
Report on NSF Workshop on

Symbolic Computation for Constraint Satisfaction

November 14, 2008

Alex Aiken, Stanford University
Rajeev Alur, University of Pennsylvania
Clark Barrett, New York University
Martine Ceberio, University of Texas at El Paso
Werner Damm, Universitat Oldenburg, Germany
Leonardo de Moura, Microsoft Research
Sharad Malik, Princeton University
Ken McMillan, Cadence Labs
Jose Meseguer, University of Illinois at Urbana-Champaign
Andre Platzer, Carnegie Mellon University
Amir Pnueli, New York University
Thomas Reps, University of Wisconsin, and GrammaTech Inc.
Bart Selman, Cornell University
N. Shankar, SRI

1 Introduction

The workshop on Symbolic Computation for Constraint Satisfaction was held at the FDIC
Building in Arlington, VA, on November 14, 2008. The workshop was focused on the role of
symbolic decision procedures for constraint satisfaction problems. The workshop brought together
computer science researchers in diverse areas such as program analysis, formal verification, AI plan-
ning, optimization, and hybrid systems. The workshop was organized by Rajeev Alur (University
of Pennsylvania). Lenore Mullin, a program manager at NSF, opened the workshop by describ-
ing her long standing interest in numeric and symbolic computation. The morning session, titled
Computational Tools for Constraint Satisfaction Problems consisted of a series of talks
that reviewed the state of the art in symbolic decision procedures. Talks in this session were given
by Clark Barrett (New York University), Martine Ceberio (University of Texas at El Paso), Sharad
Malik (Princeton University, Jose Meseguer (University of Illinois at Urbana-Champaign), and Bart
Selman (Cornell University). The afternoon session, titled Role of Constraint Satisfaction in
Computer Science Problems, explored various problem domains where constraint satisfaction
plays a central role. This session consisted of talks by Alex Aiken (Stanford University), Werner
Damm (Universitat Oldenburg, Germany), Leonardo de Moura (Microsoft Research), Ken McMil-
lan (Cadence Labs), and Andre Platzer (Carnegie Mellon University). The workshop concluded
with a panel focused on challenges for future research. The panelists were Amir Pnueli (New York
University), Thomas Reps (University of Wisconsin, Madison), and N. Shankar (SRI).

This report briefly summarizes the themes discussed in the talks, challenges and opportuni-
ties for future research, and the need for focused funding from NSF to support this area. The
appendix includes talk titles and abstracts. Information about the workshop, along with the talk
presentations, is available publicly at http://www.cis.upenn.edu/~alur/nsfsymbolic08.html.

2 State of the Art

The talks and discussion at the meeting touched upon a wide range of topics. The themes included
the following:

Diversity of Constraint Satisfaction Problems The most common constraint satisfaction prob-
lems are propositional satisfiability SAT (deciding if a formula over boolean variables, formed
using logical connectives, can be made True by choosing 0/1 values for the variables), and
linear programming (optimizing a linear cost function over a set of real-valued variables while
satisfying a conjunction of linear constraints). Participants discussed a number of more
general forms of constraint problems. These included Quantified Boolean Formulas (QBF),
first-order formulas with respect to specific logical theories (commonly known as Satisfiability
Modulo Theories SMT), polynomial as well as non-linear constraints, interval constraints,
and set constraints (boolean combinations of inclusion constraints over set-valued variables).

Algorithms and Tools The core computational complexity of most constraint satisfaction prob-
lems is high (e.g., SAT is NP-complete). As a result, many decision procedures for such
problems involve manipulation of symbolic representation of the solution space. In recent
years, there has been an enormous progress in the scale of problems that can be solved,
thanks to innovations in core algorithms, data structures, as well as attention paid to imple-
mentation details such as caching. For example, modern SAT solvers can check formulas with

1

10,000s of variables and millions of clauses. Rapid progress has also been reported for SMT
solvers for the more commonly occurring theories. The annual competition for such solvers
is also a key ingredient in driving progress (see Figure 1 for progress in scale of problems).
Both SMT and Rewriting are now emerging as unified frameworks for solving constraint sat-
isfaction problems. The participants also reported on a number of new algorithmic ideas. For
example, integrating numeric and interval-based symbolic techniques has led to new tools for
solving non-linear constraints. For propositional formulas, algorithms based on probabilistic
sampling have led to dramatic performance gains and new insights into the (#P-complete)
problem of counting the number of satisfying assignments.

Applications Constraint satisfaction problems arise in many diverse areas of computer science.
The application to analysis and formal verification of software and hardware was discussed by
many speakers. Sample problems include symbolic model checking, generation of invariants
for programs, (symbolic) testing of programs, type inference, compiler optimizations, and pro-
gram analysis. The improvements in tools for constraint satisfaction problems have directly
resulted in adoption of formal methods at companies such as Intel and Microsoft. Another
key application area is planning. Contemporary AI planners formulate generation of a plan
as a constraint satisfaction problem, and use modern SAT solvers for real-world applications.
Constraints over real-valued variables arise in modeling and analysis of dynamical and hybrid
systems. These problems have been applied to diverse areas ranging from air-traffic control
to systems biology. We also got a nice perspective of how constraint satisfaction is a central
technical theme in the Transregional Collaborative Research Center AVACS funded by the
German Science foundation.

3 Research Challenges

Despite enormous progress in tools for, and practical applications of, constraint satisfaction prob-
lems, many challenges remain. The following is a partial list of some of the opportunities that
were articulated at the workshop. The individual talk abstracts in the appendix discuss these
opportunities in more details.

1. A number of heuristic strategies have been proposed, and shown to work on real-world prob-
lems, for problems such as SAT. However, we have a limited understanding of why some of
these strategies work. A better understanding of the relationship between effectiveness of dif-
ferent strategies and problem structure, can also lead to algorithms that dynamically change
strategies.

2. For SAT as well as SMT tools, the current tools cannot handle quantifiers well, and sustained
effort is needed to improve the state of the art for solving formulas with nested quantifiers.

3. Handling non-linear constraints efficiently is a key challenge. Such constraints are essential in
analyzing hybrid systems, and some recent techniques for combining numeric and symbolic
methods show promise.

4. Integration of different decision procedures and tools requires significant efforts. Standardized
libraries, common input formats for competitions, and unifying frameworks such as SMT and
rewriting, are steps in the right direction.

2

5. Robustness of the tools remains a barrier for effective use of the tools by practicing engi-
neers. Small perturbations in the input constraints can change running times of the tools
dramatically. Understanding sources of numerical errors is also essential for robustness.

6. Researchers developing tools for symbolic analysis should also focus on usability of tools. This
aspect is many times ignored by researchers, but is necessary for wider dissemination of this
technology.

7. Symbolic computation should be viewed more broadly than (symbolic) decision procedures
for specific logics. For example, many components of the abstract interpretation framework
are essentially symbolic, and are necessary for simplifying the analysis problem before it is
handed off to a decision procedure.

8. New algorithmic insights have been central to the advances in the tools for constraint satisfac-
tion problems. Fundamental research in algorithms and complexity of constraints satisfaction
problems should be continued. For example, the exact complexity of the entailment problem
arising in program analysis is still unknown. The science of which instances of propositional
satisfiability are “easy” is still emerging.

4 Conclusions

The diversity of the problems discussed at the workshop brought into sharp focus the fact that
many computing problems, from verification, program analysis, and software testing, to planning,
scheduling, and optimization, are indeed constraint satisfaction problems. Research in developing
efficient symbolic tools for these problems is vibrant, with demonstrable technology transfer. We
recommend that NSF should recognize the importance and foundational nature of this area, and
provide sustained and focused funding dedicated to it.

3

Appendix: Talk Abstracts

Alex Aiken, Stanford University
Constraint Problems in Program Analysis

A great variety of constraint resolution problems arise in the area loosely referred to as program
analysis. The general approach is to reduce some problem stated in terms of properties of a program
represented in some particular way (e.g., as an abstract syntax tree or a control-flow graph) into
a mathematical problem about the existence of solutions to a system of constraints. Many useful
constraint theories and associated algorithms are known, but there are also a number of topics that
are of central importance and that are also not well understood:

The ability to analyze programs in pieces and then compose the information derived from the
pieces to construct information about the entire program is often called local or compositional
analysis. Local analysis depends upon being able to express in some formalism all behaviors of a
program fragment in all possible environments. We can see immediately that to be feasible the
size of such descriptions (i.e., the constraints) cannot vastly exceed the size of the fragments of
program being analyzed. Thus, there must be a great deal of sharing among the solutions (or very
few distinct solutions) for local analysis to be practical. If instead there are many possible, and
incomparable, behaviors, then one is better off doing whole-program analysis, and reanalyzing the
program fragment once for each of the actual contexts in which the program uses it (which will
generally be much, much smaller than the set of all possible contexts). The trade-offs between
when one can do local and when one must do global analysis are not well-understood today; there
are no guidelines for people designing analyses to tell them which they should prefer, or whether a
local analysis is even possible.

A second topic that is under-investigated is efficient techniques for implementing constraint
resolution algorithms in practice. Experience in many domains has shown that the fact that a
constraint resolution problem is in theory intractable does not mean that there is not structure
in practical instances that can be exploited. Exploitation of such structure is often the difference
between a particular decision procedure being useful for realistic examples and being a curiosity.

A third topic is the need for a better understanding of entailment problems. While constraint
solving is well-understood for many kinds of constraints that arise in program analysis problems,
constraint entailment is much less well-understood. Entailment is always need to, for example, to
optimize the representation of constraints or to ask queries about a system of constraints, but for
many important program analysis problems there are open problems about the exact complexity
of the entailment problem.

Clark Barrett, New York University
Satisfiability Modulo Theories: Successes and Challenges

Automatic analysis of computer hardware and software requires engines capable of reasoning ef-
ficiently about large and complex systems. A primary goal of research in Satisfiability Modulo
Theories (SMT) is to create verification engines that can reason natively at a higher level of ab-
straction. This facilitates ease of use and in many cases also leads to substantial performance gains
over the more naive approach of encoding problems as Boolean satisfiability (SAT) formulas.

The general SMT problem is that of checking the satisfiability of first-order formulas with
respect to some logical theory T of interest. Several important theoretical and practical results

4

have led to systems that can efficiently integrate Boolean reasoning with reasoning in multiple
theories.

Research in SMT has been gaining momentum in recent years. Important developments include
a set of standards (the SMT-LIB standard), a yearly workshop, and a yearly competition. The
performance of SMT solvers has increased significantly, and these solvers are now being used in an
increasing number of industrial applications.

There remain many challenges. These include: exploring new theories and decision procedures;
finding better ways of integrating SAT and theory reasoning; both theoretical and practical efforts
to improve completeness when reasoning with quantifiers and non-linear arithmetic; engineering
more mature tools; investigating parallelization of SMT algorithms; and improving reliability via
proofs. SMT solvers are creating capabilities in verification that were completely unrealistic only
a few years ago. It is critical that the momentum in this area be maintained and accelerated with
funding for research to meet these challenges.

Martine Ceberio, University of Texas at El Paso
Symbolic-Numeric Algorithms for Constraint Solving

Continuous constraints are constraints whose variables are defined over continuous domains. This
is the only notable difference between discrete and continuous constraints. However, this small
difference results in the need for very different solving techniques. Indeed, when enumeration (and
fancy, more efficient variations of it) is an option with discrete constraints, it is no longer possible
when variables can take an infinite amount of values.

In this talk, I present several approaches to address this problem, and I focus on the approaches
that use interval computations to model the continuity of the variables’ domains. I also intro-
duce the problem of computations performed by computers and their limitations to floating-point
numbers. All of these limitations, along with these of interval computations (dependency of the
computations), call for the combination of numeric and symbolic algorithms to solve continuous
constraints.

I point out that the numeric part of the solving algorithms is indispensable, since the problems
at hand are numeric in essence. The symbolic part of these same solving algorithms is essential if we
seek efficiency. I show several attempts to speed up the constraint solving process using symbolic
algorithms.

I conclude by pointing out future research directions, among which the use of a different inter-
val arithmetic (namely, circular arithmetic) that proved to be efficient for interval computations,
and whose use should be further investigated in the case of constraint solving algorithms. Besides,
tensors also appear to constitute an interesting alternative approach for they provide a nice frame-
work to keep track of variables’ dependencies between constraints and are expected to speed up
the domain narrowing process.

Werner Damm, Universitat Oldenburg, Germany
Automatic Verification and Analysis of Complex Systems: Key results of the transre-
gional collaborative research project AVACS

The German Science Foundation runs as high-end programs so called Large Scale Collaborative
Research Projects (Sonderforschungsbereiche, for short SFB), which may involve up to three partic-
ipating sites (acronym SFB-TRR). The talk presented results of the first funding period of the SFB-

5

TRR AVACS on Automatic Verification and Analysis of Complex Systems, see www.avacs.org,
and explained the principles of organization of AVACS projects in combining a rich class of symbolic
methods (including Abstraction, Decision Diagrams, Constraint Solving, Heuristic Search, Linear
Programming, Model Checking, Lyapunov Method, SMT, Decision Procedures) for the verification
of benchmarks taken from the transportation domain.

Leonardo de Moura, Microsoft Research
(SAT & SMT in) Program Verification & Testing

Software verification has been the Holy Grail of computer science for many decades. Tony Hoare
suggested the Verification Challenge as an effort to create a tool set that would, as automatically
as possible, guarantee that programs meet given specifications. Decision procedures for checking
satisfiability of logical formulas are an important component of this tool set. Of particular recent
interest are solvers for Satisfiability Modulo Theories (SMT). SMT solvers are used in several
projects at Microsoft, the main applications are: program verification, test case generation, white-
box fuzz testing, and predicate abstraction. In this talk, I will cover these applications, and discuss
the many challenges we face.

Sharad Malik, Princeton University
SAT and QBF: Trick or Treat?

In this talk I will cover the major advances in SAT and QBF solvers over the past decade, with
the practical successes (the treat) and the challenges that remain, especially with QBF (the trick).
I will highlight the diverse set of techniques from across computer science that has been brought
to bear in modern solvers. These include deduction, search, caching, randomization, and data
structures/algorithms. In particular, I will emphasize the alternating emphasis between deduction
and search between succeeding generations of solvers.

Ken McMillan, Cadence Labs
Symbolic Model Checking

José Meseguer, University of Illinois at Urbana-Champaign
Rewriting Needs Constraints and Constraints Need Rewriting

Rewriting is a very general mechanism for symbolic computation. Solving of constraints is also a
very essential part of symbolic computation. Therefore, research in both rewriting and constraint
solving are important aspects of symbolic computation research. Furthermore, rewriting and con-
straint solving are intimately related, need each other, and can help each other in fundamental
ways. This can be expressed by the slogan of the above talk title.

Rewriting needs constraints. The need for constraint solving in rewriting techniques is
present almost everywhere. Three good example areas are:

1. rewriting modulo axioms A, which needs A-matching algorithms;

2. narrowing modulo axioms A, which needs A-unification algorithms; and

3. inductive reasoning in initial models, where a host of constraint solvers such as unification
algorithms, tree automata, and decision procedures for special theories are used.

6

Constraints need rewriting. The need for rewriting techniques in constraint solving is also
very frequent. Three good example areas are:

1. The formal specification of inference systems for constraint solving, where inference rules are
rewrite rules, and alternative algorithms can be understood as alternative strategies to apply
such rules. For example:

• semantic unification algorithms for various theories;

• abstract congruence closure;

• Groebner basis computation;

• combinations of decision procedures; and

• SAT and SMT solvers

can all be formally analyzed and understood this way. The advantage is to separate correctness
issues (based solely on the rewrite rules) from efficiency, complexity, and implementation
issues (based on the strategies).

2. A much wider range of applications can often be covered by combining theory-specific con-
straint solvers with theory-generic rewriting techniques. A good example is narrowing, where:

• a theory-specific A-unification algorithm can be seamlessly combined with theory-generic
narrowing modulo A with equations E to obtain a unification algorithm in the combined
theory of A and E under suitable requirements on E.

• narrowing modulo equations E can be used to perform complete symbolic reachability
analyses for systems whose transitions are specified with rewrite rules modulo E. For
example, cryptographic protocols can be verified this way with much stronger guarantees
than in the syntactic Dolev-Yao model.

3. Using a high-performance rewrite engine, rewriting-based specifications of constraint solvers
can be used for rapid prototyping, analysis, debugging, and fast experimental evaluation of
such solvers. Furthermore, in a good number of cases the rewrite rules specifying the solver
can be directly used for implementation purposes with competitive performance.

In summary, both constraint satisfaction and rewriting are essential methods for symbolic com-
putation. Also, both sets of techniques have many practical applications which greatly broaden the
applicability of symbolic computation techniques. Finally, as suggested in the talk title, rewriting
and constraint solving need each other very intimately, so that research advances in both areas will
benefit each other as well as substantially advancing symbolic computing research as a whole.

Andre Platzer, Carnegie Mellon University
Symbolic Computations in Hybrid Systems Verification

Verification and analysis of hybrid systems is important for several practical safety-critical systems
ranging from railway technology over driver assistants in cars to aircraft collision avoidance control
systems. Real applications have challenging non-linear dynamics. Contrasting numerical versus
symbolic techniques, we analyze limits of approximation techniques for (non-linear) continuous im-
age computation in model checking hybrid systems. In particular, we show that even a single step

7

of continuous image computation is not semi-decidable numerically even for a very restricted class
of functions. Moreover, we show that symbolic insight about derivative bounds provides sufficient
additional information for approximation refinement model checking. Finally, we prove that purely
numerical algorithms can perform continuous image computation with arbitrarily high probability.
We further contrast these numerical techniques with our fully symbolic analysis technique of dif-
ferential invariants for hybrid systems. Using these results, we analyze the prerequisites for a safe
operation of the roundabout maneuver in air traffic collision avoidance.

Amir Pnueli, New York University
A Customer View of Symbolic Computation and Constraint Satisfaction

In this discussion, I attempted to elaborate my view as a customer of Symbolic Decision Procedures
and my expectations and requirements from tools that provide this technology, in order to carry
out the task of Formal Verification of Reactive Systems.

In our earlier work, we emphasized the methods of Deductive Verification whose main advantage
is that, unlike the algorithmic methods of model checking, it is not restricted to finite-state systems,
and can verify, in principle, all temporal properties of reactive programs with arbitrarily complex
data structures. As is well known, the task of a deductive verifier consists of two major subtasks:

1. The identification and creation of auxiliary constructs, such as inductive invariant assertions,
and ranking functions, which are required in most deductive rules for temporal verification.

2. The formal verification of the verification conditions using a theorem prover or a corresponding
decision procedure. These are usually first-order implications, using appropriate theories that
cover the relevant data structures.

Our conclusions from extensive application of these methods, and continued experience with
teaching the deductive technologies to students were that these two tasks or not easy to master.
In particular, the more automation that can be introduced to the second sub-task, the better. In
fact, in several courses that I have taught, I have intentionally restricted the data domain to cases
where reasonable decision procedures exist, in order to emphasize the first sub-task which is the
essential element in deductive verification.

At this first stage of activity, we also invested much efforts in the complete formalization for the
deductive theory of temporal logic. These efforts required a very powerful and expressive logic in
which notions of state sequences and temporal operators over them could be expressed and justified
formally. This led to the development of tools such as TLPVS (constructed over the high-order
PVS system) which enables us to verify an arbitrary temporal property of a reactive system by
deductive rules that reduce the verification task into establishing a set of verification conditions
that are first-order implications over a variety of theories.

A more recent trend in the temporal verification of infinite-state reactive system places greater
reliance on abstraction methods, in particular finitary abstraction approaches such as predicate
and ranking abstractions. According to this method, the original verification problem is reduced
by abstraction to the verification of propositional temporal formula over a finite-state system, which
can be accomplished by algorithmic methods such as model checking. The role of symbolic meth-
ods within this approach to temporal verification is mainly in the computation of the abstracted
system. This radically changes the set of requirements we now expect from the symbolic methods.
For example, the feature of quantifier elimination becomes highly valuable because it allows the

8

computation of an abstraction in a complexity that is much better than the exponential complexity
that is usually required in cases we do not have quantifier elimination within our theory. On the
other hand, we may relax somewhat the restrictive demand of completeness. This is because, even
in cases of an incomplete decision procedure, we can always obtain a sound abstraction.

As a last reminder, the increasing recent interest in the verification of Hybrid Systems poses
new challenges for the new symbolic computation methods, raising higher our interest in algebraic
and semi-algebraic methods as relevant techniques for dealing with this new family of systems.

Bart Selman, Cornell University
Planning as Satisfiability: Progress and Challenges

Thomas Reps, University of Wisconsin and GrammaTech, Inc.
Some Possible Research Challenges

I presented a few ways in which logical/constraint-based/symbolic techniques relate to issues that
arise in program analysis – in particular, to abstraction. In particular, I described how abstract
domains and logics could be connected via two operations: (1) γ̂, which converts an abstract ele-
ment a to a formula γ̂(a) that describes exactly the state-set that a represents, and (1) α̂(φ), which
gives the most-precise over-approximation in the abstract domain of the state-set that a formula φ
represents. These operations provide a starting point for (i) using symbolic techniques in abstract
interpretation, (ii) using abstraction in conjunction with symbolic techniques, and (iii) communi-
cating information between abstract values of different abstract domains (by using formulas of the
logic as the communication medium). This should provide fertile ground for future research. I
also made the case that when designing a research program in the area of symbolic computation,
NSF should support work not just on satisfiability checking (e.g., for various logics), but should
interpret ”symbolic computation” more broadly. Examples of other operations of interest include
(i) symbolic composition, needed for instance to compose summary functions or summary rela-
tions for modular analysis, (ii) widening and other generalization operations, needed for enforcing
termination, and (iii) finding loop invariants. In addition, work on logics that are based around
operations for expressing changes in state (structure-update operations), such as dynamic logic and
dynamic descriptive complexity, is particularly worthy of support.

Finally, based on my experience working on analysis and verification of machine code, I expressed
the opinion that it was unfortunate that recent work on designing decision procedures for separation
logic had chosen to abandon several key features of the original formulation of separation logic,
namely, the ability to treat address values as integers and to perform arithmetic on addresses. Such
features are particularly important when reasoning about machine code.

N. Shankar, SRI International Computer Science Laboratory
Research Challenges in Constraint Solving

All problem solving is constraint solving. Constraints include systems of equalities and inequal-
ities; planning, scheduling, and optimization problems; geometric constructions; database query
processing; computer-aided design; and for creating and solving puzzles like Sudoku and games
like Chess and Go. If we had constraint solvers that could handle complex real world constraints,
we might expect to see such solvers embedded in everything from vacuum cleaners to airplanes.
We now have extremely fast solvers for a useful class of constraints. The research challenges for

9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 156 158 160 162 164 166 168 170 172

tim
e

BCLT 2007
Mathsat 2007

Yices 2007
Z3 2007

BCLT 2008
Mathsat 2008
Yices2 2008

Z3 2008

Figure 1: Comparing SMT solvers on the QF RDL benchmarks from SMT-LIB

constraint solving are in expanding the range of constraints, extracting richer information from
these constraints, increasing the efficiency of constraint solvers, and exploring novel applications.

A typical constraint solving problem has the form: find an x such that C(x) holds. Either
there is a solution for x or we need to demonstrate that there is no such solution. Some problems
can be unsolvable or infeasible. We might also require an enumeration of all solutions or the
identification of the best solution according to some metric. The constraints C(x) can also be a
mixture of hard constraints that must hold of x and soft constraints that can be relaxed. Constraints
can also involve probability estimates such as the likelihood that x = a given C(x), where C(x)
contains some facts and rules. Constraint solving can also include solving meta-constraints that
involve finding winning strategies for games, ruler-and-compass constructions, programs, program
invariants, ranking controllers, functions, Lyapunov functions, or interpolants for the conjunction
of two sets of constraints.

Many industrial applications use numeric techniques that compromise on either soundness (good
solutions might be missed) or completeness (proposed solutions might not be valid), or both.
Symbolic techniques attempt to exactly or approximately represent the set of solutions, and can
be used to generate exact solutions if needed. Symbolic constraint solving techniques include
search, propagation, inference, saturation, and abstract interpretation. Constraint solving can
either indicate solvability, construct a solution, claim the absence of a solution, or provide evidence
or proof for the absence of a solution. Constraint solvers can also be incremental and support
incremental assertion and retraction.

Constraint solvers have been growing rapidly in efficiency over the last few years. Propositional
satisfiability (SAT) solvers can now handle problems with millions of Boolean variables and con-

10

straints. Solvers for satisfiability modulo theories (SMT) can handle constraints in combinations of
theories such as integer and real linear arithmetic equalities, disequalities, and inequalities, arrays,
bit vectors, uninterpreted (i.e., unconstrained) function symbols, datatypes, and quantified rules.
The performance of SMT solvers has been increasing quite dramatically over recent years. Figure 1
shows the progress from 2006 to 2008. The graph shows the performance for each of eight systems
on the quantifier-free real difference logic benchmarks from the SMT-LIB library. For each system,
the graph shows its performance on the benchmarks sorted in increasing order of time (in seconds).
The Yices 2007 system is essentially the same as the one that took part in the 2006 SMT-COMP
competition, and it can be contrasted with Z3 2008 which completes nearly all of the benchmarks
in small amount of time.

Ongoing research in SAT and SMT is aimed at efficient algorithms and representations, sup-
port for parallelism, richer interfaces, support for nonlinear arithmetic constraints, approaches for
combining multiple theories, quantified Boolean formulas, combining hard and soft constraints,
probabilistic inference, interpolant generation, and approximation.

Large-scale constraint solving will have a big impact on science and engineering. Applications
in hardware and software analysis lead to more robust, reliable, and secure computer systems.
Constraint solving can be used in the computer-aided design and manufacturing of electronic and
cyber-physical systems. These techniques can also be applied to problems in medical technology,
energy, environment, and transportation. Finally, constraint solving can be used in educational
software to assist in problem construction and problem solving.

11

