it performs on the matched relations. As an ex-
ample, we can use union to define sliding event based windows. As-
suming that the schema of our input stream is Sync(EOD, Bag({𝐻 })),
we can use union(EOD, 𝐻, EOD · EOD) to get a sequence of bags of



the events of every two consecutive days, that can then be followed
by an aggregation query.

4.1.8 Map Reduce. Programming abstractions that enable parallel
processing are commonly used by both the streaming and batch
data processing settings. A very common such abstraction isMapRe-
duce [20]. A MapReduce computation first applies a stateless map
on all input tuples (see Section 4.1.2), transforming them in prepa-
ration for the reduce stage. The reduce stage, then partitions all
the output tuples produced by map based on a key, and applies a
commutative and associative reduce function on all the tuples with
the same key, producing possibly many tuples for each key.

MapReduce computations can be straightforwardly described as
SPSTs: a map and a reduce : (PartitionBy(𝐾, Bag(H)), Bag(H ′)).
Note that the partitioning in the input schema is not necessary and
could just be written as Bag(H) since these two schemas are order
equivalent, but we write it to explicitly show the partitioning that is
done per key. A composition of map and reduce can then be lifted,
so that it is applied to the selected sub-streams of the input stream.

4.1.9 Time Series Maximum. We will now describe loc-max, a
query on time series that checks if an element in a sequence is
a local maximum. The interesting characteristics of this query is
that it requires lookahead, namely it needs to see tuples later down
the sequence before processing a tuple. This has the implication that
it needs to delay outputting other tuples in the stream, to preserve
their order, even though it does not need to modify them.

The behavior of delaying output is captured by collect(𝑆), an
SPS-transformer of type ((), 𝑆, 𝑆, ∅) that simply collects all tuples of
the SPS and returns them as a final value in their parsed form. Using
collect(𝑆), we can define the time series maximum query. Given
a synchronization schema 𝑆 , a set of headers H , and a function
𝑓 : tup(H) → int, loc-max(𝑆, 𝑓 ) is an SPS-query with interface
(𝑆, 𝑆 ′) where 𝑆 = Sync(H , 𝑆1), 𝑆 ′ = Sync(H ′, 𝑆1), and the headers
in H ′ are the headers in H extended with a boolean field lmax,
which indicates if they are local maxima. It is defined using the
following SPST:
loc-max(𝑆) is the hierarchical SPST 𝑃 such that, 𝑃 .sub = collect,

𝑃 .call(_) = (), and 𝑃 .ret((𝑑1, 𝑠1, 𝑑2,⊥), 𝑠2) = (𝑑1, 𝑠1, 𝑑2, 𝑠2).
Let 𝑑 ′ = lmax(𝑑1, 𝑑2, 𝑑3) extending 𝑑2 with a lmax field that
indicates whether it is bigger than both 𝑑1 and 𝑑3, and finally
𝑃 .update((𝑑1, 𝑠1, 𝑑2, 𝑠2), 𝑑3) = ((𝑑2, 𝑠2, 𝑑3,⊥), 𝑠1 ◦ 𝑑 ′).

Assuming that the input is [𝑡1, 𝑑1, 𝑡2, . . .], where 𝑑𝑖 : tup(H) and
𝑡𝑖 : 𝑆 [𝑣] sps streams, then loc-max always keeps 𝑑𝑖−1, 𝑑𝑖 in state.
When it sees [𝑡𝑖+1, 𝑑𝑖+1], then it checks if 𝑑𝑖 is a local maximum,
i.e., 𝑓 (𝑑𝑖−1) < 𝑓 (𝑑𝑖 ) and 𝑓 (𝑑𝑖 ) > 𝑓 (𝑑𝑖+1), and outputs [𝑑 ′

𝑖
, 𝑡𝑖+1].

4.2 Examples
In this section we describe example computations that can be ex-
pressed using synchronization schemas and SPS-queries. We start
with a query from the NEXMark Benchmark [65] to illustrate how
synchronization schemas can be used in existing computations,
and we then move to an example that illustrates the benefits of
synchronization schemas.

4.2.1 NEXMark Query 7. Figure 4 shows a query from the NEX-
Mark challenge written in CQL. Every 10 minutes the query outputs
the item with the highest price in the last 10 minutes. To achieve

SELECT
Rstream(B.price , B.itemid)

FROM
Bid [RANGE 10 MINUTE SLIDE 10 MINUTE] B

WHERE
B.price =

(SELECT MAX(B1.price) FROM BID

[RANGE 10 MINUTE SLIDE 10 MINUTE] B1);

Figure 4: The CQL query for NEXMark Query 7 [13]

that, it uses a 10 minute tumbling window on the input stream Bid,
finds the maximum price in this window, and then joins the items
in the window with a price that is equal to the maximum price to
find their item identifiers itemid.

The input to this query can be described by the 𝑆 = Seq(Bid)
synchronization schema, and its output by the 𝑆 ′ = Seq(Bid’)
where Bid’ only contains the itemid and price fields. Then the
query itself, can be written as the following composition (we ignore
the schema first arguments of each query):

time(10𝑚) ≫ window(10m) ≫ max((𝑡) → 𝑡 .price)

Let’s look at this pipeline one query at a time. The first query
time(10𝑚) takes as input a stream of type Seq(Bid) and interleaves
its tuples with tuples of type 10m, which denote the end of each
10 minute period, producing a stream of type Seq({Bid, 10m}). The
second query, window(10m), simply produces a stream of type
Sync(10m, Seq(Bid)) and it just used to indicate that the 10m tu-
ples act as window barriers. The third query, max((𝑡) → 𝑡 .price)
takes as input a relaxation of the output of the second query, i.e.,
Sync(10m, Bag(Bid)), and it aggregates all of the tuples in each
substream delimited by a 10m tuple by keeping the one with the
maximum price, and then replaces the 10m tuple with it.

4.2.2 COVID Cases: Top Contributing States. In this subsection we
are going to describe a query that showcases both sequential and
relational computations. This query computes days that are local
maxima with respect to COVID cases in the US, and then identifies
which states were the top contributors in consecutive maxima
days. Let’s assume that the input is of type Sync(EOD, Bag(Case))
where EOD tuples denote the end of a day, and each Case tuple
corresponds to a single positive COVID test case, including the
state where the case happened in the field stateId. The complete
query is a sequential composition of 5 queries, 𝑄1, . . . , 𝑄5 and are
described below.

Q1: The first step is to aggregate the cases of each state per day.
This can be done by lifting a relational query on Bag(Case) that
(1) groups all Case tuples with respect to Case.stateId, and (2)
counts the number of Case tuples for each state and adds it to a
cases field. Such a relational query can be implemented using SQL.
This gives us a schema of the form Sync(EOD, Bag(StateCases))
where StateCases contains a stateId and a cases field.

Q2: The second step is to smoothen the daily cases per state using
a 7-day moving average, since cases are often misreported one
or two days later than when they actually happened. To achieve
this, we need to use an 7-way join, similar to the one described in



Section 4.1.7, that creates a cases field that contains the average of
the 7 tuples per state that were joined. This gives us a schema of
the form Sync(EOD, Bag(SmoothStateCases)) where StateCases
and SmoothStateCases contain the same fields.

Q3: We then perform a 𝑠𝑢𝑚 aggregation (similar to max defined
in Section 4.1.6), adding a field with the sum of all cases across
the US to each EOD tuple. Instead of dropping the aggregated tu-
ples, as we did with max, we keep them all since they will be
required by a later query. We now have a schema of the form
Sync(EOD, Bag(SmoothStateCases)), where EOD is extended with
a cases field.

Q4: In order to identify which days are local maxima with re-
spect to the number of cases, we use the loc-max query defined
in Section 4.1.9. The output of this query is a schema of the form
Sync(EOD, Bag(SmoothStateCases)), where EOD is extended with
a boolean lmax field.

Q5: For each local maximum, we need to filter the states that
have contributed the most to the cases of that day. We can achieve
this by using a relational query, e.g., in SQL, that finds the high-
est contributing states, e.g., the ones that are above the median,
or the ones that are one standard deviation over the mean, on
Bag(SmoothStateCases). The output stream of Q5 is of the form
Sync(EOD, Bag(ContribStates)) where the non-empty days are
local maxima, and they contain the top contributing states.

Q6: Finally, we need to find the states that belong to the high-
est contributing states for two consecutive local maxima days. To
achieve this, we use the following join query:

join(ContribStates, 𝐿𝑀 · (¬𝐿𝑀)∗ · 𝐿𝑀, stateId)

where 𝐿𝑀 matches on EOD tuples that are local maxima, that is when
EOD.lmax = True, and the resulting bags of ConsecContribStates
tuples only contain states that were among the highest contributors
for the current and previous local maximum day.

4.2.3 COVID Cases: Monthly Status of each State. We now turn
our attention to a query that was proposed in a recent paper [38]
that studied COVID trajectories in the US trying to analyze surge
occurrences. They propose a query that finds surge peaks and
valleys for each US state, and then use those to determine the
number of surges that a state has already passed, and whether they
are on the rise or fall. We extend this query to report these results
every month, together with the number of cases of the current
surge that a state is in. An interesting characteristic of this query
(that is supported by our model) is that it is based on event-based
windows, i.e., computes an aggregate of the cases per state since its
last valley, that are not aligned for different states. That is, surges for
different states happen at different times, making this query difficult
to describe with traditional windowing operations. Consider input
of the form Sync(EOM, PartitionBy(stateId, Seq(Cases))), where
EOM denotes the end of month, and Cases denotes the daily cases
per state, smoothened using a 7-day average. The first step is to
calculate the peaks and valleys for each state, using a query𝑄1 that
calculates them over a time series. Let 𝑆1 = Seq(Cases) in:

𝑄1 : (Sync(EOM, PartitionBy(stateId, 𝑆1)),
Sync(EOM, PartitionBy(stateId, Sync({Pk, Vl}, 𝑆1))))

This query is described in [38] and simply identifies peaks and
valleys in covid daily cases timeseries. A day is considered a peak if
it contains a larger number of cases than its 7 previous and 7 next
days. Therefore, this query needs to delay outputting both Cases
and EOM tuples, similarly to loc-max, to preserve the output order.

We compose 𝑄1 with a second query 𝑄2 that aggregates the
input to compute the state of surges for each state.

𝑄2 : (Sync(EOM, PartitionBy(stateId, Sync({Pk, Vl}, 𝑆1))),
Sync(EOM, Bag(StateSurgeState)))

The output header StateSurgeState contains four fields, the key
stateId, the number of completed surges, whether the current
surge is on a rise or fall, and the total cases of the current surge.
We can define 𝑄2 inductively as an SPST from the bottom up:.
The Seq(Cases) SPST simply folds over the cases and returns their
sum. The Sync({Pk, Vl}, . . .) SPST has a state containing three com-
ponents, a number denoting the number of completed surges, a
boolean field denoting whether we are on a surge rise or fall, and
a number indicating the sum of cases of the current surge, which
is updated using substream SPST, and is reset everytime a Vl is
encountered. The PartitionBy(stateId, . . .) SPST aggregates all
states, outputs them as a bag, and propagates them to the top SPST.
The top level SPST does not perform any computation, since EOM
tuples are only used as synchronization points for producing output.
When calling the underlying SPST, it initializes it with the returned
state to continue the computation from the point it was paused.

5 RELATEDWORK
There is a rich literature on querying and processing streaming
data spanning two decades. Below we describe some representative
efforts that have influenced our work.

Streaming database query languages: There is a large body of
work on streaming database query languages and systems: Au-
rora [2] and its successor Borealis [1], STREAM [10], CACQ [49],
TelegraphCQ [16], CEDR/StreamInsight [5, 12], and System S [33].
The query languages supported by these systems (for example,
CQL [10], SPL [36], and [13]) are typically extensions of SQL with
constructs for sliding windows over data streams. This allows for
rich relational queries, including set-aggregations (e.g. sum, max,
min, average, count) and joins over multiple data streams, but
requires the programmer to resort to user-defined functions for
richer computations that rely on the temporal ordering. A pre-
cise semantics for how to deal with out-of-order streams has been
defined using punctuations (a type of synchronization markers)
[29, 42, 46, 47, 66]. The partial ordering view supported by synchro-
nization schemas gives the ability to view a stream inmany different
ways: as a linearly ordered sequence, as a relation, or even as a se-
quence of relations. This provides a rich framework for classifying
disorder, which is useful for describing streaming computations
that combine relational with sequence-aware operations.

Complex Event Processing: The literature on Complex Event Pro-
cessing (CEP) is concerned with the recognition of complex patterns
over streaming data (see a recent survey [28]). Some representative
examples of CEP proposals are SQL-TS [59], SASE [31], Cayuga
[14], and the MatchRegex operator [34] for SPL [35]. The patterns



are typically given as queries that resemble regular expressions
or as automata-based models. In some of these proposals a pat-
tern can depend on the evolution of values: for example, a pattern
where the price of a stock is constantly increasing. Such powerful
event-selection capabilities supported by CEP languages can be
incorporated in our framework in a modular fashion analogous to
the marking using regular expressions and time-series maximum
as described in Section 4.1.

Distributed Stream Processing: A number of distributed stream
processing engines, such as Samza [25, 57], Storm [27, 64], Heron
[43, 67], MillWheel [3], Spark Streaming [26, 70], and Flink [15, 24],
have achieved widespread use. Spark Streaming and Flink support
SQL-style queries or, equivalently, lower-level operations roughly
corresponding to the relational algebra underlying SQL. Apache
Beam [4, 23] is a programming model that provides relational and
window-based abstractions. The other stream engines providemuch
lower-level abstractions in which the programmer writes event
handlers that take tuples, combine the data with windows, and
emit results. Such an API provides great power but does not aid
the programmer in reasoning about correctness of parallelization.
Naiad [54] is a general-purpose distributed dataflow system for
performing iterative batch and stream processing. It supports a
scheme of logical timestamps for tracking the progress of compu-
tations. These timestamps can support the punctuations of [46]
and deal with certain kinds of disorder, but they cannot encode
more general dependencies expressed by synchronization schemas.
Systems such as Flink [15, 24] and Naiad [54] support feedback cy-
cles, while we have focused only on pipelines of queries due to the
semantic complexities of cycles. General feedback cycles require a
complex denotational model involving continuous functions and
least fixpoints, as in Kahn process networks [39], and other more
restricted forms of feedback (as in [32] and [50]) correspond to
unique fixpoints.

Safe Parallelization: Prior work has considered the issue of se-
mantically sound parallelization of streaming applications [37, 60].
The authors of [60] observe that Storm [27, 64] and S4 [55] perform
unsound parallelizing transformations and propose techniques for
exploiting data parallelism without altering the original semantics
of the computation. Our framework addresses similar issues, and
synchronization events have a similar role to the “pulses” of [60].

Partial-order Models: There is foundational work in concurrency
theory dating back to Mazurkiewicz [53], where partially ordered
sets of events are called traces. Mazurkiewicz traces have been stud-
ied from the viewpoint of algebra, combinatorics, formal languages
and automata, and logic [22]. On a related note, partially ordered
multisets (called Pomsets) have been proposed to model compu-
tations of concurrent systems [58], and a series-parallel stream in
fact is a Pomset. Extending relational query languages to partially
ordered multisets has been studied in [30], though not in the con-
text of streaming. Viewing a stream transformer as a deterministic
function over partially ordered structures was first proposed in
[52]. In this work, a partially ordered stream is formalized as a
data trace whose structure is derived from a dependency relation
over events. In this model, a transformer is a function over data
traces, and ensuring that it is consistent (that is, the result of the

computation does not depend on the order in which independent
data items are processed), parallelizable, and monotonic, is up to
the programmer. A synchronization schema can be viewed as a
specification language for certain kinds of dependencies, and series-
parallel streams as data traces with a specific structure. The main
benefit of this restricted structure is that it also suggests how to
structure the streaming computation leading to the definition of
SPSTs with all the desirable properties of modularity, monotonicity,
parallelization, and composability.

6 RESEARCH DIRECTIONS
Wehave presented synchronization schemas, series-parallel streams,
and SPSTs as a mathematical foundation for query languages and
query processing for streaming computations. To conclude, we dis-
cuss directions for future research that can translate these ideas into
a high-performance distributed stream processing system with an
expressive API for specifying queries and an optimizing compiler
with correctness guarantees.

6.1 Exploiting Parallelism in Implementation
The next step in our research agenda is to build a prototype imple-
mentation with a focus on exploiting parallelism, and evaluating
the performance with respect to the existing stream processing
systems such as Flink [15]. Figure 4 shows a plausible architecture
for such a framework.

A synchronization schema succinctly captures parallelism op-
portunities and synchronization requirements that a compiler can
exploit. For instance, consider the synchronization schema and the
computation described in the illustrative example of Section 2.1.
First, the RideCompleted events are processed using a relational
operator, and existing techniques for high-performance parallel
evaluation of relational queries can be directly used for our purpose.
Second, the GPS events of different taxis can be evaluated in paral-
lel. Implementing such a computation partitioned by keys requires
keeping track of active keys, allocating computations correspond-
ing to different keys in parallel and/or distributed architectures with
load balancing, and collecting results when needed (while process-
ing the EndOfHour event in this specific case). Existing techniques
for systems that support Map-Reduce programming framework and
stream processing systems supporting windowing constructs sug-
gest solution strategies. Finally, the schema requires that all events
must be consistently ordered with respect to EndOfHour events, and
GPS events of the same taxi must be totally ordered. When events
are generated at different nodes in a distributed system, imposing
such an ordering is a challenge. However, this is a well-studied
problem in distributed systems, dating back to Lamport’s work on
logical clocks [45], and we can build on existing protocols.

If the computation were to treat both GPS and RideCompleted
events within an hour as a bag, then the computation can be ex-
pressed naturally with existing stream processing APIs such as
Streaming SQLwith scalable performance. However, since the order
of GPS events of the same taxi is important, to express the desired
computation using a variant of Streaming SQL, a user has to group
GPS events of the same taxi per hour using a windowing construct,
and then they would need to define a custom function that sorts the
GPS events based on their timestamp. Our ongoing work [41] shows



that such programming limitations are present even in dataflow-
based frameworks such as Flink and Timely Dataflow [54]: for
example, certain distributed machine learning applications are dif-
ficult to realize due to the complex combination of synchronizing
and parallel events.

6.2 Theoretical Foundations for SPS-Queries
Foundational understanding of logics and transducers for sequences,
relations, and trees has been influential in the design of query lan-
guages and optimizing compilers for corresponding data models.
For instance, logics and automata over trees provide foundations
for processing XML data [56, 61]. Series-parallel streams have an
appealing mathematical structure, and deserve an analogous theo-
retical investigation.

A natural theoretical question related to expressiveness is: Is
the model of SPSTs complete, that is, can it express all computable
SPS-to-SPS transformations? Answering this question first requires
alternative ways of formulating transformations over series-parallel
streams. Observe that the hierarchical structure induced by syn-
chronizing events in an SPS is reminiscent of nested words with
visible markers for calls and returns (or matching open and close
parantheses) [8]. The parallel composition of streams corresponds
to ordered binary siblings, while the key-based-partitioning over
streams corresponds to unordered unranked (that is, unbounded)
siblings. Thus, the theories of unordered unranked trees, nested
words, and relations can all provide insights for formulating a the-
ory of series-parallel streams and such a theory can lead to a more
principled design of query languages.

A challenge related to query evaluation is: Are there classes
of query languages—both as acceptors and transformations, over
series-parallel streamswith guaranteed (parallel) complexity bounds
on space and time needed to process the input SPS? The complexity
of query evaluation is well understood for relational structures. For
sequences, ordered trees, and nested words, monadic-second logic
(MSO), automata, and MSO-definable transductions have been well
studied, and provide a strong foundation for finite-state computa-
tions. Such models cannot capture computation over data (such as
aggregates), and a potentially promising foundation is the formal-
ism of quantitative regular expressions (QREs), and the correspond-
ing MSO-definable stream transformations and tranducers models,
that integrate regular parsing of sequences of data items with a
user-defined set of data operations (such as aggregates) with precise
bounds on query evaluation [6, 7, 9, 51]. It should be noted that a
theoretical understanding of query evaluation for series-parallel
streams should focus on parallel complexity rather than sequential,
opening up new research opportunities.

6.3 Query Optimization
Theoretical foundations in relational algebra, and in particular,
semantics-preserving algebraic rewrite rules, have been instru-
mental in highly effective optimization techniques for relational
queries [17, 63]. Query optimization has also been heavily stud-
ied for streaming extensions of SQL [21], where notions of win-
dows [10] or punctuation-delimited substreams [66] allow us to
leverage the existing relational algebra. Techniques have been de-
veloped to adaptively reorder predicates [11], which in fact can

be generalized to sliding window joins given the bounded size of
windows. Other strategies can also be adapted from traditional
query optimization, such as group-by pushdown [18] and aggre-
gate selection [62] and incremental maintenance through derivation
tracking [48].

These existing techniques provide useful insights for develop-
ing an optimizing compiler for SPS-queries. The combination of
relational and temporal operators also opens up new opportuni-
ties. As an example of such opportunities, let us revisit the stages
Q4 and Q5 of the computation described Section 4.2.2. Query Q4
tags days as local maxima by adding the field lmax to each EOD
tuple. Since the value of this field gets determined only after all
the SmoothStateCases events of the following day have been
processed, and since the next computation stage also refers to
SmoothStateCases events, such events belonging to the current
need to be stored in state so that they can be emitted along with the
marked EOD tuple. The query Q5 is a relational query that replaces
each bag of SmoothStateCases with ContribStates. It turns out
that these two queries commute without changing the semantics.
Furthermore, since the number of ContribStates tuples is strictly
smaller than the number of SmoothStateCases events each day,
the state that needs to be stored due to delayed output for the local
maxima computation is smaller if we commute the two. An opti-
mizing compiler then should rewrite the query by commuting these
two stages.

6.4 Testing and Verification
Given the difficulties in ensuring correctness of distributed sys-
tems, when used judiciously, formal methods can have impact on
addressing challenging design problems in distributed systems. For
example, the TLA specification methodology and associated tools
have led to verified design and implementation of complex dis-
tributed protocols such as Paxos [44], and automated analysis tools
are used in checking conformance with respect to security policies
at Amazon Web Services [19]. We believe that distributed stream
processing systems, such as Flink, Spark Streaming, and Storm, offer
a — yet largely unexplored — opportunity for the development of
tools for specification, testing, and verification. In particular, while
such platforms are increasingly deployed in emerging data-driven
computing systems, exploiting the parallelism afforded by them is
prone to errors. The first step towards such tools is formalization
of the computational model, and this is what the framework of
synchronizations schemas and series-parallel streams offers.

Developing a verified distributed stream processing system, with
performance comparable to the existing systems, is a long term
goal. Meanwhile, our formalization can form the basis of tools for
testing and debugging of existing systems. In recent work, we devel-
oped DiffStream, a tool for differential output testing for distributed
stream processing systems, that is, checking whether two imple-
mentations produce equivalent output streams in response to a
given input stream [40]. The notion of equivalence allows reorder-
ing of logically independent data items, which in retrospect can be
formalized as type checking with respect to the output synchro-
nization schema.
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APPENDIX A: SPST EXAMPLES (SECTION 3)
To illustrate the definition of the various SPST constructs, we con-
tinue the example schema from Section 2.1 (Figure 2) as the in-
put type. For the output, suppose we want to produce two kinds
of events: EndOfHour, representing end-of-hour summaries, and
GPSOutlier, representing outlier events that should be logged for
further investigation. We describe building an SPST with this input
and output, building it bottom-up from the structure of the input
schema.

We begin with an example of a relational SPST. We describe
the transformation on RideCompleted events which computes the
sum of the costs of all completed hours. The interface of this SPST
is 𝑃1 : ((), Bag(RideCompleted), float, ∅): as it consumes a bag
of RideCompleted events, does not produce any output tuples,
but instead we aggregate the sum of the return costs as a sin-
gle float. For this relational base case, the computation can be
written using an aggregator in a base relational language such
as SQL. Formally, in our framework 𝑃1 is defined by two black-
box functions: 𝑃 .open((), 𝑟 ) = ⊥ and 𝑃 .closed((), {𝑥1, . . . , 𝑥𝑚}) =
(𝑥1 + · · · + 𝑥𝑚,⊥). The former component 𝑃 .open indicates that in
this case no events are produced incrementally (as the input stream
is processed). The latter component 𝑃 .closed indicates that the final
result of the computation (after the entire input stream is seen) is
the sum of all tuples in the input relation.

Next, we describe a simple sequential SPST which processes a
linear sequence of GPS events. Recall that Seq(H) is a useful special
case of hierarchical synchronization schemas that denote simple
sequences, i.e. it is the schema Sync(H , Bag(∅)). Suppose we want
to compute the distance traveled for a specific taxi given its GPS
tuples; additionally, suppose we want to produce as output outlier
GPS tuples, rather than including them in the aggregation.

𝑃2 : ((), Seq(GPS), float, Seq(Outlier))

𝑃2 keeps the last known location for the taxi and the current
distance travelled as its state, and each time it processes a new GPS
tuple, it updates both. Additionally, if the last known location is
too far from the current one (> 1 below) instead of updating state
it produces the tuple as output.

𝑃2 .update((⊥, 0), 𝑔𝑝𝑠) = ((𝑔𝑝𝑠.𝑙𝑜𝑐, 0),⊥)
𝑃2 .update((𝑙𝑜𝑐, 𝑑), 𝑔𝑝𝑠) = ((𝑔𝑝𝑠.𝑙𝑜𝑐, 𝑑 + 𝑑𝑖𝑠𝑡 (𝑔𝑝𝑠.𝑙𝑜𝑐, 𝑙𝑜𝑐))

if 𝑑𝑖𝑠𝑡 (𝑔𝑝𝑠.𝑙𝑜𝑐, 𝑙𝑜𝑐) ≤ 1
𝑃2 .update((𝑙𝑜𝑐, 𝑑), 𝑔𝑝𝑠) = ((𝑙𝑜𝑐, 𝑑), Outlier(𝑙𝑜𝑐)) otherwise

Because this is a sequential base case (a special case of hierarchi-
cal), 𝑃2 .sub, 𝑃2 .call, and 𝑃2 .return are trivial with no effect on the
state. Finally, 𝑃2 .init(()) = (⊥, 0), and 𝑃2 .fin(𝑙𝑜𝑐, 𝑑) = (𝑑,⊥).

Next, we define the partitioned SPST that computes the total dis-
tance travelled by all taxis (according to the taxi example described
in Section 2.1). The interface of the SPST is:

𝑃3 : ((), PartitionBy(taxiID, Seq(GPS)), float, Bag(Outlier))
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since it returns the total distance travelled by all taxis in miles. The
child SPST is 𝑃2, i.e., 𝑃3 .sub = 𝑃2, However, notice that instead
of a sequential output, here the output outliers are a bag: this is
because there are multiple keys (taxi IDs), so different key outputs
may be unordered. Implicitly, we are relaxing the output of 𝑃2
to be a bag instead of a sequence: this illustrates SPST subtyping
(Definition 20), in which ordered output events may be reinter-
preted as unordered. The interface of our sequential SPST is now
𝑃2 : Seq(GPS), float, Seq(Outlier)). To fit the SPST definition
exactly, we would additionally relax to Par(∅, Seq(Outlier)) (to
allow both keyed and bag outputs), but we leave this off for presen-
tation; it is just another application of subtyping since the schemas
are equivalent. To complete the definition of 𝑃3, the aggregation
produces a sum of the distances:

𝑃3 .agg(_, 𝑑𝑠) = (𝑠𝑢𝑚({𝑑 | (_, 𝑑) ∈ 𝑑𝑠}),⊥)

and 𝑃3 .init initializes all child SPSTs with the unit value.
At this point, we have a partitioned SPST 𝑃3 for processing

the key-partitioned GPS stream, and we have a relational SPST
𝑃1 for processing the RideCompleted events. In order to combine
these into an overall query which also processes the EndOfHour
synchronizing events, we first need to combine these two streams
in parallel. We define an SPST 𝑃4 which divides the aggregate cost
by the aggregate distance. Let 𝑆1 = PartitionBy(taxiID, Seq(GPS))
and 𝑆2 = Bag(RideCompleted). Then the interface of 𝑃4 is:

𝑃4 : ((), Par(𝑆1, 𝑆2), float, Bag(Outlier)) .

The SPST calls the underlying SPSTs 𝑃1 and 𝑃3: 𝑃4 .left = 𝑃3 and
𝑃4 .right = 𝑃1, which return the total distance covered by all taxis
and the total cost of all completed rides in that hour, and then
simply divides them to return the float ride cost per travelled mile,
i.e., 𝑃 .fin(𝑑𝑖𝑠𝑡, 𝑐𝑜𝑠𝑡) = 𝑐𝑜𝑠𝑡/𝑑𝑖𝑠𝑡 .

Notice that the average value in 𝑃4 is only computed on final-
ization (after the entire stream is processed). In order to produce
the same averages in a streaming manner, we need synchronization
events, and this leads us to our final step: we complete the input
schema in Figure 2 and the example by constructing a hierarchi-
cal schema which also processes the EndOfHour synchronization
events. The schema 𝑃5 which outputs the cost per distance travelled
at the end of each hour has the following interface:

𝑃5 : ((), Sync(EndOfHour, Par(𝑆1, 𝑆2)),
(), Sync(CostPerMile, Bag(Outlier)))

The SPST calls the underlying SPST 𝑃4, i.e., 𝑃5 .sub = 𝑃4, which
returns the cost permile in the last hour as a float. 𝑃4 also produces
the Outlier output events. The internal state 𝑌 is the cost per mile
from the last substream. The function 𝑃5 .call does not pass anything
to 𝑃4, but 𝑃5 .return does consume the final float and stores it in
the state. Then 𝑃5 simply outputs the float when processing an
EndOfHour tuple:

𝑃5 .update(𝑐𝑝𝑚, _) = (𝑐𝑝𝑚, CostPerMile(𝑐𝑝𝑚)) .

APPENDIX B: PROOFS
Proof of Proposition 14
By induction on 𝑆 . For Bag(H), all three conditions follow by
the correspondence between a multiset of items and its lineariza-
tions. For Par(𝑆1, 𝑆2) and for PartitionBy(𝐾, 𝑆1), we observe that
sequences over tuples of headers(𝑆) are interleavings of events
each from a subschema, and all such interleavings are equivalent
with respect to ≡𝑆 ; conversely ≡𝑆 only holds between different
interleavings of the same two or more sequences up to equivalence,
i.e. for parallel composition, if 𝑠 ≡𝑆 𝑠 ′ and 𝑠 is an interleaving of 𝑠1
and 𝑠2 and 𝑠 ′1 is an interleaving of 𝑠 ′2, then 𝑠1 ≡𝑆1 𝑠

′
1 and 𝑠2 ≡𝑆2 𝑠

′
2.

The most interesting case is Sync(H , 𝑆1). Here, we essentially apply
the idea that (𝑎 ∪ 𝑏)∗ = (𝑎∗𝑏)∗𝑎∗ for languages: in this context 𝑎 is
tuples of headers(𝑆 ′) and 𝑏 is tuples ofH . So sequences over tuples
of headers(𝑆) decompose into a sequence of subsequences over
𝑆 ′ delineated byH events, where there is one more subsequence
than the number of H events. Since H events are fully dependent
on everything else, this decomposition is not changed by ≡, which
can thus be identified with equality on the sequence ofH events
together with equivalence on each headers(𝑆 ′) substream. The
definition of flattening reflects this decomposition exactly.

Proof of Proposition 17
We first show uniqueness. Let 𝑡 ′1, 𝑡

′
2 : 𝑆

′ such that every flattening
of 𝑡 is a flattening of 𝑡 ′1 and of 𝑡 ′2. Since every SPS has at least
one flattening, we can choose some particular flattening 𝑠 of 𝑡 (a
sequence over headers(𝑆)). By uniqueness in Proposition 14-(1),
since 𝑠 is a flattening of both 𝑡 ′1 and 𝑡

′
2, 𝑡

′
1 = 𝑡

′
2.

Now we show existence. As before, choose a particular flattening
𝑠 of 𝑡 . Since headers(𝑆 ′) ⊇ headers(𝑆), 𝑠 is also a sequence over
headers(𝑆 ′). Thus by Proposition 14-(1), there exists a 𝑡 ′ : 𝑆 ′ such
that 𝑠 is a flattening of 𝑠 . It remains to show that all flattenings of 𝑡
are flattenings of 𝑡 ′. Given any flattening 𝑠 of 𝑡 , by Proposition 14-
(2b), 𝑠 ≡𝐷𝑆

𝑠 . By the definition of relaxation, 𝑠 ≡𝐷𝑆′ 𝑠 . Then by
Proposition 14-(2a), 𝑠 is a flattening of 𝑡 ′.

Proof of Proposition 18
Wemay ignore the headers in 𝑆1 and not in 𝑆2. Then for each pair of
headers𝐻,𝐻 ′ in headers(𝑆2), we build a formula 𝜙1

𝐻,𝐻 ′ whose free
variables are the fields in 𝐻 and the fields in 𝐻 ′, which describes
when 𝑥𝐷𝑆1𝑥

′ for 𝑥 : 𝐻 and 𝑥 ′ : 𝐻 ′. This is done by expanding out
Definition 10. In all case the formula built is either true or false, or
derived from a subcase, except in the PartitionBy(𝐾, 𝑆) (and bag)
cases where 𝑥 |𝐾 = 𝑥 ′ |𝐾 arises as an atomic formula. Altogether,
each 𝜙1

𝐻,𝐻 ′ is just an atomic formula over the language of equality.
We do the same for 𝑆2 to get formulas 𝜙2

𝐻,𝐻 ′ . The problem now
becomes checking a set of implications of atomic formulas over
the language of equality, which is decidable by checking each im-
plication 𝜙1

𝐻,𝐻 ′ → 𝜙2
𝐻,𝐻 ′ in turn and inspecting the variables 𝜏𝑖

where 𝜏𝑖 is a type present in an attribute ⟨𝛼𝑖 : 𝜏𝑖 ⟩ of 𝐻 or 𝐻 ′. The
complexity is quadratic because there are quadratically many pairs
𝐻,𝐻 ′.



Proof of Theorem 25
The proof is by induction on 𝑃 . We strengthen the hypothesis to
additionally show that the open semantics is a prefix of the closed
semantics: if J𝑃K𝐶 (𝑥, 𝑡) = (𝑥 ′, 𝑡 ′) then J𝑃K𝑂 (𝑥, 𝑡) ⪯ 𝑡 ′. In addition
to the definition of concatenation ◦ and prefix ⪯, we use that ⪯ is a
partial order (Proposition 9). One of the inductive case is subtyping
as given by Definition 20.

• In the relational case, 𝑃 .open is monotonic and a subset
relation of 𝑃 .closed by assumption.

• In the parallel case, let 𝑡 = ⟨𝑡1, 𝑡2⟩ and 𝑢 = ⟨𝑢1, 𝑢2⟩, and sup-
pose that we have J𝑃 .leftK𝑂 (𝑥1, 𝑡1) = 𝑡 ′1, J𝑃 .leftK𝑂 (𝑥1, 𝑢1) =
𝑢 ′1, J𝑃 .rightK𝑂 (𝑥2, 𝑡2) = 𝑡 ′2, and J𝑃 .rightK𝑂 (𝑥2, 𝑢2) = 𝑢 ′2. Ap-
plying the inductive hypothesis, what we need to show is
that if 𝑡 ′1 ⪯ 𝑢 ′1 and 𝑡

′
2 ⪯ 𝑢 ′2, ⟨𝑡

′
1, 𝑡

′
2⟩ ⪯ ⟨𝑢 ′1, 𝑢

′
2⟩. This follows

by unfolding the definition of prefix and underlying concate-
nation, which works component-wise on ⟨𝑡 ′1, 𝑡

′
2⟩. The exact

same reasoning applies to comparing the open and closed
semantics.

• In the hierarchical case, our first step is to prove that the
auxiliary semantics is monotonic. For this, we only consider
when 𝑡 and 𝑢 each end in an empty sub-trace 𝑡𝑚 = ⊥ and
𝑢𝑚 = ⊥. This then follows by induction on the trace directly
since the output is a sequence and produced one item at
a time from the closed semantics of the sub-SPST, using
transitivity of ⪯. Next for the general case, we observe the
following: for any trace ending in an empty subtrace 𝑡 , and
any subtraces 𝑡1, 𝑢1 with 𝑡1 ⪯ 𝑢1, the auxiliary semantics on
𝑡 is a prefix of the open semantics on 𝑡 ◦ [𝑡1] (by definition),
which is a prefix of the open semantics on 𝑡 ◦ [𝑢1] (by IH),
which is a prefix of the auxiliary semantics on 𝑡 concatenated
with closed sub-SPST semantics on 𝑢1 (by definition, IH, and
associativity of concatenation), which is a prefix of the auxil-
iary semantics on 𝑡 ◦ [𝑢1, 𝑑,⊥] for any 𝑑 (by definition). This
chain of prefix relations implies the general monotonicity for
𝑡 ⪯ 𝑢, by induction using transitivity of ⪯. Also the auxiliary
semantics on 𝑡 concatenated with closed sub-SPST seman-
tics on 𝑢1 is a prefix of the closed semantics on 𝑡 ◦ [𝑢1] (by
definition), which gives that the open semantics is a prefix
of closed.

• Next we consider the partition case. For the open semantics,
𝑃 .agg does not factor in. We consider the output on 𝑡 ◦𝑢 and 𝑡
in two parts: first the keyed output, and second the relational
output. (i) For the keyed output, we need to show that the
output on 𝑡 is a prefix of the output on 𝑡 ◦𝑢. There are three
cases here: the key is present in both 𝑡 and 𝑢, present in only
𝑡 , and present in only 𝑢. If present in both, the prefix relation
holds by induction hypothesis. If only in 𝑡 , the output on
𝑡 and on 𝑡 ◦ 𝑢 are the same as these SPS are the same for
this particular key value. If only in 𝑢, the output on 𝑡 does
not contain this particular key value, and so is a prefix of
the output on 𝑡 ◦ 𝑢 taking 𝑢 ′ to be the output on 𝑢 for that
key. (ii) For the relational output, we consider the set of key
values in 𝑡 : for each such value, the output on 𝑡 and on 𝑡 ◦ 𝑢
produces a relation. We can ignore key values not in 𝑡 (in
𝑡 ◦ 𝑢 only) as they only extend the output relation for 𝑡 ◦ 𝑢.
Now we need to show that the relational output on 𝑡 ◦𝑢 is a
superset of the relational output on 𝑡 for each of these keys,
which is true by induction hypothesis.

• Finally, we consider the case of subtyping (output schema
relaxation). This requires careful application of Definition 13,
Proposition 14, and Proposition 17. Using these we derive the
following lemma: given a schema, 𝑡 ′ ⪯ 𝑢 ′ is equivalent to the
following statement: every flattening of 𝑡 ′ can be extended
to a flattening of 𝑢 ′, and every flattening of 𝑢 ′ is equivalent
to a extension of a flattening of 𝑡 ′.
Given this lemma, let 𝑆 and 𝑆 ′ be the input and output
schemas, and 𝑆 ′′ ≲ 𝑆 ′. Let 𝑡 ′, 𝑢 ′, 𝑡 ′′, 𝑢 ′′ be the output schemas
for 𝑡 and 𝑢: the definition of 𝑡 ′′ and 𝑢 ′′ is that all flattenings
of 𝑡 ′ are flattenings of 𝑡 ′′, and all flattenings of 𝑢 ′ are flat-
tenings of 𝑢 ′′. We also know by IH that 𝑡 ′ ⪯ 𝑢 ′, which we
interpret in terms of flattenings by the lemma. Considering
any flattening of 𝑡 ′′, first we know it only contains events
in headers(𝑆 ′) (because the original schema output was 𝑆 ′),
and we can additionally show it is equivalent under 𝑆 ′′ to
some flattening of 𝑡 ′; this 𝑡 ′ then can be extended to a flat-
tening of 𝑢 ′, so the flattening of 𝑡 ′′ can be extended with the
same extension to a flattening of 𝑢 ′′, which by the lemma
implies 𝑡 ′′ ⪯ 𝑢 ′′.
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