
Chapter 3

Asynchronous Models

3.1 Asynchronous Processes

Like a synchronous reactive component, an asynchronous process interacts with
other processes via inputs and outputs, and maintains an internal state. How-
ever, the execution does not proceed in rounds, and the speeds at which different
processes execute are independent. Even within a process, the processing of in-
puts is decoupled from producing outputs, modeling the assumption that any
internal computation takes an unknown, but nonzero, amount of time. Asyn-
chronous models make the design problem more challenging, but are easier to
implement on multi-processor machines or on networked distributed platforms.

As an example, consider the Buffer process shown in Figure 3.1 that models
the asynchronous variation of the synchronous reactive component Delay of
Figure 1.1. The input and output variables of a process are called channels.
The process Buffer has a Boolean input channel in and a Boolean output
channel out. The internal state of the process Buffer is a buffer of size 1, which
can be empty, or contain a Boolean value. This is modeled by the variable x
ranging over {null, 0, 1}. Initially, the buffer is empty, and this is expressed by
the initialization expression x = null. The key difference between Delay and
Buffer is in the specification of their dynamics. The process Buffer has two
possible actions. It can process an input value available in the input channel
in by copying it into its buffer. Alternatively, if the buffer is non-empty, the
process can output the buffer state by writing it to the output channel out while
resetting the buffer to empty.

3.1.1 States, Inputs, and Outputs

In general, an asynchronous process P has a set I of typed input channels,
a set O of typed output channels, and a set S of typed state variables. All
these three sets are finite and disjoint from one another. As in the case of
reactive components, a state of a process P is a valuation over the set S of its

1

2 Principles of Embedded Computation c© Rajeev Alur

Ain : x′ = in

Aout : x 6= null ∧ out = x ∧ x′ = null

{0, 1, null} x : x = null
bool in bool out

Figure 3.1: Asynchronous process Buffer

state variables, and the set of its states is QS . Initialization is expressed by
a Boolean expression Init over the state variables S. The set of initial states
contains the states satisfying this expression, that is, a state q ∈ QS is an initial
state of the process if q satisfies Init. As in the synchronous case, we require
that there is at least one initial state, and there can be more than one initial
state.

Recall that combinational synchronous components computed the outputs in
response to inputs without maintaining any internal state. An asynchronous
process, on the other hand, must maintain an internal state since processing
of inputs is decoupled from production of outputs. Thus, the set S of state
variables is always non-empty. As in the synchronous case, if all the input,
output, and state variables range over finite types, we will call the process
finite-state.

In the asynchronous model of computation, when there are multiple input chan-
nels, the arrival of input values on different channels is not synchronized. Hence,
an input of a process specifies an input channel x along with a value v of the
type of x. We denote such an input by x ? v. Such an input can be interpreted
as receiving the value v on the input channel x.

The modeling of outputs is symmetric. When there are multiple output chan-
nels, in one step, a process can produce a value for only one of the output
channels. An output of a process then specifies an output channel y along with
a value v of the type of y. We denote such an output by y ! v. Such an output
can be interpreted as sending the value v on the output channel y.

3.1.2 Input, Output, and Internal Actions

Processing of an input is called an input transition. During an input transition,
the process can only update its state, and this step is decoupled from producing
outputs. If the process in state s, on input x ? v, can update its state to t, we
write s

x ? v−→ t. An input action corresponding to an input channel x consists
of all input transitions involving the channel x, and is specified by a Boolean
expression, denoted Ax, over state variables S, input channel x, and primed
state variables S′ denoting the updated state. The set {Ax | x ∈ I} of all input
actions is denoted InActs.

Asynchronous Models 3

queue(msg) x1, x2, y : x1 = null ∧ x2 = null ∧ y = null

msg in1

Ain2
: ¬ Full(x2) ∧ x′2 = Enqueue(in2, x2) ∧ same(x1, y)

Aout : ¬ Empty(y) ∧ out = Front(y) ∧ y′ = Dequeue(y) ∧ same(x1, x2)

A1 : [¬ Empty(x1) ∧ ¬ Full(y) ∧ y′ = Enqueue(Front(x1), y)
∧ x′1 = Dequeue(x1) ∧ same(x2)]

A2 : [¬ Empty(x2) ∧ ¬ Full(y) ∧ y′ = Enqueue(Front(x2), y)
∧ x′2 = Dequeue(x2) ∧ same(x1)]

msg in2

msg out

Ain1
: ¬ Full(x1) ∧ x′1 = Enqueue(in1, x1) ∧ same(x2, y)

Figure 3.2: Asynchronous process Merge

For the process Buffer of Figure 3.1, the input action for the input channel in is
Ain given by x′ = in. This process has six input transitions: for s ∈ {0, 1, null},

s
in ? 0−→ 0 and s

in ? 1−→ 1. Note that if the process is supplied an input value when
the buffer is non-empty, the old state is lost.

Producing an output is called an output transition. During such a transition,
the process can update its state: if the process in state s can update its state to
t while producing the output y ! v, we write s

y ! v−→ t. The production of outputs
corresponding to an output channel y is captured by a Boolean expression,
denoted Ay, over state variables S, output channel y, and primed state variables
S′ denoting the updated state. This expression is called the output action of the
process corresponding to the channel y, and the set {Ay | y ∈ O} of all output
actions is denoted OutActs.

For the process Buffer of Figure 3.1, the output action for the output channel
out is Aout given by x 6= null ∧ out = x ∧ x′ = null. The process has two

output transitions: 0 out ! 0−→ null and 1 out ! 1−→ null.

As a second example, consider the Merge process of Figure 3.2 with two input
channels in1 and in2, both of type msg. The process uses a buffer dedicated
to each of the input channels to store values received on that channel. We
model a buffer using the type queue: null represents the empty queue, the
operation Enqueue(v, x) is used to add the value v at the end of the queue x,
the operation Front(x) returns the first element of the queue x, the operation
Dequeue(x) returns the queue x with its first element removed, the operation
Empty(x) returns 1 if the queue x is empty and 0 otherwise, and the operation
Full(x) returns 1 if the queue x is full and 0 otherwise.

The input action Ain1
captures how the values received on the input channel

in1 are processed: if the queue x1 is not full, the value of in1 is enqueued

4 Principles of Embedded Computation c© Rajeev Alur

in x1, leaving the other state variables x2 and y unchanged. The expression
same(x2, y) is an abbreviation for the expression x′2 = x2 ∧ y′ = y, stating
that the new value is the same as the old value for both these variables. In
general, for a list of variables x1, x2, . . . xn, same(x1, x2, . . . xn) asserts that for
each variable in the list, the primed version is equal to the unprimed version.
If the queue x1 is full, no input transition corresponding to the channel in1 is
possible. Compared to the process Buffer, this captures a different style of
synchronization: the environment, or the process sending values on the channel
in1 is blocked, if the process Merge has its internal queue x1 full. The input
action Ain2

corresponding to processing of the channel in2 is similar.

The internal computation of the process, to be discussed in the next paragraph,
transfers elements from the queues x1 and x2 to the queue y. The output action
transmits elements of the queue y to the output channel out. Such an action is
possible if the queue y is not empty. When possible, the output is set to the first
element of the queue y, and it is removed from the queue using the Dequeue
operation. The other two queues are left unchanged. This action is described
by the expression Aout.

The internal computation of a process is described using internal transitions.
Such transitions neither process inputs nor produce outputs, but update internal
state. We write s

ε−→ t if the process in state s can update its state to t
using an internal transition. The label ε indicates that there is no observable
communication during this step. The process Merge has two kinds of internal
transitions. Each kind is described by an expression, called an internal action,
over the state variables S and the primed state variables S′ denoting the updated
state. The internal action A1 denotes the computation step of dequeuing an
element from the queue x1 and enqueuing it into the queue y. This is possible
when x1 is not empty and y is not full. The queue x2 is left unchanged. The
action A2 is symmetric, and corresponds to transferring the front element of the
queue x2 to the end of the queue y. Note that the two actions are independent of
one another, and are executed at different speeds. This allows the process Merge
to be composed of subprocesses that may be distributed or may be executed on
different threads. The separation of the internal computation into two actions
will also play a role in ensuring fairness discussed in Section 3.2.3. The set of
all internal actions of a process is denoted Acts, equals {A1, A2} for the process
Merge.

We have now described all the elements of the definition of an asynchronous
process. The definition is summarized below:

Asynchronous Models 5

Asynchronous Process

An asynchronous process P has

• a finite set I of typed input channels, a finite set O of typed output
channels, a finite set S of typed state variables, such that these three
sets are pair-wise disjoint,

• a satisfiable Boolean expression Init over S,

• a set InActs of input actions, containing, for each input channel x, a
Boolean expression Ax over S ∪ S′ ∪ {x},

• a set OutActs of output actions, containing, for each output channel
y, a Boolean expression Ay over S ∪ S′ ∪ {y},

• a finite set Acts of internal actions, each of which is a Boolean expres-
sion over S ∪ S′,

An input x ? v of P is an input channel x ∈ I and a value v for x; an
output y ! v of P is an output channel y ∈ O and a value v for y; and a state
s ∈ QS of P is a valuation over S. A state s ∈ QS is an initial state of P

if s satisfies Init; for states s, t, input x ? v, and output y ! v, s
x ? v−→ t is an

input transition of P if [s, t′][x 7→ v] satisfies the input action Ax; s
y ! v−→ t is

an output transition of P if [s, t′][y 7→ v] satisfies the output action Ay; and
s

ε−→ t is an internal transition of P if [s, t′] satisfies A for some internal
action A ∈ Acts.

3.1.3 Executions

The operational semantics of a process can be captured by defining its execu-
tions. An execution starts in an initial state, and proceeds by executing either
an input transition, or an output transition, or an internal transition, at ev-
ery step. Only one action is executed at every step, and the order in which
input, output, and internal actions are executed is totally unconstrained. Such
a semantics for asynchronous interaction is called the interleaving semantics.

Formally, a finite execution of an asynchronous process P consists of a finite
sequence of the form

s0
l1−→ s1

l2−→ s2
l3−→ s3 · · · sk−1

lk−→ sk

where for 0 ≤ j ≤ k, each sj is a state of P , s0 is an initial state of P ; and for

1 ≤ j ≤ k, sj−1
lj−→ sj is either an input, or output, or internal transition P .

For instance, one possible execution of the Buffer process is:

null
in ? 1−→ 1 out ! 1−→ null

in ? 0−→ 0 in ? 1−→ 1 in ? 1−→ 1 out ! 1−→ null

6 Principles of Embedded Computation c© Rajeev Alur

bool in bool outbool temp
Buffer1 Buffer2

Figure 3.3: Block diagram for DoubleBuffer from two Buffer processes

Note that the process Buffer may execute an unbounded number of input
transitions before it executes an output transition which issues the most recent
input value received.

For the process Merge, here is one possible execution, where the state lists the
contents of the queues x1, x2, and y, in that order:

(null, null, null) in1 ? 0−→ (0, null, null) in1 ? 2−→ (02, null, null) in2 ? 5−→

(02, 5, null) ε−→ (02, null, 5) in2 ? 3−→ (02, 3, 5) ε−→

(2, 3, 50) out ! 5−→ (2, 3, 0) out ! 0−→ (2, 3, null) ε−→ (null, 3, 2)

Note that the sequence of values output by the process represents a merge of
the sequences of input values supplied on the input channels. The relative order
of values received on the input channel x1 is preserved in the output sequence,
and so is the relative order of values received on x2, but an input value received
on x1 before a value received on x2 may appear on the output later.

3.1.4 Operations on Processes

As discussed in Chapter 1, block diagrams can be used to describe composition
of synchronous components to form systems in a hierarchical manner. The same
design methodology applies to asynchronous processes also. As an example, con-
sider the block diagram of Figure 3.3 that uses two instances of the asynchronous
process Buffer to form a composite process DoubleBuffer. The block diagram
is structurally identical to the block diagram of the synchronous component
DoubleDelay of Figure 1.11. As before, the meaning of such diagrams can be
made precise using three operations, instantiation, parallel composition, and
output hiding. The process DoubleBuffer is formally defined as

(Buffer[out 7→ temp] | Buffer[in 7→ temp]) \ temp

Input and output channel renaming

The operation of input or output channel renaming is used to ensure desired
communication pattern. In Figure 3.3, the process Buffer1 is obtained by re-
naming the output channel out of Buffer to temp, and is denoted Buffer[out 7→

Asynchronous Models 7

temp]. Analogously, the process Buffer2 is obtained by renaming the input
channel in of Buffer to temp, and is denoted Buffer[in 7→ temp]. When these
two processes are composed, the shared name temp ensures that the output
issued by the process Buffer1 is processed by the process Buffer2 as its input.

When composing processes, we assume that names of state variables are private,
and are implicitly renamed to avoid name conflicts. In our example, we can
assume that the state variable of Buffer1 is called x1 instead of x, and the
state variable of Buffer2 is called x2.

The formal definition of the input/output channel renaming operation for pro-
cesses is similar to the corresponding definition for synchronous components
(Section 1.3.2). For example, for the process Buffer1, the set of input channels
is {in}, the set of output channels is {temp}, the set of state variables is {x1}, the
initialization expression is x1 = null, the input action Ain is given by x′1 = in,
the output action Atemp is given by x1 6= null ∧ temp = x1 ∧ x′1 = null,
and there are no internal actions.

Parallel composition

The parallel composition operation combines two processes into a single pro-
cess whose behavior captures the interaction between the two processes running
concurrently in which output transition of one is synchronized with the input
transition of another with the common channel name, and remaining actions
are interleaved. To differentiate the asynchronous composition with the syn-
chronous case, we use P1 |P2 to denote the composition of two processes P1 and
P2.

As in the synchronous case, two processes can be composed only if their vari-
able declarations are mutually consistent: there are no name conflicts concern-
ing state variables, and the output channels are disjoint. These requirements
capture the assumption that only one process is responsible for controlling the
value of any given variable. Input channels of one can be either input or output
channels of the other.

The parallel composition of two compatible processes is defined below. The set
of input, output, and state variables of the composite process are defined as in
the synchronous case. The two processes initialize their states independently,
and thus, a composite state is initial if initialization constraints of both processes
are met. Thus the state of the composite is of the form (s1, s2), where s1 is a
state of the process P1 and s2 is a state of the process P2. Such a state (s1, s2)
is initial if both s1 and s2 are initial states.

When an input channel x is common to both processes, then both will process
it simultaneously, and the corresponding input action is simply the logical con-
junction of the two. That is, (s1, s2) x ? v−→ (t1, t2) is an input transition of the
composite process precisely when s1

x ? v−→ t1 is an input transition of P1 and

8 Principles of Embedded Computation c© Rajeev Alur

s2
x ? v−→ t2 is an input transition of P2. If a channel x is an output channel of

one, say P1, and input channel of the other, then the two processes synchronize
using this channel: when P1 executes an output transition on x, the receiver
P2 executes the matching input transition. The action for x in the composite
then is simply the conjunction of the output action for x of one process and the
input action for x of the other process. The resulting transition is an output
transition for the composite. That is, (s1, s2) x ! v−→ (t1, t2) is an output transition
of the composite process precisely when s1

x ! v−→ t1 is an output transition of P1

and s2
x ? v−→ t2 is an input transition of P2. When one process, say P1, processes

an input corresponding to a channel x that is not a channel of the other process
P2, then the state of P2 stays unchanged. For every input transition s1

x ? v−→ t1
of the process P1 and every state s of P2, the composite has an input transition
(s1, s) x ? v−→ (t1, s). The input action for the channel x in the composite then
can be expressed as A1

x ∧ same(S2), where A1
x is the input action of P1 for

the channel x and S2 is the set of state variables of P2. Same holds for output
transitions for a channel that involves only one process: the other keeps its state
unchanged. Finally, an internal transition of the composite is an internal tran-
sition of exactly one of the two component processes, with the other keeping its
state unchanged. This definition is formalized below.

Asynchronous Models 9

Process Composition

Let P1 = (I1, O1, S1, {A1
x | x ∈ I1}, {A1

y | y ∈ O1}, Acts1) and P2 =
(I2, O2, S2, {A2

x | x ∈ I2}, {A2
y | y ∈ O2}, Acts2) be two compatible asyn-

chronous processes. Then the parallel composition P1 |P2 is the asyn-
chronous process P defined by:

• each state variable of a component process is a state variable of the
composite: S = S1 ∪ S2;

• each output channel of a component process is an output channel of
the composite: O = O1 ∪O2;

• each input channel of a component process is an input channel of the
composite, provided it is not an output channel of the other: I =
(I1 ∪ I2) \O;

• the initialization expression for the composite is the conjunction of
the component processes’ initializations: Init = Init1 ∧ Init2;

• for each input/output channel x ∈ I ∪O of the composite,

1. if x is a channel common to both processes, that is, x ∈ (I1∪O1)∩
(I2∪O2), then the action Ax of the composite is the conjunction
A1

x ∧A2
x of the corresponding actions of the two processes;

2. if x is not a channel of P1, that is, x 6∈ (I1 ∪O1), then the action
Ax of the composite is the conjunction A2

x ∧ same(S1); and

3. if x is not a channel of P2, that is, x 6∈ (I2 ∪O2), then the action
Ax of the composite is the conjunction A1

x ∧ same(S2);

• for each internal action of a component process, conjoined with an
assertion requiring the state of the other process to stay unchanged,
is an internal action of the composite:

Acts = {A ∧ same(S2) | A ∈ Acts1} ∪ {A ∧ same(S1) | A ∈ Acts2}.

The composition of processes Buffer1 and Buffer2 gives the process with state
variables {x1, x2}, output channels {temp, out}, input channels {in}, and ini-
tialization expression x1 = null ∧ x2 = null. For the composite process, the
input action Ain is

x′1 = in ∧ x′2 = x2;

the output action Atemp is

x1 6= null ∧ temp = x1 ∧ x′1 = null ∧ x′2 = temp;

the output action Aout is

x2 6= null ∧ out = x2 ∧ x′2 = null ∧ x′1 = x1;

10 Principles of Embedded Computation c© Rajeev Alur

and it has no internal actions. Thus, only the process Buffer1 participates in
the processing of the channel in, the two processes synchronize on temp, and
only Buffer2 participates in producing the output on the channel out.

As in the synchronous case, the parallel composition operation is commutative
and associative. Note that the problem of mutually cyclic awaits-dependencies
discussed for the synchronous case does not arise in the asynchronous inter-
action. If x is an output channel of process P1, and also an input channel of
process P2; and y is an output channel of P1 and an input channel of P2, we can
compose P1 and P2 without any complications. This is because production of
an output is a separate step from processing an input, for each of the processes,
and hence, there can be no combinational loops.

Output hiding

If y is an output channel of a process P , the result of hiding y in P gives a pro-
cess that behaves exactly like P , but y is no longer an output that is observable
outside. This is achieved by removing y from the set of output channels, and
turning the output action Ay corresponding to y into an internal action ∃y. Ay.
Note that Ay is an expression that involves state variables, primed state vari-
ables, and the variable y. Existentially quantifying y gives an expression over
only state variables and their primed versions, and is added to the set of internal
actions of the process.

Let us revisit the process Buffer1 | Buffer2. If we hide the intermediate output
temp, we get the desired composite process DoubleBuffer: the set of state
variables is {x1, x2}, the set of output channels is {out}, the set of input channels
is {in}, and the initialization expression is x1 = null ∧ x2 = null. The input
action Ain and the output action Aout are unchanged from Buffer1 | Buffer2.
The process DoubleBuffer has one internal action given by

∃ temp . [x1 6= null ∧ temp = x1 ∧ x′1 = null ∧ x′2 = temp],

which simplifies to

x1 6= null ∧ x′1 = null ∧ x′2 = x1 .

3.1.5 Safety Requirements

In Chapter 2, we studied how to specify and verify safety requirements of transi-
tion systems. The same techniques apply to asynchronous processes also. Given
an asynchronous process P , we can define an associated transition system T as
follows:

• the state variables S of P are the state variables of T ;

• the initialization expression Init of P is also the initialization expression
for T ; and

Asynchronous Models 11

• if I and O are input and output variables of P and Acts is the set of its
actions, then the transition expression for T is given by∨

x∈I

∃x . Ax ∨
∨

y∈O

∃y . Ay ∨
∨

A∈Acts
A.

The transition expression is simply the disjunction of all the input, output, and
internal actions of P , where the input and output variables are existentially
quantified. Thus, s → t is a transition of T precisely when the process has
either an input or an output or an internal transition from state s to t. The
disjunctive nature of the transition expression reflects the interleaving execution
semantics of the asynchronous model.

Concepts such as inductive invariants can be used to prove safety requirements
of asynchronous processes. For instance, to show that a state property ϕ is an
inductive invariant, we need to show that (1) it holds initially, and (2) it is pre-
served by every transition. Since the transition expression is just a disjunction
of expressions corresponding to different actions of the process, we need to show
that it is preserved by every action (for instance, for every internal action A,
ϕ ∧A→ ϕ′ is valid).

Safety monitors can be used to capture safety requirements that cannot be
directly stated in terms of state variables. In the asynchronous setting, a safety
monitor for a process with input variables I and output variables O is another
asynchronous process with internal state and I ∪O as its input variables. Such
a monitor synchronizes with the observed system P on the input and output
transitions of P . Safety requirement is expressed as a property over the state
variables of the monitor, and we want to establish that it is an invariant of the
(asynchronous) parallel composition of the monitor and the system P .

Enumerative and symbolic reachability algorithms discussed in Sections 2.3 and
2.4 also apply to verification of asynchronous processes. We will discuss verifi-
cation of liveness properties in Chapter 4.

3.2 Asynchronous Modeling Choices

3.2.1 Blocking vs. Non-blocking Synchronization

In the asynchronous model, exchange of information between two processes, and
thus, synchronization between them, occurs when the production of an output
by one process is matched with the processing of the corresponding input by
another. Consider an output transition s1

x ! v−→ t1 by a process P1. Suppose x
is an input channel for another process P2, and suppose s2 is the current state
of P2. If s2

x ? v−→ t2 is an input transition of P2, then in the composite system,
there will be a synchronized output transition (s1, s2) x ! v−→ (t1, t2). However, if
no such state t2 exists, that is, the process P2 is not willing to accept the input

12 Principles of Embedded Computation c© Rajeev Alur

x ? v in state s2, then no synchronization is possible, and effectively, the process
P1 is blocked from executing its output transition. A process that is willing to
accept every input in every state cannot cause the producer to wait, and is said
to be non-blocking.

Non-blocking Process

For an asynchronous process P , its input x ? v is said to be enabled in a
state s if there exists a state t such that s

x ? v−→ t is an input transition of P .
The process P is said to be non-blocking if every input is enabled in every
state.

The process Buffer of Figure 3.1 is non-blocking: its environment can always
supply a value on the input channel in, even though some of these values are
effectively lost. On the other hand, the process Merge of Figure 3.2 is non-
blocking: an input on the channel in1 cannot be processed if the queue x1 is
full, and thus, the producer of outputs on in1 has to wait till this queue becomes
non-full.

The process DoubleBuffer obtained by composing two Buffer processes is
non-blocking. In fact, it is easy to verify that all the operations defined in
Section 3.1.4 preserve the property of being non-blocking: if all the component
processes in a block diagram are non-blocking, then so is the composite process
corresponding to the block diagram.

In designing asynchronous systems, both styles of synchronization, non-blocking
and blocking, are common. In the non-blocking designs, if a process P1 sends an
output value to another process P2, then typically, an explicit acknowledgment
from P2 back to P1 is needed for P1 to be sure that its output was properly
processed by P2. In the implementation of blocking synchronization, the runtime
system must somehow ensure that the receiver is willing to participate in the
synchronizing action.

3.2.2 Atomicity of Actions

In the asynchronous model, actions of different processes, as well as different
actions of the same process, are interleaved. A crucial design decision concerns
how much computation can happen in a single action. For example, in our
example of the process Merge, transferring of an element from one of the input
queues x1 and x2 to the output queue y was separate from the output action,
but the transfer action itself, say A1, involved checking whether the queue x1

is non-empty, checking whether the queue y has space, dequeuing an element
from x1, and enqueuing that element in y. All the computation within a single
action happens atomically, without interference from other actions. Obviously,
finer the atomicity, harder is the design problem, but closer is the design to a
potential implementation.

Asynchronous Models 13

Values x : x = InitVal
Values write(p1, x)

Awrite(p,x) : x′ = write(p, x)

Aread(p,x) : read(p, x) = x ∧ x′ = x

For each p ∈ ReadProcs(x):

For each p ∈ WriteProcs(x):

Values read(p1, x)

Values write(pn, x) Values read(pm, x)

Figure 3.4: Atomic register supporting read and write operations

bool x : x = 0

Areset(p,x) : x′ = 0
Atest&set(p,x) : test&set(p, x) = x ∧ x′ = 1

For each p ∈ WriteProcs(x)

reset(p1, x)

reset(pn, x)

bool test&set(p1, x)

bool test&set(pn, x)

Figure 3.5: Boolean register supporting test&set and reset operations

The role of atomicity can be illustrated by which operations are supported by
shared objects in shared memory systems. In a shared memory architecture,
processes communicate by reading and writing shared variables.

Figure 3.4 shows the process AtomicReg that models a shared object x. The only
atomic operations supported by this shared object x are read and write, and
such an object is called an atomic register. The description is parameterized by
(1) the set of values that the register can hold, denoted Values, (2) the initial
value of the register, denoted InitVal, (3) the set of readers of x, denoted
ReadProcs(x), and (4) the set of writers of x, denoted WriteProcs(x). For
every shared atomic register x, and a process p that reads x, the synchronizing
channel read(p, x) denotes the action of reading x by p, which is an input action
for the process p and an output action for the atomic register process. Similarly,
write(p, x) denotes the action of writing x by the process p, which is an output
action for p and an input action for the atomic register.

The internal state x of the object holds the current value, and this initialized to
InitVal. The output transition for the object corresponds to reading by one of
the reader processes: the output action read(p, x) ! v is possible if the state of
the object is v. When this transition is synchronized with an input transition
read(p, x) ? v by the reader process p, the value of x is communicated to p.
This transition leaves the state of the object unchanged. Analogously, when
a writer process p wants to produce its output write(p, x) ! v, this transition
is synchronized with the input transition write(p, x) ? v by the shared object,
and this updates the internal state x to v.

Figure 3.5 shows the process Test&SetReg that models a shared object x that

14 Principles of Embedded Computation c© Rajeev Alur

takes a Boolean value, but supports the primitive operations of test&set and
reset. Initially the value of such a register is 0. The output test&set(p, x) ! v,
for some process p that can write to x, is possible if the state of the object is v.
When this action is synchronized with an input transition test&set(p, x) ? v
by the process p, the value of x is communicated to p. Unlike the read action
of the atomic register, the test&set action sets the internal state to 1. Thus, if
multiple processes are attempting to synchronize with the Test&SetReg process
with the internal state 0, the first synchronization will have the associated value
0, and this will set the state to 1 atomically, causing all subsequent transitions
to have the associated value 1. When a process wants to change the value of
the register back to 0, it executes the action reset(p, x), which is synchronized
with the matching input transition by the register process, and this updates the
internal state x to 0. Note that no value needs to be associated with the reset
transition.

Two-process Consensus

To see how the choice of atomic primitives supported by shared objects impacts
the ability solve distributed coordination problems, let us consider the classical
problem of wait-free two-processes consensus. Each process starts with an initial
preference that is known only to itself. The processes want to communicate and
arrive at a consensus decision value. This problem has been posed in many
different forms, for instance, requiring two Byzantine Generals in charge of
collaborating armies separated by the enemy army, to exchange messengers to
arrive at a mutually agreed time of attack. The core coordination problem
of reaching agreement in presence of unpredictable delays is central to many
distributed computing problems.

More specifically, we have two asynchronous processes, say Pa and Pb, each of
which has an initial Boolean value, denoted, va and vb, unknown to the other.
The processes want to arrive at Boolean decision values da and db, respectively,
so that the following two requirements are met: (1) the decision values da and
db of the two processes are identical, and (2) the decision value must be equal
to one of the initial values va or vb. The first requirement, called agreement,
captures that the two should come to a common decision even if they start with
different preferences. The second requirement, called validity, says that if both
prefer the same value, then they must decide on that value. This rules out
input-oblivious solutions, such as “both decide on 0 no matter what the initial
preferences are.”

Suppose we want to design the processes Pa and Pb so that they communicate
using shared objects such as atomic registers and test&set registers. In the
composite system, every action then will be either an internal action of one
of the processes, or will be an action shared by one of the processes and a
single shared object. The third requirement for the consensus problem is called
wait-freedom: at any point, if actions involving only one of the processes are
repeatedly executed, it reaches a decision. This ensures that a process can

Asynchronous Models 15

decide on its own without having to wait indefinitely for the other. Perhaps this
requirement can be understood by considering the following protocol for solving
consensus. We use two shared atomic registers xa and xb, each of which can
take values in the set {null, 0, 1}, and is initially null. The process Pa first
writes its preference va to xa, then waits till xb becomes non-null by reading
it repeatedly. Symmetrically, the process Pb first writes its preference vb to
xb, then waits till xa becomes non-null by reading it repeatedly. When either
process learns the preference of the other, it know both va and vb, and can
decide on, say, the logical-disjunction of the two (that is, decide on 0 if both
preferences are 0, and 1 otherwise). This protocol satisfies the requirements of
agreement and validity, but not wait-freedom. The reason is that if, say Pb, has
not yet executed its write to vb, then Pa will repeatedly read vb, and won’t be
able to reach a decision.

It is possible to solve consensus using a test&set register. Consider the follow-
ing protocol that uses two Boolean atomic registers xa and xb and a test&set
register x. The initial values of xa and xb do not matter, and x is initially 0.
The process Pa executes the following actions, with Pb following a symmetric
protocol. The process Pa first sets xa to its own preference va. Then it exe-
cutes a test&set operation on x. If the value returned is 0 (implying the x
was 0 before executing the atomic test&set), Pa goes ahead and decides on
va. If the value returned is 1, then Pa concludes that the other process Pb has
already executed test&set successfully, and hence, the register xb must contain
the preference vb. The process Pa then proceeds to read xb and decides on the
value it contains. In summary, each process publishes its preference in a shared
atomic register, executes test&set to resolve contention, and based on the re-
sult of this test, decides whose preference to adopt. The semantics of test&set
ensures agreement. Each process executes a fixed number of actions, and thus,
can decide without waiting for the other.

The key to the above solution was the primitive of test&set that updates the
register and returns its old value in a single atomic step. If we are required
to use only atomic registers, then no matter how many shared registers the
protocol employs, and how many values each such register can hold, there is
no solution that satisfies all the three requirements of agreement, validity, and
wait-freedom.

Theorem 3.1 [Impossibility of Consensus using Atomic registers] There is no
protocol for two-process consensus such that (1) the processes communicate us-
ing only atomic registers as shared objects, and (2) the protocol satisfies the
requirements of agreement, validity, and wait-freedom.

Proof. Suppose there exists a solution to the two-process consensus problem
using only atomic registers. Consider the transition system T that corresponds
to the system obtained by composing the two processes Pa and Pb, and all the
atomic registers that the protocol uses. A state s of T consists of the internal
states of the two processes and the states of all the shared atomic registers. A

16 Principles of Embedded Computation c© Rajeev Alur

single transition of T is either an internal transition of one of the two processes,
or a read transition involving one of the processes and one shared register, or a
write transition involving one of the processes and one shared register.

Starting from a given state s, many executions are possible, but each one is
finite and ends in a state where both processes have decided. Let us call a state
s uncommitted if both 0 and 1 decisions are still possible: there is an execution
starting in s in which both decide 0, and there is another execution starting
in s in which both decide 1. A state is called 0-committed if in all executions
starting in s the processes decide 0, and 1-committed if in all executions starting
in s the processes decide 1.

Let us call two states s and t Pb-equivalent if the internal state of the process
Pb is the same in both s and t, and the states of each of the shared objects is
also the same in both s and t. That is, the states s and t look the same from
the perspective of Pb: if Pb can execute an action in s, it can execute the same
action in t.

As a first step towards the proof we first establish the following:

Lemma 1. If two states s and t are Pb-equivalent, then it cannot be
the case that s is 0-committed and t is 1-committed.

The wait-freedom requirement means that starting in any state if we execute
transitions involving only one of the two processes, it must reach a decision.
Consider two states s and t that are Pb-equivalent such that s is 0-committed.
In state s if we let only Pb take steps, it will eventually reach a decision, and
this must be 0 by assumption. Now consider what happens if we let only Pb

take steps starting in state t. Since s and t look the same as far as Pb can tell, it
will execute the same sequence of actions, and reach the same decision 0. Thus,
t cannot be 1-committed.

Now consider an initial state s in which the preferences va and vb are different,
say, 0 and 1, respectively. We claim that this state must be uncommitted. If not,
suppose it is 0-committed. In state s, Pb has preference 1. Now consider another
initial state t which is same as s except Pa also starts with the same preference
1. The states s and t are Pb-equivalent. By Lemma 1, we can conclude that the
state t cannot be 1-committed. But that’s a contradiction to the consistency
requirement: in state t both preferences are 1, and thus every execution starting
in t must lead to the decision 1.

We have now established that there is an uncommitted initial state. Since every
execution starting at this state is finite, and the last state of every execution is
committed (a unique decision has been reached when both processes stop), it
follows that there must be a reachable uncommitted state whose all successors
are committed. Let this state be s.

The state s is uncommitted, that is, both decisions are still possible, but execut-
ing one more step by any of the processes commits the protocol to the eventual

Asynchronous Models 17

s

t

sbsa

Action Ab by Pb
Action Aa by Pa

Ab by Pb Pb-equivalent states

Uncommitted

1-committed

0-committed

0-committed

Figure 3.6: Impossibility result for consensus using atomic registers

decision. Without loss of generality, we can assume that there exist transitions
s → sa by process Pa using action Aa and s → sb by process Pb using action
Ab, such that every execution starting in sa causes the decision to be 0, and
every execution starting in sb causes the decision to be 1 (see Figure 3.6). Each
action can be an internal action, or a reading of a shared object, or writing of a
shared object. We can consider all possible types of actions for Aa and Ab, and
arrive at a violation of one of the requirements for the protocol.

Suppose the action Aa by Pa reads a shared atomic register. This action does
not modify the state of any of the shared objects, and does not modify the
internal state of Pb. Thus, states s and sa are Pb-equivalent. Since the two
states look the same to Pb, it can execute the action Ab in state sa also, and let
the resulting state be t (see Figure 3.6). States t and sb are Pb-equivalent. But
sb is 1-committed, while t is 0-committed, a contradiction to Lemma 1.

The cases when one of the actions is internal, and when Ab is a read action are
similar. The interesting remaining case is when both the actions Aa and Ab are
write actions. There are two sub-cases: they both write to the same register
and they write to different registers. We will consider the latter, leaving the
former as an exercise.

Consider the case when both the processes write to the same atomic register,
say, x. That is, in state s, the process Pa writes some value ma to x leading
to state sa, and the process Pa writes some value mb to the same register x
leading to state sb. Note that in state sa, even though the value of the register
x is different from its value in state s, the internal state of Pb is the same, and
a write action is not influenced by the current value. Thus, in state sa, the
process Pb can write the same value mb to the register x leading to the state t
(see Figure 3.6). The writing of the value ma by Pa to x has been lost, and did
not influence what Pb was about to do in state s. In states sb and t, the internal
states of Pb are identical, and so are the states of all the shared registers. Thus,
states sb and t are Pb-equivalent, sb is 1-committed, and t is 0-committed: a
contradiction to Lemma 1.

18 Principles of Embedded Computation c© Rajeev Alur

3.2.3 Fairness

The execution of a process in the asynchronous model is obtained by interleaving
different actions. At every step of the execution, if multiple actions can be
executed, there is a choice. For example, for the Buffer process, at every step
one can obtain the next state either by executing its input action or by executing
its output action (provided the state is non-null). An execution where the output
action is never executed is not particularly interesting. Similarly, for the Merge
process, there are a total of five actions, all of which may be possible in a given
state, and some action may get ignored forever. While the exact order in which
the values arriving on the two input channels are merged is arbitrary by design, it
is natural to require that all values eventually appear on the output channel. For
the shared objects such as AtomicReg and Test&SetReg, if multiple processes
are competing to write to them, the asynchronous model of computation allows
them to succeed in an arbitrary order, possibly one process executing multiple
writes before another process gets to execute a single write, but if a process is
denied a chance to write successfully forever, no meaningful computation can
occur.

The standard mathematical framework for capturing the informal requirement
that “execution of an action should not be delayed forever,” requires us to
consider infinite executions. An infinite execution, also called an ω-execution,
of a process P starts in one of the initial states, and has an infinite sequence of
states such that every state in this sequence is obtained from the previous one by
executing one of the actions of the process. Consider the following ω-execution
of the process Buffer:

null
in ? 1−→ 1 in ? 1−→ 1 in ? 1−→ 1 in ? 1−→ 1 in ? 1−→ 1 · · ·

In this ω-execution, the state is 1 at every step, and the next state is always
obtained by executing the input action. We will say that such an ω-execution is
unfair to the output action: at every step there is a possible output transition,
but it is never executed. An ω-execution of Buffer in which the input and
output actions alternate for, say, first 1000 steps, but after that only the input
action is executed indefinitely, is also considered unfair. For an ω-execution of
Buffer to be fair with respect to its output action, it must contain infinitely
many output transitions. Notice that for this particular process, every infinite
execution must contain infinitely many input transitions: this is because every
time Buffer executes an output transition, the buffer becomes empty, and the
next output cannot be produced until another input is received.

Now consider the following infinite execution of the process Merge. It receives
a value on the input channel in1. Then it repeatedly executes the loop in which
it receives a value on the input channel in2, transfers it to the channel y by
executing the internal action A2, and executes the output action sending this
value on the output channel out. That is, the infinite sequence of actions it
executes is Ain1

followed by the periodic execution of Ain2
; A2; Aout. This

Asynchronous Models 19

clearly starves the action A1of transferring the element from the queue x1 to y,
which is possible at every step, but never executed. We want to rule out such
an ω-execution as unfair.

Before we define the notion of fair ω-executions precisely, note that we can
require an action, whether corresponding to an output channel, or one of the
internal actions, to be executed only when it is possible. This is captured by
defining when an action is enabled in a state. The output action Ay of an
asynchronous process P is enabled in a state s of P if there exists an output
transition of P of the form s

y ! v−→ t. The internal action A of an asynchronous
process P is enabled in a state s of P if there exists a state t such that [s, t′]
satisfies A. An unfair execution is the one in which, after a certain point, an
action is always enabled, but never executed.

Consider another infinite execution of the process Merge: it repeatedly executes
the loop in which it receives a value on the input channel in2, transfers it to the
channel y by executing the internal action A2, and executes the output action
sending this value on the output channel out. We consider this to be a fair
execution. The input action Ain1

is never executed, but this is a plausible sce-
nario, and a bug revealed in such an execution may be a real bug. Demanding
repeated execution of an input action would amount to make implicit assump-
tions about the environment. Thus, fairness is required only for the actions that
the process controls. If the Merge process is composed with another process P
whose output channel is in1, then the fairness with respect to the output action
of P can force transitions involving the channel in1. The ω-execution is also fair
with respect to the internal action A1. This is because the queue x1 is always
empty, and thus, the action A1 is never enabled.

Strong Fairness

The notion of fairness we have discussed so far corresponds to what is known as
weak fairness, Weak fairness requires that a choice that is continuously enabled
is eventually executed. A stronger requirement is strong fairness which requires
that a choice that is repeatedly enabled should be eventually executed. Suppose
we have two internal actions such that executing one disables the other, but both
get enabled by the arrival of a new input. In such a scenario, the ω-execution in
which only first type of action is executed all the time is considered fair by the
requirement of weak fairness (since from no point onwards, the second choice is
always enabled), but would be ruled out by strong fairness.

As a motivating example, consider the unreliable FIFO buffer modeled by the
process UnrelFIFO shown in Figure 3.7. The input action Ain simply transfers
the input message to the internal queue x, and the output action Aout transmits
the first message from the internal queue y on the output channel. The transfer
of messages from the queue x to y is done by three internal actions. The action
A1 transfers a message from x to y correctly dequeuing a message from x and
enqueuing it in y. The action A2 models a loss of message and simply removes

20 Principles of Embedded Computation c© Rajeev Alur

Ain : x′ = Enqueue(in, x) ∧ same(y)

queue(msg) x, y : x = null ∧ y = null

msg in
A1 : ¬ Empty(x) ∧ y′ = Enqueue(Front(x), y) ∧ x′ = Dequeue(x)

A2 : ¬ Empty(x) ∧ y′ = y ∧ x′ = Dequeue(x)

A3 : ¬ Empty(x) ∧ y′ = Enqueue(Front(x), Enqueue(Front(x), y))

Aout : ¬ Empty(y) ∧ out = Front(y) ∧ y′ = Dequeue(y) ∧ same(x) msg out

∧ x′ = Dequeue(x)

Figure 3.7: Asynchronous process UnrelFIFO for unreliable link

the message from x without adding it to y. The action A3 models a duplication
of messages: for every message it dequeues from x, it enqueues two copies of
this message to y. The process thus models a communication link that may lose
some messages, and may duplicate some messages. However, it preserves the
order, and does not reorder messages. The fairness assumptions should ensure
that an input message will eventually appear on the output channel.

Consider the following execution of the process UnrelFIFO. A message arrives
on the channel in and is enqueued in the queue x. This message is removed
by the action A2. Since this action models loss of a message, it does not en-
queue it in y. The actions Ain and A1 are repeated forever in an alternating
manner resulting in an execution where the queue y always stays empty. This
ω-execution is weakly fair with respect to the action A1 that models correct
transfer of messages. This is because every time the input action enqueues the
input message in x, the action A1 is enabled, but every time the internal ac-
tion A2 removes this message, the action A1 is disabled. Since it does not stay
continuously enabled, weak fairness does not ensure its eventual execution. On
the other hand, this infinite execution is not strongly-fair with respect to A2:
the action is repeatedly enabled, but never executed. Thus, to capture the in-
formal assumption that repeated attempts to transfer a message will eventually
succeed, we should restrict attention to ω-executions that are strongly-fair with
respect to A2.

Fairness Specification

The specification of the process UnrelFIFO also highlights that we need not
demand fairness with respect to all actions. In particular, an infinite execution
in which the duplication action A3 or the lossy action A2 is never executed is
an acceptable and realistic execution. Losing or duplicating a message is not
an active action to be executed, and does not need to be executed repeatedly.
In particular, while the correct functioning of the system could rely on fairness
with respect to A1, it should not rely on fairness with respect to A2: imagine a
protocol that works correctly only when the underlying network loses messages.
As argued above, we need strong fairness for the action A1, but for the output

Asynchronous Models 21

action, only weak fairness suffices. First of all, we do need some fairness assump-
tion for the output action Aout, otherwise a message waiting to be delivered in
the output queue y may never be transmitted on the output channel out. Then
observe that once the queue y is non-empty, the action Aout stays enabled at
least until it gets executed.

This suggests that the specification of an asynchronous process should annotate
its output and internal actions: for some strong fairness is required, for some
weak fairness is required, and some do not need any fairness. This is formalized
in the definition below:

Fairness Specification

An ω-execution of an asynchronous process P consists of an infinite sequence
of the form s0

l1−→ s1
l2−→ s2

l3−→ s3 · · · where each sj is a state of P ,

s0 is an initial state of P ; and for each j > 0, sj−1
lj−→ sj is an input, or

output, or internal transition of P . An output action Ay is said to be taken
at step j, if the label lj involves the output channel y; and an internal action
A is said to be taken at step j, if the label lj is ε and [sj−1, s

′
j] satisfies A.

The ω-execution is weakly-fair with respect an output or an internal action,
if either (1) for infinitely many indices j, the action is not enabled in the
state sj , or (2) for infinitely many indices j, the action is taken at step
j. The ω-execution is strongly-fair with respect an output or an internal
action, if either (1) there exists k such that for every j ≥ k, the action is
not enabled in the state sj , or (2) for infinitely many indices j, the action
is taken at step j. A fairness specification for an asynchronous process
P a subset SFActs ⊆ OutActs ∪ Acts of actions for strong fairness and a
subset WFActs ⊆ OutActs∪Acts of actions for weak fairness. Given such a
specification, a fair ω-execution of P is an ω-execution that is strongly-fair
with respect to every action in SFActs and is weakly-fair with respect to
every action in WFActs.

In the formal definition above, weak fairness requirement is “repeatedly disabled
or repeatedly taken,” which is equivalent to “if continuously enabled then even-
tually taken.” Similarly, strong fairness is “continuously disabled or repeatedly
taken,” which is equivalent to “if repeatedly enabled then repeatedly taken.”
Note that any execution that is strongly-fair with respect to an action is also
weakly-fair with respect to that action, but converse may not hold.

When proving liveness requirements of an asynchronous process with fairness
specification, we can restrict attention only to fair ω-executions. For example,
for the Merge process, fairness specification requires weak-fairness for Aout,
and strong-fairness for the internal actions A1 and A2. With such a fairness
requirement, if it processes the input in1 ? v at any point in time, it is guaranteed
that at some future time, it will produce the output out ! v. This is because in
every fair execution if the i-th transition processes the input in1 ? v, then v will
be added to the queue x1. The weak-fairness for the output action ensures that

22 Principles of Embedded Computation c© Rajeev Alur

7

310

2

5

Figure 3.8: An asynchronous network with ring topology

if the outgoing queue has messages, they will eventually be transferred, and
thus the output queue y won’t stay full all the time. hence, the internal action
A1, with its strong-fairness requirement, cannot be ignored forever: once there
is an element in the queue x1, every time y is non-full, it is enabled, so it will
be repeatedly enabled until it gets a chance to transfer an element from x1. If
the queue x1 contains multiple elements in front of v, they will all be eventually
transferred, finally along with v itself, to the queue y. Once the element v is
enqueued in y, by a similar argument concerning fairness with respect to the
action Aout, the output action will be executed repeatedly, thereby eventually
transmitting v. The desired requirement does not hold for unfair executions, but
such executions are merely an artifact of modeling definitions, and not indicative
of a violation in a real implementation.

3.3 Asynchronous Network Protocols

In a network of processes communicating asynchronously, in each step a single
process executes a computation step, and such a step can either receive an input
value on an incoming channel, or send an output value on an outgoing channel.
As a result, algorithms for solving coordination problems cannot proceed in
lock-step rounds as in the synchronous case. Furthermore, algorithms may have
to be designed to account for potentially unreliable network links that may
lose, duplicate, or reorder messages. We illustrate some of the design challenges
using two classical algorithms, one for electing a leader in a ring of processes,
and the alternating bit protocol for implementing reliable communication using
unreliable links.

3.3.1 Leader Election

Let us revisit the coordination problem of leader election discussed in Sec-
tion 1.4.2, now in the asynchronous setting. Now we assume that the underlying
network connects the nodes in a unidirectional ring (see Figure 3.8 for an exam-
ple ring). Each node has a unique identifier, and the algorithm should exchange
messages so that eventually a single node declares itself to be the leader.

Asynchronous Models 23

Ain : x′ = Enqueue(in, x) ∧ same(y, id, id1, id2, s)

Aout : ¬ Empty(y) ∧ out = Front(y) ∧ y′ = Dequeue(y) ∧ same(x, id, id1, id2, s)

Astatus : [(s = lead ∧ status = leader) ∨ (s = follow ∧ status = follower)]

A5 : s = undec ∧ id2 6= 0 ∧ id1 > max(id, id2)∧

s′ = follow ∧ same(x, y, id, id1, id2)

A4 : s = undec ∧ id2 6= 0 ∧ id1 ≤ max(id, id2)∧

id′2 = Front(x) ∧ x′ = Dequeue(x) ∧ same(y, id, id1, s)

A3 : s = undec ∧ ¬ Empty(x) ∧ id1 6= 0 ∧ id2 = 0∧

∧ s′ = done ∧ same(x, y, id, id1, id2)

A2 : s = undec ∧ ¬ Empty(x) ∧ id1 = 0 ∧ id = Front(x)∧
s′ = lead ∧ x′ = Dequeue(x) ∧ same(y, id, id1, id2)

A1 : s = undec ∧ ¬ Empty(x) ∧ id1 = 0 ∧ id 6= Front(x)∧
id′1 = Front(x) ∧ x′ = Dequeue(x) ∧ y′ = Enqueue(id′1, y) ∧ same(s, id, id2)

nat out

id′ = id1 ∧ id′1 = 0 ∧ id′2 = 0 ∧ y′ = Enqueue(id1, y) ∧ same(x, s)

A6 : s 6= undec ∧ ¬ Empty(x) ∧ x′ = Dequeue(x)∧
y′ = Enqueue(Front(x), y) ∧ same(id, id1, id2, s)

x = null ∧ y = Enqueue(myID, null) ∧ id = myID ∧ id1 = id2 = 0 ∧ s = undec

queue(nat) x, y; nat id, id1, id2; {undec, lead, follow, done} s

nat in

{leader, follower} status

Figure 3.9: Asynchronous leader election in a ring

We model each network node as an asynchronous process P . The input channel
in receives identifiers sent by the unique process, the predecessor of P , whose
output is connected to this input, and the output channel out sends identifiers to
the unique process, the successor of P , whose input is connected to this output.
An internal queue x is used to store messages received, and the queue y is used
to store message to be sent, which get delivered by the output action one by
one. The decision is modeled by an output channel status: when the process
concludes that it is either the leader or one of the followers, the decision is issued
on this output. Our goal is to complete the specification of P so that when
multiple instances of this process are composed to form a ring, the following
requirements are met: (1) in a fair ω-execution, eventually every process outputs
a value on its output channel status, and (2) exactly one process outputs the
value leader on its output channel status.

24 Principles of Embedded Computation c© Rajeev Alur

As usual, the description of a process is parameterized by the identifier of the
network node. We will assume that each identifier is a positive number. Recall
that in the synchronous solution, if N is the total number of nodes in the
network, then assuming the network to be strongly connected, a node could infer
that its identifier has reached all the nodes in the network within N rounds. In
the asynchronous case, no such inference can be drawn, as nodes are executing
at independent speeds. A node can infer that the output it sent to its successor
has propagated to everyone only when it receives a corresponding input from
its predecessor. As a result, the protocol does not need to know the number of
processes.

One possible solution to the asynchronous leader election in a ring is obtained
by adopting the flooding algorithm of Section 1.4.2 that elects the process with
the highest identifier. We describe a more interesting algorithm that reduces
the number of messages that are sent. If the ring contains N processes then
this algorithm will generate only O(N logN) messages, as opposed to O(N2)
messages using the flooding algorithm. As it turns out, O(N logN) is also a
lower bound on the number of messages that have to exchanged for this problem.

The algorithm is shown in Figure 3.9. The input action Ain simply transfers
input messages to the internal queue x, and the output action Aout outputs
pending messages from the queue y to the output channel out.

Each process has a mode, captured by the state variable s. Initially, s is un-
decided. Once a decision is reached, the process simply relays messages from
its input queue x to its output queue y, and this is captured by the internal
action A6. The decision is reflected in the value of the mode variable s: when
it is lead or follow, the output action Astatus for the channel status outputs
the decision, and changes the mode to done. This ensures that an output value
is issued on the channel status just once. Note though, that the process will
continue to relay messages in the mode done using the action A6.

The execution of the algorithm progresses in phases, and in each phase, the
number of active processes decreases at least by a factor of 2, until only one
process remains active, which becomes the leader.

Initially, each process sends its identifier two steps along the ring. To achieve
this, each process sends its identifier, as well as the first input message it re-
ceives, on the output channel. When a process receives two messages on the
input channel, it knows its own identifier, captured by the variable id, the iden-
tifier of its predecessor, captured by the variable id1, and the identifier of the
predecessor’s predecessor, captured by the variable id2. Initially, id is set to
myID, the unique positive number associated with the process. The variables
id1 and id2 are set to 0. The identifier is enqueued in the outgoing queue to be
sent. When id1 is 0, the next message to be processed, which is at the front
of the queue x, is the value from the predecessor. When this value equals the
current id, the process has won the election; this is modeled by the action A2.
Otherwise, the action A2 dequeues the message, sets id1 to this value, and sends

Asynchronous Models 25

the message to its successor. If id1 is non-zero, but id2 is 0, the next input mes-
sage to be processed is the message from the predecessor’s predecessor. The
action A3 dequeues this message, and stores it in the variable id2.

Once the process has received the values of id1 and id2, it compares these with
id. If id1 is the highest among these three identifiers, then the process continues
to remain active, adopting the value of id1 as its own identifier. This is modeled
by the action A5 which resets the variables, and initiates the new phase. If id1

is not the highest among these three identifiers, then the process switches to
follower mode by setting the mode variable s. This is captured by the action
A4. Subsequently, this process will only relay messages without examining them,
and output follower on the channel status.

Note that every process is repeating the same computation. Suppose for a
process P , id = m0, id1 = m1, and id2 = m2. The process P will continue to
stay active if both m1 > m0 and m2 > m0. Consider the predecessor P ′ of P .
Then, for the process P ′, its own identifier, that is, the value of its id variable
will be m1, and the identifier of its predecessor, that is, the value of its id1

variable, is m2. This guarantees that if P decides to stay active adopting m1

as its identifier, P ′ will become inactive. It is easy to see that the number of
processes that continue to stay active is at least 1 (the successor of the process
with the highest identifier is guaranteed to be active) and at most half of the
current number of active processes (if a process stays active its predecessor is
guaranteed to become inactive).

For the example network shown in Figure 3.8, for the process with the original
identifier 3, the values of id, id1, and id2, in the first phase will be 3, 7, 5,
respectively, and it will continue to the next phase as an active process, with
7 as its identifier. For the process with the original identifier 7, the values of
id, id1, and id2, in the first phase will be 7, 5, and 2, respectively, and it will
become inactive. After the first phase, only processes 3 and 2 will be active,
with modified identifiers 7 and 10, respectively.

When a process decides to stay active, it repeats the protocol again. It sends
its current identifier (which was adopted from its predecessor in the preceding
round) and the next input message on its output channel. After receiving 2 input
messages, it examines the relative ordering of its identifier and the identifiers of
its two predecessors, making decisions as before. That is, in every subsequent
phase, the current ring with the reduced number of active processes repeats the
same protocol, thereby again reducing the number of active processes by at least
half. The presence of inactive processes does not influence the logical argument
since they are simply relaying messages.

When an active process receives an input message that is equal to its current
identifier, then it can conclude that it is the only active process, and proceed to
declaring itself as the leader (action A2). Note that even though this identifier
is guaranteed to be the highest among all the original identifiers, it is not the
original identifier of this leader process.

26 Principles of Embedded Computation c© Rajeev Alur

msg in
Ps Pr

UnrelFIFO2

UnrelFIFO1
x1 y1

x2 y2

msg out

Figure 3.10: The block diagram for reliable communication

Continuing our example from Figure 3.8, during the second phase, for process
3, the values of id, id1, and id2, will be 7, 10, and 7, respectively, and it will
continue to the next phase as the only active process adopting the identifier
10. In the third phase, the first message it sends will come back to it as the
predecessor’s identifier, with all other processes simply relaying this message.

The precise correctness argument is complicated by the fact that the phases are
not synchronized, and it any given time, neighboring processes may be executing
different phases. Fairness assumption ensures that all messages will eventually
be processed causing each process to finish its current phase, and proceed to the
next phase. In each phase, each process sends at most 2 messages. If the ring
contains N processes, then each phase contributes at most 2N messages, and
the number of phases is at most logN , leading to an overall bound of 2N logN
messages.

In this protocol, no process ever sends messages repeatedly. Thus, no infinite
execution is possible, and as a result correctness does not require any fairness
specification.

3.3.2 Reliable Transmission

Given an unreliable communication medium, how can we implement a reliable
FIFO link that delivers each message exactly once in the order received? More
specifically, we want to design processes Ps and Pr so that the composite sys-
tem shown in Figure 3.10 acts as a reliable FIFO buffer with respect to its
input and output channels using two instances of the unreliable communication
link UnrelFIFO (see Figure 3.7). The process Ps acts as an interface for the
sender and the process Pr acts as an interface for the receiver. The unreli-
able link UnrelFIFO1 transfers messages from Ps to Pr, and the unreliable link
UnrelFIFO2 transfers messages from Pr to Ps.

To deliver a message that Ps receives on its input channel in, it may need to send
it repeatedly to Pr since the link UnrelFIFO1 may lose messages, and Pr needs
to send an explicit acknowledgment back to Ps notifying successful delivery.
The acknowledgment also needs to be sent repeatedly to ensure eventual suc-
cessful delivery in presence of lost messages. A key design challenge is to match
messages with acknowledgments, and identification of duplicates. One classical
solution for this purpose is the alternating bit protocol that synchronizes the
sender and the receiver processes using a Boolean tag bit that alternates.

Asynchronous Models 27

Ain : x′ = Enqueue(in, x) ∧ same(tag)

queue(msg) x; bool tag : x = null ∧ tag = 1

(msg, bool) x1

msg in

bool x2

Ax1
: ¬ Empty(x) ∧ x1 = (Front(x), tag) ∧ same(x, tag)

Ax2
: [x2 = tag ∧ ¬ Empty(x) ∧ tag′ = ¬ tag ∧ x′ = Dequeue(x)]
∨ [x2 6= tag ∧ same(x, tag)]

Figure 3.11: The sender process for the alternating-bit protocol

The sender interface Ps is shown in Figure 3.11. It maintains a queue x of
messages that it receives on its input channel in, and this is captured by the
action Ain. The tag is a Boolean variable that is initially 1. When Ps sends
a message to the receiver process Pr using the unreliable FIFO medium on the
channel x1, it augments the message with the current value of tag, and does
not remove the message from the queue. This action Ax1 may get executed
repeatedly. When it gets an acknowledgment, in the form of a tag bit from
the receiver, it checks if the received tag matches its own tag, and only if this
check succeeds, it removes the message from its queue, and toggles the tag. The
processing of acknowledgment tags is modeled by the action Ax2 . The toggling
of the tag will cause the next message in the queue x to be sent, possibly
repeatedly, on the channel x1 with this updated tag. The fairness specification
demands weak-fairness for the output action: once a message is enqueued in x,
the action Ax1 stays enabled, and should eventually be executed sending the
first message on the channel x1.

The receiver process Pr is shown in Figure 3.12. The messages it receives are
stored in the queue y, and it also maintains a tag, which is initially 0 (comple-
ment of the initial tag value of the sender). When it receives a message on the
channel y1, it checks if the tag of the incoming message matches its own tag.
If so, the incoming message is a new message, and it is added to the queue y.
This is captured by the action Ay1

, where the primitives First and Second are
used to retrieve the two fields of the incoming message. Messages in the queue
y are transmitted on the output channel using the action Aout. The receiver
repeatedly sends the current value of its tag to the sender as an acknowledgment
on the channel y2. To ensure eventual delivery on both the output channels,
the fairness specification demands weak-fairness for both the output actions Ay1

and Aout. Since these actions are not disabled by competing actions, we don’t
need strong fairness.

This is how the protocol executes. Suppose the process Ps receives a message,
say m1, on its input channel in. Then, it will send repeatedly the message
(m1, 1) to Pr using the unreliable channel. Each such message may be lost or
duplicated. Meanwhile, Pr is repeatedly sending the tag bit 0 to Ps, but Ps

will ignore all such messages. The first time the message (m1, 0) is successfully
received by Pr, it will change its tag to 1, and enqueue m1 to its output queue,

28 Principles of Embedded Computation c© Rajeev Alur

queue(msg) y; bool tag : y = null ∧ tag = 0

Ay1
: [Second(y1) = tag ∧ same(y, tag)]

Ay2
: y2 = tag ∧ same(y, tag)

Aout : ¬ Empty(y) ∧ y′ = Dequeue(y) ∧ out = Front(y) ∧ same(tag)

bool y2
∨ [Second(y1) 6= tag ∧ tag′ = ¬ tag ∧ y′ = Enqueue(First(y1), y)]

(msg, bool) y1

msg out

Figure 3.12: The receiver process for the alternating-bit protocol

and it will eventually be delivered on the output channel out. Additional copies
of (m1, 0) will be ignored by Pr since its tag is now 1: it will recognize the next
message as a fresh message only when the message is tagged with 0. It will
repeatedly send the tag 1 to Ps as an acknowledgment, each such message again
may be lost or duplicated, but eventually, Ps will receive the tag 1. At this
point, Ps will remove the message m1 from its input queue. If it had received
additional messages on the channel in during this period, they would have been
enqueued in x, and if m2 is next pending message, then Ps will start sending
(m2, 1) to Pr. If Ps receives additional tag messages 1, it will ignore them. The
message m2 will dequeued only when Ps receives the tag 0.

3.4 Exercises

1. We want to design an asynchronous adder process AsyncAdd with input
channels x1 and x2, and output channel y, all of type nat. If the i-th input
message arriving on the channel x1 is v and the i-th input message arriving
on the channel x2 is w, then the i-th value output by the process AsyncAdd
on its output channel should be v +w. Describe all the components of the
process AsyncAdd.

2. We want to design an asynchronous process Spit that is the dual of Merge.
The process Split has one input channel in and two output channels out1

and out2. The messages received on the input channel should be routed to
one of the output channels in a nondeterministic manner so that all possi-
ble splittings of the input stream are feasible executions. Describe all the
components of the desired process Split. Suppose we want to capture the
requirement that the distribution of messages among the two output chan-
nels should be, while unspecified, fair in the sense that if infinitely many
messages arrive then both output channels should have infinitely many
messages output. How would you add fairness specification to your design
to capture this requirement? If you are using strong fairness, argue that
weak fairness would not be enough (that is, describe an infinite execution
that is weakly-fair, but the split of messages is not fair as desired).

3. By modifying the specification of the process UnrelFIFO of Figure 3.7,
construct a precise specification of the process VeryunrelFIFO which, in

Asynchronous Models 29

addition to losing and duplicating messages, can also reorder messages.
What would be a natural fairness specification for the modified process?

4. Consider the generalization of two process consensus to multiple processes
in which each process starts with an initial preference bit, and wants
to decide on a common Boolean value. The protocol must satisfy the
requirements of agreement (all decide on the same value), consistency
(the decision value must be a preference of one the processes), and wait-
freedom (if a process takes steps all by itself, it should reach a decision
in finitely many steps without having to wait for others). Describe why
the strategy described in the 2-process protocol using a test&set register
does not generalize to 3 processes? Prove that there is no solution to the
consensus problem, when the number of processes is 3 (or more), using
only atomic registers and test&set registers as shared objects.

5. Consider the shared object StickyBit that supports read and write op-
erations as in case of an atomic register, with some modification. The
internal state of a StickyBit can be null, 0, or 1. The read operation
outputs the current value. The write operation has a Boolean (0 or 1)
value associated with it: if the current state is null then the state is up-
dated to the value of write, but if not (that is, state is already 0 or 1),
the value stays unchanged. Describe a protocol for solving 2-process con-
sensus using a single StickyBit (you may use any number of additional
atomic registers as you need). Can you solve consensus for 3 (or more
generally, n) processes using multiple StickyBit and AtomicReg objects?

6. For the leader election protocol of Section 3.3.1, consider a ring with 16
nodes where the identifiers of the processes in the order in which they are
connected are: 25, 3, 6, 15, 19, 8, 7, 14, 4, 22, 21, 18, 24, 1, 10, 23. Which
process will be elected as the leader?

7. For the leader election protocol of Section 3.3.1, describe the best-case and
worst-case scenarios: (a) describe the scenario in which only one node will
stay active after the first round, and (b) describe the scenario in which
the protocol will need log N phases before the election.

8. Consider the alternating-bit protocol from Section 3.3.2. Suppose we know
that the unreliable FIFO communication links may lose messages, but does
not duplicate it. How would you modify the protocol to take advantage
of this?

9. Consider the specification of the process VeryunrelFIFO designed in Ex-
ercise 3 above, of an unreliable link that may lose messages, duplicate
messages, and reorder messages. First, show that the alternating-bit pro-
tocol from Section 3.3.2 does not work correctly if we replace the instance
of UnrelFIFO with instances of VeryunrelFIFO. How would you modify
the processes Ps and Pr so that reliable communication is guaranteed even

30 Principles of Embedded Computation c© Rajeev Alur

in presence of this added complication of reordering? Argue that the mod-
ified protocol works correctly. Hint: a Boolean-values tag is not enough,
and messages need to be tagged with a counter variable of type nat.

