
Proceedings of Machine Learning Research vol 288:1–15, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Specification-Guided Reinforcement Learning

Kishor Jothimurugan KISHOR@TWOSIGMA.COM
Two Sigma Investments, LP*

Suguman Bansal SUGUMAN@GATECH.EDU
Georgia Institute of Technology

Osbert Bastani OBASTANI@SEAS.UPENN.EDU
University of Pennsylvania

Rajeev Alur ALUR@SEAS.UPENN.EDU

University of Pennsylvania

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
This tutorial explores specification-guided reinforcement learning as an alternative to traditional
reward-based approaches, where the design of effective reward functions can be tedious, error-
prone, and may not capture complex objectives. We introduce formal logical specifications as a
more intuitive and precise way to define agent behavior, focusing on the theoretical guarantees and
algorithmic aspects of learning from specifications. We examine both fundamental limitations in
infinite-horizon settings and practical approaches for finite-horizon specifications.
Keywords: Reinforcement Learning, Formal Specifications, Theoretical Guarantees, Practical
Algorithms

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) enables autonomous agents to learn from
experience by interacting with their environment and receiving feedback. This feedback traditionally
takes the form of numerical rewards—positive values for desired outcomes and negative values for
mistakes. While this paradigm has led to remarkable successes, the challenge of designing effective
reward functions remains a significant bottleneck in deploying RL systems (Amodei et al., 2016; Pan
et al., 2022).

Consider a warehouse automation task: teaching a robot to transport boxes between locations.
The robot must receive appropriate rewards for moving boxes correctly while avoiding collisions.
The design of such reward functions involves several critical decisions including the timing of reward
signals during task execution, the relative magnitudes of rewards for successful movements versus
penalties for collisions, and the granularity of feedback throughout the task progression. These
decisions fundamentally shape the learning process and resulting behavior.

The fundamental challenge is that reward engineering conflates two distinct problems: task
specification (what the agent should accomplish) and reward shaping (what rewards will guide the
agent to learn effectively). While the high-level goal might be “safely transport boxes to designated
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Figure 1: A Finite MDP.
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Figure 2: MDP for demonstrating PAC
hardness result.

Action A on transitions denotes that any action can be taken.

locations,” translating this into precise numerical rewards requires careful balancing of multiple
factors, including extending the state-space of rewards to auxiliary variables.

This tutorial introduces an alternative approach: using logical specifications to describe desired
behaviors directly. We focus particularly on temporal logics, such as Linear Temporal Logic
(LTL) (Pnueli, 1977) and SPECTRL (Jothimurugan et al., 2021), which provide rigorous syntax and
semantics for reasoning about sequences of events and states over time.

For our warehouse robot example, instead of crafting complex numerical rewards, we can express
the task using predicates g for target location and o for obstacles as: Eventually g∧Always ¬o. This
specification is more intuitive and precise than traditional reward functions. The central challenge
lies in training an RL agent to satisfy such logical specifications φ with high probability. In this
tutorial we will cover the theoretical and practical implications of designing RL algorithms from
logical specifications.

2. RL from Rewards

The objective of RL is to train an agent to act in an environment to accomplish a specific task – e.g.,
learn what action should be performed in any given state so that the robot will eventually reach a
specific room. The key feature of RL is that the environment is assumed to be unknown. Hence, the
policy that enables the agent to act must be learned by exploring the environment. The problem is
formally described below:

Markov decision processes. The environment in RL is modeled as a Markov Decision Process
(MDP). An MDP is a tuple M = (S,A, η0, T ), where S is a set of states, η0 is the initial state
distribution, A is a set of actions, and T : S × A × S → [0, 1] is the transition probability
function with

∑
s′∈S T (s, a, s′) = 1 for all s ∈ S and a ∈ A. Fig. 1 shows an MDP with states

S = {s0, s1, s2, s3} and actions A = {a1, a2}. Actions cause state transitions according to
transition probabilities. For example, a1 from s0 leads to s1 or s3 with equal probability. The
initial state distribution η describes the distribution of states the system initializes in. Here η is the
dirac distribution at s0, i..e, with η(so) = 1. An infinite run of the MDP is an infinite sequence
of state-action pairs describing the evolution of the system over time. A possible infinite run in
Fig 1 is ρ = s0

a2−→ s2
a1−→ s1

a2−→ s1
a2−→ · · · in which the agent reaches s1 from s0 via s2.
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Similarly, a finite run of length H describes the evolution of the system for H time steps – e.g.,
ρ = s0

a2−→ s2
a1−→ s1

a2−→ s1
a2−→ s1 is a finite run of length 4. A policy π : S → D(A) maps states

to a distribution on actions. Each policy induces a distribution over runs generated by sampling an
initial state from η and iteratively using π to select actions and sample next states from T . We denote
the distribution over infinite runs as Dπ and over finite H-length runs as Dπ

H .

Simulator. In RL, the standard assumption is that the set of states S, the set of actions A, and the
initial state distribution η0 are known but the transition probability function T is unknown. The agent
must learn about the environment by taking actions and observing transitions. For this, the learning
algorithm has access to a simulator S which can be used to sample runs of the system ζ ∼ DM

π

using any policy π. The simulator can also be the real system, such as a robot, that M represents.
Internally, the simulator stores the current state of the MDP which is denoted by S.state. It makes
the following functions available to the learning algorithm.

S.reset(): This function sets S.state to an initial state s0 sampled from the initial state
distribution i.e. s0 ∼ η0.

S.step(a): Given as input an action a, this function samples a state s′ ∈ S according to the
transition probability function T—i.e., the probability that a state s′ is sampled is P (s, a, s′)
where s = S.state. It then updates S.state to the newly sampled state s′ and returns s′.

The simulator lets an RL agent sample multiple runs in the MDP without knowing the transition
probabilities. This guides the RL agent to estimate the transition probability T . For e.g. in Fig 1 if the
agent repeatedly takes action a1 in state s0, it observes that the system transitions to s1 approximately
half the time.

Task Description. Traditionally tasks in RL are specified using a reward function r : S × A →
R that assigns rewards for state-action pairs. For example, to reach s1 in Fig. 1, we might set
r(s, a) = 1(s = s1). For a run ρ, this naturally generates a reward sequence (e.g., 0, 1, 1, . . . for
a run reaching s1 in one step). For an infinite horizon, the expected discounted-sum of a policy
π is given by J(π) = E[

∑∞
t=0 γ

trt] where the random variable rt denotes the reward obtained at
time t and discount factor 0 < γ < 1 indicates the rate of diminishing returns. In Fig 1, under the
reward function r(s, a) = 1(s = s1), the policy π1 that chooses action a1 in state s0 will achieve a
discounted-sum reward of 0+γ+γ2+ · · · = γ/(1−γ) with probability 0.5 (when it reaches s0) and
0 with probability 0.5 (when it reaches s3). Hence J(π1) = γ/(2(1− γ)). Similarly, the expected
discounted-sum reward of policy π2 that chooses action a2 in s0 is εγ2/(1− γ) ·

∑∞
k=0(1− ε)kγk =

εγ2/[(1− γ)(1 + γε− γ)]. In the infinite horizon, RL algorithms typically maximize the expected
value of a policy:

Definition 1 (RL from Rewards) Given an unknown MDP with access to its simulator, a reward
function, and a discount factor, the problem of RL from rewards is to learn a policy π∗ that maximizes
its expected discounted sum i.e. π∗ = argmaxπ J(π).

If instead given a finite horizon H , then RL algorithms maximize the expected reward JH(π) =
E[
∑H−1

t=0 rt].
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Algorithmic Approaches and Guarantees. RL with discounted-sum rewards has been extensively
studied and provides several theoretical guarantees that make it attractive for practical applications.
The problem is to learn an optimal policy in an unknown MDP. Had the MDP been known, i.e., if
the transition probabilities were known, then the optimal policy could have been obtained using
seminal results in MDP optimization, such as value iteration and policy iteration (Puterman, 2014).
In the absence of the transition probabilities, intuitively, RL learns the optimal policy by repeatedly
sampling the environment to (explicitly or implicitly) estimate its transition probabilities, then
obtaining the optimal policy in the estimated MDP. Key results include:

Probably Approximately Correct (PAC) Guarantees (Valiant, 2013) These algorithms can effi-
ciently learn near-optimal policies with high confidence using a finite number of samples,
providing formal guarantees on the learning process (Kakade, 2003; Kearns and Singh, 2002).

Robustness Guarantees Discounted-sum rewards are robust in the sense that altering the transition
probabilities by a small amount only impacts the value J(π) of a policy π by a small amount
(more precisely, J(π) (or JH(π)) is a continuous function of the MDP transitions and rewards).

Convergence Properties Discounted rewards naturally prioritize near-term outcomes, allowing
algorithms such as Q-learning (Watkins and Dayan, 1992) and policy gradient methods (Sutton
and Barto, 2018; Williams, 1992) to converge to optimal or near-optimal policies.

3. RL from Logical Specifications

Like earlier, the objective of RL from logical specifications is to learn a policy that satisfies a task in
an unknown environment. The environment and the simulator are defined as earlier. The difference
lies in the task description which is expressed in the form of a logical specification in this case.

Task Description A specification φ is a logical formula encoding whether a finite or infinite run of
the MDP solves the desired task. The meaning of a specification is given by the semantics function
(denoted JφK) that maps a run ρ to {0, 1} indicating whether or not the run satisfies φ. The probability
of a policy π to satisfy a task φ is given by Jφ(π) = Eρ∼Dπ [JφK(ρ)].

Logical specifications have several advantages over reward functions w.r.t task specification. They
have natural language-like syntax and rigorous semantics, making task specification less cumbersome.
For example, the task of reaching s1 can be encoded by the specification φ = Eventually s1. A
run that starts in s0 and transitions immediately to s3 will never reach s1, and therefore will not
satisfy φ. Logical specifications can be straightforwardly composed to express more complex tasks;
for instance, the task of sequentially visiting two locations l1 and l2 can be simply expressed as
Eventually l1; Eventually l2. Furthermore, several tasks cannot be expressed as rewards but are
easily expressed as logical specifications. For example, consider the task of going from an initial state
s to a target state t then returning back to the state s. This is expressed in logical specifications as
Eventually t; Eventually s. However, it cannot be expressed in the form of rewards r : S ×A → R
because the reward in a state along the path from s to t and back depends on which segment of the
task it is completing. The reward function requires memory to store whether the agent is currently
heading towards s or towards t. Memory is is not permitted by rewards of the form r : S ×A.

Definition 2 (RL from Logical Specifications) Given an unknown MDP and a specification φ, the
problem of RL from logical specifications (or specification-guided RL) is to learn a policy π∗ that
maximizes the probability of satisfying the task φ, i.e. π∗ = argmaxπ J

φ(π).
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In Fig 1, the policy π1 that chooses action a1 in s0 assigns a probability of 0.5 to each of the two
infinite runs it produces (one that visits s1 and the other than does not), so Jφ(π1) = 0.5. On
the other hand, the policy π2 that chooses action a2 in s0 results in infinitely many trajectories
(depending on how long they remain in the state s2), but all of these trajectories eventually visit s1.
Thus, Jφ(π2) = 1. Clearly, π2 is optimal.

4. RL from Infinite-Horizon Specifications

This section discusses results on RL form infinite-horizon specifications. These specifications are
important as they can express recurring tasks and persistent behaviors that finite-horizon specifications
cannot capture. For instance, tasks like ”repeatedly monitor an area” are naturally infinite-horizon
properties. Linear Temporal Logic (LTL) (Pnueli, 1977) is a prominent example of an infinite-horizon
specification language.

4.1. Algorithmic Approach

A popular approach to solving RL from infinite-horizon specifications is via a reduction to RL from
discounted-sum rewards. Here the specification φ is first compiled into a reward function rφ and then
a standard RL algorithms for discounted rewards is applied. This approach is popular as learning
from rewards guarantees to learn optimal policies and state-of-the-art implementations are readily
available. However, this approach does not guarantee learning optimal policies w.r.t. specifications:

Theorem 3 (Alur et al., 2021) Under the assumption that the MDP is unknown, there exist infinite-
horizon specifications φ for which no discounted reward function r exists (for any discount factor γ)
such that the optimal policy with respect to reward r is also optimal w.r.t to specification φ.

Proof [Proof Sketch] This result arises due to a fundamental mismatch between how discounted
rewards and logical specifications measure task completion – discounted rewards inherently care
about when the task is completed since future rewards are time-discounted, whereas logical specifica-
tions such as Eventually s1 care only about the task eventually being completed. This mismatch is
illustrated by the specification Eventually s1 and the reward function r(s, a) = 1(s = s1) in Fig 1.
Recall that the policy π2 which takes action a2 in state s0 is optimal w.r.t. Eventually s1. However,
this policy can be made suboptimal w.r.t. r(s, a) = 1(s = s1) for any discount factor γ by choosing
an appropriate value of ε.

This argument can further be extended to prove the impossibility of specification translation even
for history-dependent reward functions (Alur et al., 2021). This impossibility result has profound
implications: there are specifications that simply cannot be solved by the strategy of reduction to
reward functions. Recent work shows some promising directions under additional assumptions: For
instance, (Bozkurt et al., 2020) has shown that any LTL specification can be reduced to discounted
rewards with an appropriate discount factor that depends on the MDP transitions. Another approach
is based on reducing the problem of learning an optimal policy w.r.t. an LTL specification to learning
an optimal policy for a reachability objective in an MDP obtained by taking the product of the
MDP with a good-for-MDP automaton corresponding to the LTL specification (Hahn et al., 2020a).
These reachability objectives can be reduced to learning from discounted-sum rewards, however,
the corresponding discount-factor depends on the MDP transition probabilities as well (Hahn et al.,
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2020b). A novel framework of eventual discounting has been introduced that preserves optimal
behaviors (Voloshin et al., 2023). More recently, (Alur et al., 2023) have studied the use of discounted
LTL, which naturally prioritizes near-term events over distant ones, allowing a direct reduction to
discounted rewards.

4.2. Theoretical Guarantees

Given the impossibility of such reductions to rewards, the natural question to ask is whether there
exists an RL algorithm with theoretical guarantees. A common theoretical framework for answering
such questions is the Probably Approximately Correct (PAC) framework (Valiant, 2013): Given a
confidence level δ > 0 and an error tolerance ϵ > 0, an RL algorithm is said to be PAC if after
sampling a sufficient number of transitions (as a function of n,m, δ, ϵ) in an MDP with n states
and m actions, the probability that the learned policy π is ϵ-close to optimal (i.e., J∗ − J(π) ≤ ϵ)
is at least 1 − δ, where J∗ is the value of the optimal policy. Note that the required sample size
does not depend on the transition probabilities, allowing agents to determine termination without
knowing the true environment dynamics. While algorithms with PAC guarantees exist for discounted
rewards (Kakade, 2003; Kearns and Singh, 2002), surprisingly, they are impossible for even simple
reachability specifications such as Eventually g (where g is a goal state). This occurs due to the
lack of robustness of logical specifications, where robustness refers to small changes in the transition
probability resulting in small changes to the policies. Formally,

Theorem 4 (Littman et al., 2017) Infinite-horizon logical specifications are not robust, i.e. small
changes to the transition probabilities can result in significant changes to the policies.

Proof Consider the MDP shown in Fig 2 and the specification Eventually s1. When p1 = 1 and
p2 < 1, the optimal policy chooses action a2 in state s0 since the probability of eventually reaching
s1 from s2 is 1, whereas the probability of reaching s1 from s0 is 0 if the agent chooses action a1
in state s0. Similarly, when p1 < 1 and p2 = 1, the optimal action at state s0 is a1. Note that
altering the transition probabilities slightly can significantly impact the optimal policy. For example,
if p1 = 1 and p2 = 1− x for an infinitesimally small x, altering the values to p′1 = p1 − x = 1− x
and p′2 = p2 + x = 1 causes the optimal action at s0 to change from a2 to a1. Furthermore, an
optimal policy in the original MDP (with p1 = 1) that reaches s1 with probability 1 will attain
a zero probability of reaching s1 in the new MDP. This example illustrates that the specification
Eventually s1 is not robust – small changes to the MDP can drastically affect the corresponding
optimal policy.

This lack of robustness is why PAC algorithms do not exist for infinite-horizon specifications:

Theorem 5 (Alur et al., 2021; Yang et al., 2021) No RL algorithm with infinite-horizon specifications
offers PAC guarantees.

Proof [Proof Sketch] For the sake of contradiction, suppose there is an RL algorithm with a PAC
guarantee for Eventually s1. We can run this algorithm for the above two scenarios with slightly
different transition probabilities and the same values of δ > 0.9 and ϵ < 1. Then, for a sufficiently
small x, it is highly likely that the RL algorithm will see the same samples from the two different
MDPs. Thus, the RL algorithm will output the same policy π, meaning it must attain a zero
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probability of reaching s1 in one of the two MDPs. As a result, J∗ − J(π) = 1 > ϵ for that MDP,
which is a contradiction to the PAC property.

This result is extremely powerful as our definition of PAC does not assume a polynomial number of
samples. Our negative result holds for an arbitrary function in the inputs.

Furthermore, (Yang et al., 2021) show that PAC guarantees are possible precisely for finitary
specifications (an infinite-horizon specification φ is finitary if there exists a fixed H such that we can
decide whether or not an infinite run ρ = (s0, s1, . . .) of the system satisfies φ by only looking at the
first H steps). PAC algorithms also exist under additional assumptions on the MDP – e.g., if a lower
bound on all non-zero transition probabilities of the MDP is given (Ashok et al., 2019; Daca et al.,
2016), mixing time of the MDP (Perez et al., 2024), known topology of the underlying MDP (Fu and
Topcu, 2014), and stochastic bounds on the length of runs (Svoboda et al., 2024).

5. Finite Horizon Specifications

While infinite horizon poses many theoretical challenges for specification-guided RL, in practice, it
is often sufficient to consider finitary specifications. Here we are additionally given a fixed finite
horizon H , and the satisfaction of the specification φ only depends on the first H steps of the MDP.
Finite-horizon specifications are suitable for properties such as reachability (including multiple
reachable targets) and bounded safety.

5.1. Theoretical Guarantees

Unlike the infinite-horizon case, there exists a simple optimality-preserving reduction of (finite-
horizon) specification to rewards:

Theorem 6 There exists a reduction of finite-horizon specifications to discounted-sum rewards such
that optimal policy w.r.t. rewards is also optimal w.r.t. specification.

Proof Given a specification φ and a finite-horizon specification H , a straightforward approach
is to define a reward function rφ that assigns a reward of 1 after H steps if φ is satisfied and 0
otherwise. It is easy to see that rφ faithfully represents φ, and a policy π that maximizes the expected
discounted-sum of rewards JH(π) also maximizes the probability of satisfying φ.

An immediate implication of this result is that RL from finite-horizon specifications offers strong
theoretical guarantees, including the existence of algorithms with PAC and convergence guarantees,
as the guarantees of RL from discounted-sum rewards over the finite-horizon simply translate over.

5.2. Algorithmic Approaches

At first glance, Theorem 6 seems to present an approach to solve RL from finite-horizon specifications:
First, convert finite-horizon specification to discounted-sum rewards then apply an existing off-the-
shelf finite-horizon discounted rewards based RL approach to learn an optimal policy. However,
there are several challenges to designing practical specification guided RL algorithms. We briefly
summarize a few of these challenges and their solution approaches below (Aksaray et al., 2016;
Brafman et al., 2018; De Giacomo et al., 2019; Hasanbeig et al., 2018, 2019; Yuan et al., 2019; Xu
and Topcu, 2019; Li et al., 2017):
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Sparsity of Rewards. Sparse reward functions “rarely” assign non-zero rewards. As a result, they
often require a large number of samples from the environment, impeding the speed of learning.
Consider a warehouse robot navigating from region A to B within H steps. With sparse rewards, the
agent receives feedback only upon reaching B, potentially requiring extensive exploration before
earning any reward – a problem that worsens with complex specifications. Reward shaping is a
technique used to generate dense reward functions which assign rewards more frequently to guide the
agent towards solving the task (Li et al., 2017; Xu and Topcu, 2019). For example, we can define a
reward function rϕ(s, a) = −dist(s,B) measuring the distance to B from the agent’s current state
s and the goal region B, which encourages the robot to move towards B. Another effective strategy
is to use quantitative semantics for LTL specifications, which assign numerical values to runs of the
system that capture how “robustly” the specification is satisfied (while ensuring runs that satisfy the
specification are assigned higher values compared to those that do not) (Jothimurugan et al., 2019).

Non-Markovian Rewards. Another challenge with encoding specifications using reward functions
is that specifications can be non-Markovian or history dependent. However, existing implementations
of RL algorithms do not allow rewards to be history dependent – i.e., the reward at the current step
r(s, a) must be a function of the current state s and the action a and should be independent of the
states visited and the actions taken prior to the current step. While history-dependent tasks are easy
to encode using logical specifications, they cannot be directly represented as rewards. To handle
history-dependent tasks, one approach is to alter the state space to include relevant information
about the history – e.g., using reward machine (Icarte et al., 2018) or deterministic finite-state
automata (De Giacomo et al., 2019).

Myopic Learning. RL algorithms tend to be myopic, focusing on immediate rewards over a long
term ones. Consider our example specification φ3; a typical reward function implementing this task
would provide similar rewards for visiting X and E, since these two cannot be distinguished without
understanding the structure of the MDP. In the MDP, there is no direct way to reach C from E, so in
fact X is prefereable to E. Thus, if by chance an RL algorithm learns to solve the initial subtask
Eventually X ∨ Eventually E by visiting E instead of X , then it might struggle to reach C. This
requires techniques that combine high-level planning at the level of the specification with low-level
reasoning of RL. We describe one such technique in detail next.

5.3. Compositional Approach to RL from Specifications

The benefits of compositional approaches in RL for long-horizon tasks are well noted (Vazquez-
Chanlatte et al., 2018). We describe a compositional approach DIRL to learning long-horizon
tasks (Jothimurugan et al., 2021). This leverages the structure of the specification, expressed in the
specification language SPECTRL, to interleave high-level planning at the level of the specification
with low-level RL.

Specification Language. We use the language SPECTRL (Jothimurugan et al., 2019). It can encode
reachability, safety, and their combinations. Its given by: φ := Eventually p | φ Ensuring p | φ;φ |
φ∨φ where p ⊂ S is a predicate representing a subset of the states. Eventually p denotes eventually
(within H steps) reaching a state s ∈ p, and φ Ensuring p denotes performing φ while remaining
in the “safe” set p at every step. Furthermore, sequencing φ1;φ2 denotes first performing φ1 and
then φ2, and disjunction φ1 ∨ φ2 gives the agent the choice of either performing φ1 or φ2. Formal
semantics of SPECTRL is given in Appendix B. In our warehouse example, the task of visiting B
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while avoiding the obstacle region O (union of all regions marked in red) can be encoded in SPECTRL

as φ1 = (Eventually B Ensuring ¬O), where ¬O = S \O are states that do not belong in O.

Astart B

C1

C2

Avoid O

Avoid O

Avoid O

Avoid O

Figure 3: Example of an abstract graph.

Compositional Algorithm. Consider a robot navigating
in the warehouse (Fig 4). The warehouse environment with
interconnected rooms shown in Fig 4). Here, a state is a
pair of coordinates s = (x, y) ∈ R2 indicating the location
of the robot, and actions are velocities a = (vx, vy) ∈ R2.
The initial distribution over states is η = Uniform(A)
(where A is the purple circle). Consider the specification
φ = A → B (Fig 9) specifying that a robot must first visit
either top-corner C1 or bottom corner C2 and then visit
B, all while avoiding red obstacles O in the warehouse
environment (Fig 4). The optimal policy accomplishes the
task via C1 as there is no direct path from C2 to B.

To learn this policy, DIRL constructs an abstract graph Gφ from the specification φ which is
a DAG representing a specification-guided abstraction of the environment. The abstract graph of
our example specification φ is shown in Fig 3. Each vertex represents a set of states in the MDP. In
this example, the abstract graph has four vertices representing the four regions A, C1, C2, and B.
Each directed edge represents a reachability subtask with a safety constraint – namely, the subtask of
reaching the set of states represented by the target vertex while adhering to the safety constraint. For
instance, the edge from A to C1 denotes the subtask of reaching C1 from A while avoiding O.

The abstract graph maintains the property that all paths from the initial state to the goal state
satisfy the original task, i.e. in our example, all path from A to B satisfy the input specification.
Since there could be multiple such paths, our objective is to find the “best” path. We let the cost
of each edge be the probability of satisfaction of the subtask corresponding to the edge. Thus, the
“best” path is the one that maximizes the product of edge costs which is equivalent to maximizing the
probability of completing φ.

Then, a simple algorithm would first run learning for subtasks on all edges, estimate the probabil-
ity of satisfaction of the learned policy on each edge, and then compute the best path, sequentially. In
practice, however, this approach does not work because to learn policies for edges starting from an
intermediate state in the abstract graph, the learning agent requires an initial state-distribution on
the intermediate state. Apriori, as per RL assumptions, we are given the initial-state distribution of
the initial state of the abstract graph only. Hence, in order to accomplish these steps, the algorithm
must also learn initial-state distributions of intermediate states. A heuristic to learn state-distributions
on intermediate states is to induce a state-distribution using the policy along the best path to the
intermediate state. As a result, the order of learning policies for edges and induced state-distributions
should be such that for every state a state-distribution should be induced before policies are learned
for outgoing edges from it. Since the underlying graph is a DAG, an efficient way ensuring this is to
choose states and edges similar to the way Dijkstra’s algorithm does for shortest path.

Algorithm Performance. While this approach no longer guarantees optimality, it has been shown
to scale well to complex specifications, including realistic applications such as robotic Pick-And-
Place environments, where it outperforms prior approaches while requiring fewer than 4 × 105

samples. Its performance in the warehouse environment on increasingly complex specifications has
been shown in Figure 9.
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Figure 4: Warehouse environment.
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Figure 5: A→B
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Figure 6: A→B→C
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Figure 7: A→B→C→D
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Figure 9: Performance plots showing probability of specification satisfaction (y-axis) across spec-
ifications of increasing complexity against number of samples taken to learn (x-axis). X→Y is
shorthand for specification to reach region Y from region X after visiting one of the corners in the
square/rectangle formed by X and Y while avoiding all red obstacles.

6. Other Related Works

Generalization. The lack of generalization in RL, i.e. the inability of RL-enabled policies to fulfil
tasks other than the one they are trained on, is a widely-studied topic under reward-based RL (Beck
et al., 2023; Finn et al., 2017; Zintgraf et al., 2021). Specification-guided RL is particularly suited to
address the generalization problem as the logical structure can be leveraged to learn policies that can
be adapted to tasks unseen during training time. These include multi-task RL (Jackermeier and Abate;
Vaezipoor et al., 2021), goal-conditioned RL (Qiu et al., 2023), and inductive generalization (Inala
et al., 2020; Subramanian et al., 2024).

RL Verification. There exists a vast literature on the verification of RL-enabled policies (Landers
and Doryab, 2023). This line of work is orthogonal to specification-guided RL as the primary
question here is to perform verification of the deep neural networks that represent the learned
policy while also accounting for the sequential nature of the RL task, requiring the DNN policy
to be executed repeatedly. The field encompasses several methodological approaches: reduction
to simpler-to-verify forms through neurosymbolic program synthesis (Bastani et al., 2018; Verma
et al., 2018), construction of verified barrier functions that prevent specification violations during
runtime (Anderson et al., 2020; Zhu et al., 2019), reachability analysis methods that determine system
safety by computing reachable state sets (Ivanov et al., 2019; Tran et al., 2019), and model checking
techniques that traverse state-transition graphs to verify properties (Amir et al., 2021).

Acknowledgements. This research was partially supported by NSF award SLES 2331783.

10



SPECIFICATION-GUIDED REINFORCEMENT LEARNING

References

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust
satisfaction of signal temporal logic specifications. In Conference on Decision and Control (CDC),
pages 6565–6570. IEEE, 2016.

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A Framework for Trans-
forming Specifications in Reinforcement Learning. Principles of Systems Design: Essays Dedi-
cated to Thomas A. Henzinger on the Occasion of His 60th Birthday, 2021.

Rajeev Alur, Osbert Bastani, Kishor Jothimurugan, Mateo Perez, Fabio Somenzi, and Ashutosh
Trivedi. Policy synthesis and reinforcement learning for discounted ltl. In Computer Aided
Verification, pages 415–435, Cham, 2023. Springer Nature Switzerland.

Guy Amir, Michael Schapira, and Guy Katz. Towards scalable verification of deep reinforcement
learning. In 2021 formal methods in computer aided design (FMCAD), pages 193–203. IEEE,
2021.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
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Appendix A. Computation of Expected Discounted-Sum

Consider the policy π2 that chooses action a2 in s0 from Fig 1. The discounted-sum reward of
γk−2/(1−γ) if s1 is reached in exactly k steps which occurs with probability (1−ε)k−2ε. Thus, the
expected discounted-sum reward is εγ2/(1− γ) ·

∑∞
k=0(1− ε)kγk = εγ2/[(1− γ)(1 + γε− γ)].

Appendix B. SPECTRL Semantics

We consider the specification language SPECTRL for specifying reinforcement learning tasks Joth-
imurugan et al. (2019). A specification ϕ in this language is a logical formula over trajectories that
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indicates whether a given trajectory ζ successfully accomplishes the desired task. As described
below, it can be interpreted as a function ϕ : Z → B, where B = {true,false}.

Formally, a specification is defined over a set of atomic predicates P0, where every p ∈ P0 is
associated with a function JpK : S → B; we say a state s satisfies p (denoted s |= p) if and only if
JpK(s) = true. For example, given a state s ∈ S, the atomic predicate Jreach sK(s′) =

(
∥s′ −

s∥ < 1
)

indicates whether the system is in a state close to s with respect to the norm ∥ · ∥. The
set of predicates P consists of conjunctions and disjunctions of atomic predicates. The syntax of a
predicate b ∈ P is given by the grammar b ::= p | (b1 ∧ b2) | (b1 ∨ b2), where p ∈ P0. Similar to
atomic predicates, each predicate b ∈ P corresponds to a function JbK : S → B defined naturally
over Boolean logic. Finally, the syntax of SPECTRL specifications is given by 1

ϕ ::= Eventually b | ϕ1 Ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2,

where b ∈ P . In this case, each specification ϕ corresponds to a function JϕK : Z → B, and we say
ζ ∈ Z satisfies ϕ (denoted ζ |= ϕ) if and only if JϕK(ζ) = true. Letting ζ be a finite trajectory of
length t, this function is defined by

ζ |= Eventually b if ∃ i ≤ t, si |= b

ζ |= ϕ Ensuring b if ζ |= ϕ and ∀ i ≤ t, si |= b

ζ |= ϕ1;ϕ2 if ∃ i < t, ζ0:i |= ϕ1 and ζi+1:t |= ϕ2

ζ |= ϕ1 or ϕ2 if ζ |= ϕ1 or ζ |= ϕ2.

Intuitively, the first clause means that the trajectory should eventually reach a state that satisfies the
predicate b. The second clause says that the trajectory should satisfy specification ϕ while always
staying in states that satisfy b. The third clause says that the trajectory should sequentially satisfy
ϕ1 followed by ϕ2. The fourth clause means that the trajectory should satisfy either ϕ1 or ϕ2. An
infinite trajectory ζ satisfies ϕ if there is a t such that the prefix ζ0:t satisfies ϕ.

We assume that we are able to evaluate JpK(s) for any atomic predicate p and any state s. This is
a common assumption in the literature on learning from specifications, and is necessary to interpret a
given specification ϕ.

1. Here, achieve and ensuring correspond to the “eventually” and “always” operators in temporal logic.
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