
A Composable Specification Language for
Reinforcement Learning Tasks

Kishor Jothimurugan, Rajeev Alur, Osbert Bastani
University of Pennsylvania

{kishor,alur,obastani}@cis.upenn.edu

Abstract

Reinforcement learning is a promising approach for learning control policies for
robot tasks. However, specifying complex tasks (e.g., with multiple objectives
and safety constraints) can be challenging, since the user must design a reward
function that encodes the entire task. Furthermore, the user often needs to manually
shape the reward to ensure convergence of the learning algorithm. We propose
a language for specifying complex control tasks, along with an algorithm that
compiles specifications in our language into a reward function and automatically
performs reward shaping. We implement our approach in a tool called SPECTRL,
and show that it outperforms several state-of-the-art baselines.

1 Introduction

Reinforcement learning (RL) is a promising approach to learning control policies for robotics
tasks [5, 21, 16, 15]. A key shortcoming of RL is that the user must manually encode the task as a
real-valued reward function, which can be challenging for several reasons. First, for complex tasks
with multiple objectives and constraints, the user must manually devise a single reward function
that balances different parts of the task. Second, the state space must often be extended to encode
the reward—e.g., adding indicators that keep track of which subtasks have been completed. Third,
oftentimes, different reward functions can encode the same task, and the choice of reward function
can have a large impact on the convergence of the RL algorithm. Thus, users must manually design
rewards that assign “partial credit” for achieving intermediate goals, known as reward shaping [17].

For example, consider the task in Figure 1, where the state is the robot position and its remaining
fuel, the action is a (bounded) robot velocity, and the task is

“Reach target q, then reach target p, while maintaining positive fuel and avoiding
obstacle O”.

To encode this task, we would have to combine rewards for (i) reaching q, and then reaching p (where
“reach x” denotes the task of reaching an ε box around x—the regions corresponding to p and q are
denoted by P and Q respectively), (ii) avoiding region O, and (iii) maintaining positive fuel, into
a single reward function. Furthermore, we would have to extend the state space to keep track of
whether q has been reached—otherwise, the control policy would not know whether the current goal
is to move towards q or p. Finally, we might need to shape the reward to assign partial credit for
getting closer to q, or for reaching q without reaching p.

We propose a language for users to specify control tasks. Our language allows the user to specify
objectives and safety constraints as logical predicates over states, and then compose these primitives
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Figure 1: Example control task. The blue dashed trajectory satisfies the specification φex (ignoring the
fuel budget), whereas the red dotted trajectory does not satisfy φex as it passes through the obstacle.

sequentially or as disjunctions. For example, the above task can be expressed as

φex = achieve (reach q; reach p) ensuring (avoid O ∧ fuel > 0), (1)

where fuel is the component of the state space keeping track of how much fuel is remaining.

The principle underlying our approach is that in many applications, users have in mind a sequence
of high-level actions that are needed to accomplish a given task. For example, φex may encode the
scenario where the user wants a quadcopter to fly to a location q, take a photograph, and then return
back to its owner at position p, while avoiding a building O and without running out of battery.
Alternatively, a user may want to program a warehouse robot to go to the next room, pick up a box,
and then bring this item back to the first room. In addition to specifying sequences of tasks, users can
also specify choices between multiple tasks (e.g., bring back any box).

Another key aspect of our approach is to allow the user to specify a task without providing the
low-level sequence of actions needed to accomplish the task. Instead, analogous to how a compiler
generates machine code from a program written by the user, we propose a compiler for our language
that takes the user-provided task specification and generates a control policy that achieves the task.
RL is a perfect tool for doing so—in particular, our algorithm compiles the task specification to a
reward function, and then uses state-of-the-art RL algorithms to learn a control policy. Overall, the
user provides the high-level task structure, and the RL algorithm fills in the low-level details.

A key challenge is that our specifications may encode rewards that are not Markov—e.g., in φex,
the robot needs memory that keeps track of whether its current goal is reach q or reach p. Thus,
our compiler automatically extends the state space using a task monitor, which is an automaton
that keeps track of which subtasks have been completed.1 Furthermore, this automaton may have
nondeterministic transitions; thus, our compiler also extends the action space with actions for choosing
state transitions. Intuitively, there may be multiple points in time at which a subtask is considered
completed, and the robot must choose which one to use.

Another challenge is that the naïve choice of rewards—i.e., reward 1 if the task is completed and
0 otherwise—can be very sparse, especially for complex tasks. Thus, our compiler automatically
performs two kinds of reward shaping based on the structure of the specification—it assigns partial
credit for (i) partially accomplishing intermediate subtasks, and (ii) for completing more subtasks. For
deterministic MDPs, our reward shaping is guaranteed to preserve the optimal policy; we empirically
find it also works well for stochastic MDPs.

We have implemented our approach in a tool called SPECTRL,2 and evaluated the performance of
SPECTRL compared to a number of baselines. We show that SPECTRL learns policies that solve each
task in our benchmark with a success rate of at least 97%. In summary, our contributions are:

• We propose a language for users to specify RL tasks (Section 2).
• We design an algorithm for compiling a specification into an RL problem, which can be

solved using standard RL algorithms (Section 3).
• We have implemented SPECTRL, and empirically demonstrated its benefits (Section 4).

Related work. Imitation learning enables users to specify tasks by providing demonstrations of the
desired task [18, 1, 26, 20, 10]. However, in many settings, it may be easier for the user to directly
specify the task—e.g., when programming a warehouse robot, it may be easier to specify waypoints
describing paths the robot should take than to manually drive the robot to obtain demonstrations.

1Intuitively, this construction is analogous to compiling a regular expression to a finite state automaton.
2SPECTRL stands for SPECifying Tasks for Reinforcement Learning.
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Also, unlike imitation learning, our language allows the user to specify global safety constraints on
the robot. Indeed, we believe our approach complements imitation learning, since the user can specify
some parts of the task in our language and others using demonstrations.

Another approach is for the user to provide a policy sketch—i.e., a string of tokens specifying a
sequence of subtasks [2]. However, tokens have no meaning, except equal tokens represent the
same task. Thus, policy sketches cannot be compiled to a reward function, which must be provided
separately.

Our specification language is based on temporal logic [19], a language of logical formulas for
specifying constraints over (typically, infinite) sequences of events happening over time. For example,
temporal logic allows the user to specify that a logical predicate must be satisfied at some point
in time (e.g., “eventually reach state q”) or that it must always be satisfied (e.g., “always avoid an
obstacle”). In our language, these notions are represented using the achieve and ensuring
operators, respectively. Our language restricts temporal logic in a way that enables us to perform
reward shaping, and also adds useful operators such as sequencing that allow the user to easily express
complex control tasks.

Algorithms have been designed for automatically synthesizing a control policy that satisfies a given
temporal logic formula; see [4] for a recent survey, and [12, 25, 6, 9] for applications to robotic
motion planning. However, these algorithms are typically based on exhaustive search over control
policies. Thus, as with finite-state planning algorithms such as value iteration [22], they cannot be
applied to tasks with continuous state and action spaces that can be solved using RL.

Reward machines have been proposed as a high-level way to specify tasks [11]. In their work, the
user provides a specification in the form of a finite state machine along with reward functions for
each state. Then, they propose an algorithm for learning multiple tasks simultaneously by applying
the Q-learning updates across different specifications. At a high level, these reward machines are
similar to the task monitors defined in our work. However, we differ from their approach in two ways.
First, in contrast to their work, the user only needs to provide a high-level logical specification; we
automatically generate a task monitor from this specification. Second, our notion of task monitor has
a finite set of registers that can store real values; in contrast, their finite state reward machines cannot
store quantitative information.

The most closely related work is [13], which proposes a variant of temporal logic called truncated
LTL, along with an algorithm for compiling a specification written in this language to a reward
function that can be optimized using RL. However, they do not use any analog of the task monitor,
which we demonstrate is needed to handle non-Markovian specifications. Finally, [24] allows the
user to separately specify objectives and safety constraints, and then using RL to learn a policy.
However, they do not provide any way to compose rewards, and do not perform any reward shaping.
Also, their approach is tied to a specific RL algorithm. We show empirically that our approach
substantially outperforms both these approaches.

Finally, an alternative approach is to manually specify rewards for sub-goals to improve perfor-
mance. However, many challenges arise when implementing sub-goal based rewards—e.g., how
does achieving a sub-goal count compared to violating a constraint, how to handle sub-goals that
can be achieved in multiple ways, how to ensure the agent does not repeatedly obtain a reward for a
previously completed sub-goal, etc. As tasks become more complex and deeply nested, manually
specifying rewards for sub-goals becomes very challenging. Our system is designed to automatically
solve these issues.

2 Task Specification Language

Markov decision processes. A Markov decision process (MDP) is a tuple (S,D,A, P, T ), where
S ⊆ Rn are the states, D is the initial state distribution, A ⊆ Rm are the actions, P : S ×A× S →
[0, 1] are the transition probabilities, and T ∈ N is the time horizon. A rollout ζ ∈ Z of length t
is a sequence ζ = s0

a0−→ . . .
at−1−−−→ st where si ∈ S and ai ∈ A. Given a (deterministic) policy

π : Z → A, we can generate a rollout using ai = π(ζ0:i). Optionally, an MDP can also include a
reward function R : Z → R. 3

3Note that we consider rollout-based rewards rather than state-based rewards. Most modern RL algorithms,
such as policy gradient algorithms, can use rollout-based rewards.
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Specification language. Intuitively, a specification φ in our language is a logical formula specify-
ing whether a given rollout ζ successfully accomplishes the desired task—in particular, it can be
interpreted as a function φ : Z → B, where B = {true, false}, defined by

φ(ζ) = I[ζ successfully achieves the task],

where I is the indicator function. Formally, the user first defines a set of atomic predicates P0, where
every p ∈ P0 is associated with a function JpK : S → B such that JpK(s) indicates whether s satisfies
p. For example, given x ∈ S, the atomic predicate

Jreach xK(s) = (‖s− x‖∞ < 1)

indicates whether the robot is in a state near x, and given a rectangular region O ⊆ S, the atomic
predicate

Javoid OK(s) = (s 6∈ O)

indicates if the robot is avoiding O. In general, the user can define a new atomic predicate as an
arbitrary function JpK : S → B. Next, predicates b ∈ P are conjunctions and disjunctions of atomic
predicates. In particular, the syntax of predicates is given by 4

b ::= p | (b1 ∧ b2) | (b1 ∨ b2),

where p ∈ P0. Similar to atomic predicates, each predicate b ∈ P corresponds to a function JbK :
S → B, defined recursively by Jb1 ∧ b2K(s) = Jb1K(s)∧Jb2K(s) and Jb1 ∨ b2K(s) = Jb1K(s)∨Jb2K(s).
Finally, the syntax of our specifications is given by 5

φ ::= achieve b | φ1 ensuring b | φ1;φ2 | φ1 or φ2,

where b ∈ P . Intuitively, the first construct means that the robot should try to reach a state s such
that JbK(s) = true. The second construct says that the robot should try to satisfy φ1 while always
staying in states s such that JbK(s) = true. The third construct says the robot should try to satisfy
task φ1 and then task φ2. The fourth construct means that the robot should try to satisfy either task
φ1 or task φ2. Formally, we associate a function JφK : Z → B with φ recursively as follows:

Jachieve bK(ζ) = ∃ i < t, JbK(si)
Jφ ensuring bK(ζ) = JφK(ζ) ∧ (∀i < t, JbK(si))

Jφ1;φ2K(ζ) = ∃ i < t, (Jφ1K(ζ0:i) ∧ Jφ2K(ζi:t))
Jφ1 or φ2K(ζ) = Jφ1K(ζ) ∨ Jφ2K(ζ),

where t is the length of ζ. A rollout ζ satisfies φ if JφK(ζ) = true, which is denoted ζ |= φ.

Problem formulation. Given an MDP and a specification φ, our goal is to compute

π∗ ∈ arg max
π

Pr
ζ∼Dπ

[JφK(ζ) = true], (2)

where Dπ is the distribution over rollouts generated by π. In other words, we want to learn a policy
π∗ that maximizes the probability that a generated rollout ζ satisfies φ.

3 Compilation and Learning Algorithms

In this section, we describe our algorithm for reducing the above problem (2) for a given MDP
(S,D,A, P, T ) and a specification φ to an RL problem specified as an MDP with a reward function.
At a high level, our algorithm extends the state space S to keep track of completed subtasks and
constructs a reward function R : Z → R encoding φ. A key feature of our algorithm is that the user
has control over the compilation process—we provide a natural default compilation strategy, but the
user can extend or modify our approach to improve the performance of the RL algorithm. We give
proofs in Appendix B.

Quantitative semantics. So far, we have associated specifications φ with Boolean semantics (i.e.,
JφK(ζ) ∈ B). A naïve strategy is to assign rewards to rollouts based on whether they satisfy φ:

R(ζ) =

{
1 if ζ |= φ

0 otherwise.

4Formally, a predicate is a string in the context-free language generated by this context-free grammar.
5Here, achieve and ensuring correspond to the “eventually” and “always” operators in temporal logic.
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ρ : min{x1, x2, x3, x4}

x1 ← 0
x2 ← 0
x3 ←∞
x4 ←∞

Σ : s ∈ Q
x1 ← 1− d∞(s, q)

u
Σ : min{x1, x3, x4} > 0
u

Σ : s ∈ P
x2 ← 1− d∞(s, p)

u

Figure 2: An example of a task monitor. States are labeled with rewards (prefixed with “ρ :”).
Transitions are labeled with transition conditions (prefixed with “Σ :”), as well as register update
rules. A transition from q2 to q4 is omitted for clarity. Also, u denotes the two updates x3 ←
min{x3, d∞(s,O)} and x4 ← min{x4, fuel(s)}.

However, it is usually difficult to learn a policy to maximize this reward due to its discrete nature.
A common strategy is to provide a shaped reward that quantifies the “degree” to which ζ satisfies
φ. Our algorithm uses an approach based on quantitative semantics for temporal logic [7, 8, 14].
In particular, we associate an alternate interpretation of a specification φ as a real-valued function
JφKq : Z → R. To do so, the user provides quantitative semantics for atomic predicates p ∈ P0—in
particular, they provide a function JpKq : S → R that quantifies the degree to which p holds for s ∈ S.
For example, we can use

Jreach xKq(s) = 1− d∞(s, x)

Javoid OKq(s) = d∞(s,O),

where d∞ is the L∞ distance between points, with the usual extension to sets. These semantics
should satisfy JpKq(s) > 0 if and only if JpK(s) = true, and a larger value of JpKq should correspond
to an increase in the “degree” to which p holds. Then, the quantitative semantics for predicates
b ∈ P are Jb1 ∧ b2Kq(s) = min{Jb1Kq(s), Jb2Kq(s)} and Jb1 ∨ b2Kq(s) = max{Jb1Kq(s), Jb2Kq(s)}.
Assuming JpKq satisfies the above properties, then JbKq > 0 if and only if JbK = true.

In principle, we could now define quantitative semantics for specifications φ:

Jachieve bKq(ζ) = max
i<t

JbKq(si)

Jφ ensuring bKq(ζ) = min{JφKq(ζ), JbKq(s0), ..., JbKq(st−1)}
Jφ1;φ2Kq(ζ) = max

i<t
min{Jφ1Kq(ζ0:i), Jφ2Kq(ζi:t)}

Jφ1 or φ2Kq(ζ) = max{Jφ1Kq(ζ), Jφ2Kq(ζ)}.

Then, it is easy to show that JφK(ζ) = true if and only if JφKq(ζ) > 0, so we could define a reward
function R(ζ) = JφKq(ζ). However, one of our key goals is to extend the state space so the policy
knows which subtasks have been completed. On the other hand, the semantics JφKq quantify over all
possible ways that subtasks could have been completed in hindsight (i.e., once the entire trajectory is
known). For example, there may be multiple points in a trajectory when a subtask reach q could be
considered as completed. Below, we describe our construction of the reward function, which is based
on JφKq , but applied to a single choice of time steps on which each subtask is completed.

Task monitor. Intuitively, a task monitor is a finite-state automaton (FSA) that keeps track of which
subtasks have been completed and which constraints are still satisfied. Unlike an FSA, its transitions
may depend on the state s ∈ S of a given MDP. Also, since we are using quantitative semantics,
the task monitor has to keep track of the degree to which subtasks are completed and the degree to
which constraints are satisfied; thus, it includes registers that keep track of the these values. A key
challenge is that the task monitor is nondeterministic; as we describe below, we let the policy resolve
the nondeterminism, which corresponds to choosing which subtask to complete on each step.

Formally, a task monitor is a tuple M = (Q,X,Σ, U,∆, q0, v0, F, ρ). First, Q is a finite set of
monitor states, which are used to keep track of which subtasks have been completed. Also, X is a
finite set of registers, which are variables used to keep track of the degree to which the specification

5



holds so far. Given an MDP (S,D,A, P, T ), an augmented state is a tuple (s, q, v) ∈ S ×Q× V ,
where V = RX—i.e., an MDP state s ∈ S, a monitor state q ∈ Q, and a vector v ∈ V encoding the
value of each register in the task monitor. An augmented state is analogous to a state of an FSA.

The transitions ∆ of the task monitor depend on the augmented state; thus, they need to specify two
pieces of information: (i) conditions on the MDP states and registers for the transition to be enabled,
and (ii) how the registers are updated. To handle (i), we consider a set Σ of predicates over S × V ,
and to handle (ii), we consider a set U of functions u : S × V → V . Then, ∆ ⊆ Q× Σ× U ×Q is
a finite set of (nondeterministic) transitions, where (q, σ, u, q′) ∈ ∆ encodes augmented transitions
(s, q, v)

a−→ (s′, q′, u(s, v)), where s a−→ s′ is an MDP transition, which can be taken as long as
σ(s, v) = true. Finally, v0 ∈ RX is the vector of initial register values, F ⊆ Q is a set of final
monitor states, and ρ is a reward function ρ : S × F × V → R.

Given an MDP (S,D,A, P, T ) and a specification φ, our algorithm constructs a task monitor Mφ =
(Q,X,Σ, U,∆, q0, v0, F, ρ) whose states and registers keep track which subtasks of φ have been
completed. Our task monitor construction algorithm is analogous to compiling a regular expression
to an FSA. More specifically, it is analogous to algorithms for compiling temporal logic formulas
to automata [23]. We detail this algorithm in Appendix A. The underlying graph of a task monitor
constructed from any given specification is acyclic (ignoring self loops) and final states correspond to
sink vertices with no outgoing edges (except a self loop).

As an example, the task monitor for φex is shown in Figure 2. It has monitor statesQ = {q1, q2, q3, q4}
and registers X = {x1, x2, x3, x4}. The monitor states encode when the robot (i) has not yet reached
q (q1), (ii) has reached q, but has not yet returned to p (q2 and q3), and (iii) has returned to p (q4); q3

is an intermediate monitor state used to ensure that the constraints are satisfied before continuing.
Register x1 records Jreach qK(s) = 1− d∞(s, q) when transitioning from q1 to q2, and x2 records
Jreach pKq = 1−d∞(s, p) when transitioning from q3 to q4. Register x3 keeps track of the minimum
value of Javoid sK = d∞(s,O) over states s in the rollout, and x4 keeps track of the minimum value
of Jfuel > 0K(s) over states s in the rollout.

Augmented MDP. Given an MDP, a specification φ, and its task monitor Mφ, our algorithm con-
structs an augmented MDP, which is an MDP with a reward function (S̃, s̃0, Ã, P̃ , R̃, T ). Intuitively,
if π̃∗ is a good policy (one that achieves a high expected reward) for the augmented MDP, then
rollouts generated using π̃∗ should satisfy φ with high probability.

In particular, we have S̃ = S ×Q× V and s̃0 = (s0, q0, v0). The transitions P̃ are based on P and
∆. However, the task monitor transitions ∆ may be nonderministic. To resolve this nondeterminism,
we require that the policy decides which task monitor transitions to take. In particular, we extend
the actions Ã = A × Aφ to include a component Aφ = ∆ indicating which one to take at each
step. An augmented action (a, δ) ∈ Ã, where δ = (q, σ, u, q′), is only available in augmented state
s̃ = (s, q, v) if σ(s, v) = true. Then, the augmented transition probability is given by,

P̃ ((s, q, v), (a, (q, σ, u, q′))), (s′, q′, u(s, v))) = P (s, a, s′).

Next, an augmented rollout of length t is a sequence ζ̃ = (s0, q0, v0)
a0−→ ...

at−1−−−→ (st, qt, vt) of
augmented transitions. The projection proj(ζ̃) = s0

a0−→ ...
at−1−−−→ st of ζ̃ is the corresponding

(normal) rollout. Then, the augmented rewards

R̃(ζ̃) =

{
ρ(sT , qT , vT ) if qT ∈ F
−∞ otherwise

are constructed based on F and ρ. The augmented rewards satisfy the following property.

Theorem 3.1. For any MDP, specification φ, and rollout ζ of the MDP, ζ satisfies φ if and only if
there exists an augmented rollout ζ̃ such that (i) R(ζ̃) > 0, and (ii) proj(ζ̃) = ζ.

Thus, if we use RL to learn an optimal augmented policy π̃∗ over augmented states, then π̃∗ is more
likely to generate rollouts ζ̃ such that proj(ζ̃) satisfies φ.

Reward shaping. As discussed before, our algorithm constructs a shaped reward function that
provides “partial credit” based on the degree to which φ is satisfied. We have already described
one step of reward shaping—i.e., using quantitative semantics instead of the Boolean semantics.
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However, the augmented rewards R̃ are −∞ unless a run reaches a final state of the task monitor.
Thus, our algorithm performs an additional step of reward shaping—in particular, it constructs a
reward function R̃s that gives partial credit for accomplishing subtasks in the MDP.

For a non-final monitor state q, let α : S ×Q× V → R be defined by

α(s, q, v) = max
(q,σ,u,q′)∈∆, q′ 6=q

JσKq(s, v).

Intuitively, α quantifies how “close” an augmented state s̃ = (s, q, v) is to transitioning to another
augmented state with a different monitor state. Then, our algorithm assigns partial credit to augmented
states where α is larger.

However, to ensure that a good policy according to the shaped rewards R̃s is also a good policy
according to R̃, it does so in a way that preserves the ordering of the cumulative rewards for rollouts—
i.e., for two length T rollouts ζ̃ and ζ̃ ′, it guarantees that if R̃(ζ̃) > R̃(ζ̃ ′), then R̃s(ζ̃) > R̃s(ζ̃

′).

To this end, we assume that we are given a lower bound C` on the final reward achieved when
reaching a final monitor state—i.e., C` < R̃(ζ̃) for all ζ̃ with final state s̃T = (sT , qT , vT ) such that
qT ∈ F is a final monitor state. Furthermore, we assume that we are given an upper bound Cu on the
absolute value of α over non-final monitor states—i.e., Cu ≥ |α(s, q, v)| for any augmented state
such that q 6∈ F .

Now, for any q ∈ Q, let dq be the length of the longest path from q0 to q in the graph of Mφ (ignoring
self loops in ∆) and D = maxq∈Q dq . Given an augmented rollout ζ̃, let s̃i = (si, qi, vi) be the first
augmented state in ζ̃ such that qi = qi+1 = ... = qT . Then, the shaped reward is

R̃s(ζ̃) =

{
maxi≤j<T α(sj , qT , vj) + 2Cu · (dqT −D) + C` if qT 6∈ F
R̃(ζ̃) otherwise.

If qT 6∈ F , then the first term of R̃s(ζ̃) computes how close ζ̃ was to transitioning to a new monitor
state. The second term ensures that moving closer to a final state always increases reward. Finally,
the last term ensures that rewards R̃(ζ̃) for qT ∈ F are always higher than rewards for qT 6∈ F . The
following theorem follows straightforwardly.

Theorem 3.2. For two augmented rollouts ζ̃, ζ̃ ′, (i) if R̃(ζ̃) > R̃(ζ̃ ′), then R̃s(ζ̃) > R̃s(ζ̃
′), and

(ii) if ζ̃ and ζ̃ ′ end in distinct non-final monitor states qT and q′T such that dqT > dq′T , then
R̃s(ζ̃) ≥ R̃s(ζ̃ ′).

Reinforcement learning. Once our algorithm has constructed an augmented MDP, it can use any
RL algorithm to learn an augmented policy π̃ : S̃ → Ã for the augmented MDP:

π̃∗ ∈ arg max
π̃

Eζ̃∼Dπ̃ [R̃s(ζ̃)]

where Dπ̃ denotes the distribution over augmented rollouts generated by policy π̃. We solve this RL
problem using augmented random search (ARS), a state-of-the-art RL algorithm [15].

After computing π̃∗, we can convert π̃∗ to a projected policy π∗ = proj(π̃∗) for the original MDP by
integrating π̃∗ with the task monitor Mφ, which keeps track of the information needed for π̃∗ to make
decisions. More precisely, proj(π̃∗) includes internal memory that keeps track of the current monitor
state and register value (qt, vt) ∈ Q× V . It initializes this memory to the initial monitor state q0 and
initial register valuation v0. Given an augmented action (a, (q, σ, u, q′)) = π̃∗((st, qt, vt)), it updates
this internal memory using the rules qt+1 = q′ and vt+1 = u(st, vt).

Finally, we use a neural network architecture similar to neural module networks [3, 2], where different
neural networks accomplish different subtasks in φ. In particular, an augmented policy π̃ is a set
of neural networks {Nq | q ∈ Q}, where Q are the monitor states in Mφ. Each Nq takes as
input (s, v) ∈ S × V and outputs an augmented action Nq(s, v) = (a, a′) ∈ Rk+2, where k is the
out-degree of the q in Mφ; then, π̃(s, q, v) = Nq(s, v).
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Figure 3: Learning curves for φ1, φ2, φ3 and φ4 (top, left to right), and φ5, φ6 and φ7 (bottom, left
to right), for SPECTRL (green), TLTL (blue), CCE (yellow), and SPECTRL without reward shaping
(purple). The x-axis shows the number of sample trajectories, and the y-axs shows the probability of
satisfying the specification (estimated using samples). To exclude outliers, we omitted one best and
one worst run out of the 5 runs. The plots are the average over the remaining 3 runs with error bars
indicating one standard deviation around the average.

4 Experiments

Setup. We implemented our algorithm in a tool SPECTRL6, and used it to learn policies for a variety
of specifications. We consider a dynamical system with states S = R2×R, where (x, r) ∈ S encodes
the robot position x and its remaining fuel r, actions A = [−1, 1]2 where an action a ∈ A is the robot
velocity, and transitions f(x, r, a) = (x+ a+ ε, r − 0.1 · |x1| · ‖a‖), where ε ∼ N (0, σ2I) and the
fuel consumed is proportional to the product of speed and distance from the y-axis. The initial state
is s0 = (5, 0, 7), and the horizon is T = 40.

In Figure 3, we consider the following specifications, where O = [4, 6]× [4, 6]:

• φ1 = achieve reach (5, 10) ensuring (avoid O)

• φ2 = achieve reach (5, 10) ensuring (avoid O ∧ (r > 0))

• φ3 = achieve (reach [(5, 10); (5, 0)]) ensuring avoid O
• φ4 = achieve (reach (5, 10) or reach (10, 0); reach (10, 10)) ensuring avoid O
• φ5 = achieve (reach [(5, 10); (5, 0); (10, 0)]) ensuring avoid O
• φ6 = achieve (reach [(5, 10); (5, 0); (10, 0); (10, 10)]) ensuring avoid O
• φ7 = achieve (reach [(5, 10); (5, 0); (10, 0); (10, 10); (0, 0)]) ensuring avoid O

where the abbreviation achieve (b; b′) denotes achieve b; achieve b′ and the abbreviation
reach [p1; p2] denotes reach p1; reach p2. For all specifications, each Nq has two fully con-
nected hidden layers with 30 neurons each and ReLU activations, and tanh function as its output
layer. We compare our algorithm to [13] (TLTL), which directly uses the quantitative semantics of
the specification as the reward function (with ARS as the learning algorithm), and to the constrained
cross entropy method (CCE) [24], which is a state-of-the-art RL algorithm for learning policies to
perform tasks with constraints. We used neural networks with two hidden layers and 50 neurons per
layer for both the baselines.

Results. Figure 3 shows learning curves of SPECTRL (our tool), TLTL, and CCE. In addition, it
shows SPECTRL without reward shaping (Unshaped), which uses rewards R̃ instead of R̃s. These
plots demonstrate the ability of SPECTRL to outperform state-of-the-art baselines. For specifications
φ1, ..., φ5, the curve for SPECTRL gets close to 100% in all executions, and for φ6 and φ7, it gets
close to 100% in 4 out of 5 executions. The performance of CCE drops when multiple constraints
(here, obstacle and fuel) are added (i.e., φ2). TLTL performs similar to SPECTRL on tasks φ1, φ3 and
φ4 (at least in some executions), but SPECTRL converges faster for φ1 and φ4.

6The implementation can be found at https://github.com/keyshor/spectrl_tool.
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Figure 4: Sample complexity curves (left) with number of nested sequencing operators on the x-axis
and average number of samples to converge on the y-axis. Learning curve for cartpole example
(right).

Since TLTL and CCE use a single neural network to encode the policy as a function of state, they
perform poorly in tasks that require memory—i.e., φ5, φ6, and φ7. For example, to satisfy φ5, the
action that should be taken at s = (5, 0) depends on whether (5, 10) has been visited. In contrast,
SPECTRL performs well on these tasks since its policy is based on the monitor state.

These results also demonstrate the importance of reward shaping. Without it, ARS cannot learn unless
it randomly samples a policy that reaches final monitor state. Reward shaping is especially important
for specifications that include many sequencing operators (φ;φ′)—i.e., specifications φ5, φ6, and φ7.

Figure 4 (left) shows how sample complexity grows with the number of nested sequencing operators
(φ1, φ3, φ5, φ6, φ7). Each curve indicates the average number of samples needed to learn a policy
that achieves a satisfaction probability ≥ τ . SPECTRL scales well with the size of the specification.

Cartpole. Finally, we applied SPECTRL to a different control task—namely, to learn a policy for the
version of cart-pole in OpenAI Gym, in which we used continuous actions instead of discrete actions.
The specification is to move the cart to the right and move back left without letting the pole fall. The
formal specification is given by

φ = achieve (reach 0.5; reach 0.0) ensuring balance

where the predicate balance holds when the vertical angle of the pole is smaller than π/15 in
absolute value. Figure 4 (right) shows the learning curve for this task averaged over 3 runs of the
algorithm along with the three baselines. TLTL is able to learn a policy to perform this task, but it
converges slower than SPECTRL; CCE is unable to learn a policy satisfying this specification.

5 Conclusion

We have proposed a language for formally specifying control tasks and an algorithm to learn policies
to perform tasks specified in the language. Our algorithm first constructs a task monitor from the
given specification, and then uses the task monitor to assign shaped rewards to runs of the system.
Furthermore, the monitor state is also given as input to the controller, which enables our algorithm
to learn policies for non-Markovian specifications. Finally, we implemented our approach in a tool
called SPECTRL, which enables the users to program what the agent needs to do at a high level;
then, it automatically learns a policy that tries to best satisfy the user intent. We also demonstrate
that SPECTRL can be used to learn policies for complex specifications, and that it can outperform
state-of-the-art baselines.
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