Sharad Malik

From: Rajeev Alur [alur@seas.upenn.edu]

Sent: Friday, October 31, 2008 4:.07 PM

To: Clark Barrett; Edmund Clarke; Sharad Malik; pvh@cs.brown.edu; selman@cs.cornell.edu;
Jose Meseguer; Amir Pnueli; Lecnardo de Moura; Alex Aiken; Thomas Reps; Natarajan
Shankar

Subject: NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems

Hi all,

Hope you have already made your travel arrangements.
*We need to finalize the program and send it to NSF in a few days, so please respond to this
message with the title of your talk.*

I am proposing a tentative schedule and topics.

Friday, Nov 14,
Location: FDIC Building, Arlington, VA (a few blocks from NSF bldg)

Tentative schedule:

o0

.30 -- 9.00 Coffee / Breakfast
9.00 -- 9.15 Welcome and agenda

w

9.15 -- 11.15 Computational Tools for Constraint Satisfaction Problems
[Talks: 25 min + 5 min for questions]

Sharad Malik: SAT/QBF Solvers
Clark Barrett: SMT Solvers

Jose Meseguer: Rewriting tools
Bart Selman: Solvers in Planning

11 1rC 17 230 Lasnmaemla

SAT and QBF: Trick or Treat

. 00
Sharad Mallk | ¢ @e@®
Princeton University | 90 ©®®
000
o0
o

NSF Workshop
November 14, 2008

The Trick...

The daunting NP-completeness...

LN I I

bi TR) * * =
I can’t find an efficient algorithm, but neither can all these famous people.”

[GJI79]

The Treat...

e Large and vibrant SAT community
SAT Portal

Satlib Research Infrastructure
60K benchmarks
SAT solver competitions
Public domain solvers

e \Wide practical application of SAT
More from de Moura, McMillan and others later...
e Emboldened researchers to attack harder
problems
QBF and SMT

SAT Solver Competition

Runtime [s]

900

800

700

600

400

300

200

100

MiniSat
pMiniSat
Barcelogic
Rsat

MXC
preSAT
CMUSAT
kowr

picosat
Eureka
ManySat”
LocalMinisat
MiraXT
SATzilla
eSAT
Spear
Tinisat
clasp
SAT4)

A <

*

1 R |

i-th best instance

a0

100

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/analysis.html

SAT Solver Competition

1e+08 N T 1 T 1 T 1 T — 1 T — 1
1e4+07 C Velev -
Post
IBM *
Mirnow-Zh.
Manolios
Mixed
1e+06 - i = -
. _ R |
E.'I_ll W
a S
O o
100000 E
C "]
10000 - -
1DDD i i P | i i P | i i P | i i | i i | i M i
100 1000 10000 100000 1e+06 1e+07 1408
Variables

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/analysis.html

This Talk

e Successful application of diverse CS techniques
e Logic (Deduction and Solving)
e Search
e Caching
e Randomization
e Data structures
e Cache efficient algorithms
e Open challenges...
e Limited understanding of why the algorithms work

e Dynamic application of strategies
o OBF

Acknowledgements

For discussions:
e Armin Bierre

e Daniel Le Berre
e Laurent Simon
e Ofer Strichman
e Lintao Zhang

SAT Solvers:
A Condensed History

e Deductive/Formula Solving
Davis-Putnam 1960 [DP]
Iterative existential quantification by resolution
e Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Search with unit propagation
e Conflict Driven Clause Learning [CDCL]
GRASP, RelSat: Integrate a constraint learning procedure, 1996
e Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2000 onwards

Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...

Problem Representation

e Conjunctive Normal Form
Representation of choice for modern SAT solvers

Easy conversion of other representations to CNF
E.g. Circuit to CNF using the Tseitin Transformation

(a+b+c)(a'+b’+c)(a'+b+c’)(a+b'+C’)

RS

Variables Literals Clauses

Deduction Workhorse I: ,
Resolution °

e Resolution of a pair of distance-one clauses

@+b+@ +h (9+h +@+1

N

a+b+g+h +f

Resolvent implied by the original clauses, thus can be
added back to the CNF without changing the formula

Davis Putnam Algorithm

e |[terative existential quantification of variables [DP 60]
e Using resolution

f (a) (a %@) (a’/+ c)(a’/+ c) f

db,f (@a+@+e)@+e+d) @ @+c)@+c) 3b,f
i{b,a}, f

3b,c}, f (a+e+d @{@

i{b,c,a,e,d}, f 1 () i{b,a,c}, f

UNSAT
SAT

Potential memory explosion problem!

SAT Solvers:
A Condensed History

e Deductive
e Davis-Putnam 1960 [DP]
e |Iterative existential quantification by resolution
e Backtrack Search
e Davis, Logemann and Loveland 1962 [DLL]
e Search with unit propagation
e Conflict Driven Clause Learning [CDCL]
e GRASP, RelSat: Integrate a constraint learning procedure, 1996
e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...

DLL Search

e Search the decision tree for a
satisfying assignment

e Unit propagation to prune
search

e Deduction Workhorse II: Unit
literal rule

e All but one literal in a clause Is
assigned false
(v1=0 + v2=0 + v3=7?)
v3 must be 1 for the formula to be
satisfiable
e Unit propagation is the iterative

application of this rule

[DLL62]

SAT Solvers:
A Condensed History

e Deductive
e Davis-Putnam 1960 [DP]
e |Iterative existential quantification by resolution

e Backtracking Search
e Davis, Logemann and Loveland 1962 [DLL]
e Search with unit propagation
e Conflict Driven Clause Learning [CDCL]
e GRASP, RelSat: Integrate a constraint learning procedure, 1996

e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...

Conflict Driven Learning

X1+ x4 [SS99,BS96] /
X1 + X3 + X8 ’

X1+ x8 + x12 »
x2 +x11

X7 + X3 +x9

X7 + X8 + X9’

X7+ x8 + x10’ @
/

X7+ x10 + x12 ,

x1=0, x4=1

@ x3=1, x8=0, x12=1

@ x7=1, x9= 0, 1

x2=0, x11=1

Implication graph:
record history of unit implications

Conflict Driven Learning

X1 + x4

X1 + X3 + X8
X1+ x8 + x12
x2 +x11

X7 + X3 +x9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

@ x1=0, x4=1
V4

@ x3=1, x8=0, x12=1
@ x2=0, x11=1
V4

@ x7=1, x9=1

X3=1AX7=1AX8=0 — conflict

Conflict Driven Learning

X1 + x4

X1 + X3 + X8
X1+ x8 + x12
x2 +x11

X7 + X3 +x9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

@ x1=0, x4=1
V4

@ x3=1, x8=0, x12=1
@ x2=0, x11=1
V4

@ x7=1, x9=1

X3=1AX7=1AX8=0 — conflict

Add conflict clause: x3'+x7'+x8

Conflict Driven Learning

X1+ x4 @
/

X1 + x3 + x8’ ’
X1+ x8+ x12 »
x2 + x11

X7 +x3 +x9 , ,
o P > X3 +Xx7'+x8

X7+ x8 + x10’ @
/

X7+ x10 + x12 ,

x1=0, x4=1

@ x3=1, x8=0, x12=1

@ x7=1, x9=1

x2=0, x11=1

X3=1AX7=1AX8=0 — conflict

Add conflict clause: x3'+x7'+x8

Conflict Driven Learning

1 + x4 @ x1=0, x4=1
/

X1 + x3 + x8’ ’
X1+ x8+ x12 »

x2 + x11 @

"+ -+)

X7 + x8 + x9’

X7 + x8 + x10’ @
/

X7 +x10 + x12 ,

R ———

x3=1, x8=0, x12=1

x2=0, x11=1

[
[

X7=1, x9=1

Backtrack to the decision level of x3=1

What'’s the big deal?

Conflict clause: x1’+x3+x5’

Significantly prune the search space —
learned clause is useful forever!

Useful in generating future conflict
clauses.

Very effective deduction/caching for
search space pruning.

00
0000
o000
XX)
:Q

Restarts

Abandon the

current search

tree and

reconstruct a

new one

The clauses

learned prior to
the restart are
still there after
the restart and
can help pruning
the search space

Adds to
robustness in the
solver

Effective

randomization [BSOO H07] Conflict clause: x1’+x3+x5’

SAT Solvers:
A Condensed History

e Deductive

e Davis-Putnam 1960 [DP]

e lterative existential quantification by resolution
e Backtracking Search

e Davis, Logemann and Loveland 1962 [DLL]

e Search with unit propagation

e Conflict Driven Clause Learning [CDCL]
e GRASP, RelSat: Integrate a constraint learning procedure, 1996

e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...

Success with Chaff (2000)

e First major instance: Tough

e Industrial Processor Verification
Bounded Model Checking, 14 cycle behavior

e Statistics

1 million variables

10 million literals initially
200 million literals including added clauses
30 million literals finally

4 million clauses (initially)
200K clauses added

1.5 million decisions

3 hour run time
[IMMZ+01]

Constants Matter

Motivating Metrics: Decisions, Instructions, Cache

Performance and Run Time

1dix_c_mc_ex_bp f
Num Variables 776
Num Clauses 3725
Num Literals 10045
zChaff SATO GRASP
Decisions 3166 3771 1795
Instructions 86.6M 630.4M 1415.9M
#L1/L2 24M [1.7TM 188M / 79M 416M / 153M
accesses
% L1/L2 4.8% /[4.6% 36.8% /9.7% 32.9% /50.3%
misses
Seconds 0.22 4.41 11.78

Unit Propagation Dominates

>80% of execution time!

while() { —

iIs_conflicting = propagate unit();

1IT(lis_conflicting) {
iIT (no_free vars) return SATISFIABLE;
make_decision(); // Decision Heuristic

}
1T(1is_conflicting) {
1T (no_unforced_decisions) return UNSAT;

new_constraint = analyze conflict(); // Learning

literal = last assigned(new_constraint);

backtrack to(asserting level(new constraint));

assign(invert(literal)); // Conflict Driven Assertion

Tracking fewer literals per clause?

e A clause with 2 non-false literals can neither
be unit nor conflicting
SATO’s Head/Tall lists are based on this idea [HS96]

Chaff’'s 2 literal watching develops it further
IMMZ+01]
Has significant implications on the algorithms
No updates needed on backtracking

Efficient Data Structures/Algorithms matter

Memory Accesses: Different BCP

Mechanisms

Billions of Access

@ 2 Counters

l 1 Counter

O Compact 1 Counter
02 Lits Watch

Benchmarks

Level 1 Data Cache Miss Rates:

Different BCP Methods

Miss Rate

25%

20%

15%

10%

5%

0%

Level 1 Cache Miss Rates

@2 Counter
W1 Counter
OCompact 1l Counter]
2 Lit Watch
\ m \ |
o))
M o o e NP & 4 &
v N W O < S o g
Q > 4 o AN & o/
fe) Q7 o
N S N
NS Benchmarks

SAT Solvers:
A Condensed History

e Deductive

e Davis-Putnam 1960 [DP]

e lterative existential quantification by resolution
e Backtracking Search

e Davis, Logemann and Loveland 1962 [DLL]

e Search with unit propagation

e Conflict Driven Clause Learning [CDCL]
e GRASP,RelSat: Integrate a constraint learning procedure, 1996

e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation

Boolean Constraint Propagation, Decision Heuristics, ...

Decision Heuristics

while(1) {
iIs_conflicting = propagate unit();

1IT(lis_conflicting) {
iIT (no_free vars) return SATISFIABLE;
make_decision(); // Decision Heuristic

+

1T(1is_conflicting) {
IT (no_unforced decisions) return UNSAT;
new_constraint = analyze conflict(); // Learning
decision = last unforced decision(nhew _constraint);

backtrack to(decision);
make_forced_decision(invert(decision));

Locality Based Search

©C

e By focusing on a sub-space, the covered spaces tend to
coalesce

e More opportunities for resolution since most of the variables are
common.

Locality Based Search:
Decision Heuristics

e Intuitions:
Take a more local view of the problem

Dynamically identify important constraints and variables
Explore space close to recent conflicts

e Not very compute-intensive

e Use relatively simple data structures

e Widely Used
VSIDS (Variable State Independent Decaying Sum) in Chaff
MiniSAT [ESO3]
Berkmin [GNO2]
VMTF in Seige [R0O4]

More Deduction

Focused Resolution
e Significant deduction to simplify the initial CNF instance

e Minisat (SatElite) has efficient implementation [EBO5]
Variable elimination by resolution
Krom subsumption checks
Backward subsumption checks
Efficient hash based subsumption algorithms

e Hyper-resolution [BO2Z]
e Interestingly, these techniques can also be used during the
solving process itself

VER — used in Resolve-Expand QBF solver
Krom Subsumption — conflict clause minimization in Minisat

Proof Certification and Unsat
Ccores

e An UNSAT Iinstance reduces to an empty
clause at the end of the deduction/search
process

e Can log the resolution trace and
iIndependently validate this proof of
unsatisfiability

e Additional value in diagnosing the cause of
unsatisfiability

Unsat Core [ZMO03]

The Core as a Checker By-
Product 2
O Empty

‘ Core Clauses

‘ O Original Clauses
O/ ‘ Learned Clauses

e Unsat Core may be a small fraction of the original clauses
e Multiple applications

Multi-threaded SAT

e Increasingly relevant with multi-core
processing

e Basic idea:

Divide search space among threads
Share learned clauses across threads

e Chip-multiprocessors make this real
PMINISAT, miraXT [LSBO7], manySAT [HJSO08]
Learned clauses retain relevance across threads
Scalability?

Multi-threaded SAT

Runtime [s]

800

800

700

G600

500

400

300

200

100

MiraxT
ManySat
pMiniSat

*

&0 a0 100
i-th best instance

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/analysis.html

Quantified Boolean Formulas

Quantification
Level 1

Quantification
e Quantified Boolean Formula Level n
FIQX) -+ QX9

where Q, (i=1,---, n) is either 3 or V¥, ¢ is a propositional formula
e Example:

vude(ute’)(u'+e)
de,e;Vu,U,usde,e,e; f(e,,e,,65,6,4,65,Uq,U,,Us)
e QOBF Problem:
Is F satisfiable?

e P-Space Complete, theoretically harder than NP-Complete
problems such as SAT [GJ79]

QBF Solvers

e Like SAT

Search and Deduce

e Not like SAT
Problem re
Search
Deduce

oresentation

The QBF Search Tree

e Je,e-vVu,u,ude,e,e; f(e,,e,,65,6,4,6:5,Us,U,Us)

e Need multiple satisfying assignments

e Need to track conflicting as well as satisfying sub-
spaces

e4, e5

ul, u2, u3

el, e2, e3

1 1111 1 1 1

Search Based QBF Algorithms

e Work by gradually assigning variables
e A partial assignment =

[KGS98]

Search Based QBF Algorithms

e Work by gradually assigning variables

e A partial assignment =

e Undetermined
Continue search

Search Based QBF Algorithms

e Work by gradually assigning variables

e A partial assignment =
e Undetermined

e Conflict

Backtrack
Record the reason

Search Based QBF Algorithms

e Work by gradually assigning variables

e A partial assignment =
Undetermined
Conflict

Satisfied
Backtrack g\

Determine the covered satisfying space

Impact on Problem
Representation

Let¢p=C,C,...C,, = S; +S, +..+ S,

Then:

¢

=(C,;C,..C,+S,;+S,+..+S,))
Combined Conjunctive Disjunctive Normal Form (CCDNF)

=C,C,..C, (S +S, +..+S,)

=(C, C,...C,, + ZAnySubset{ S, S,,...,S.})
Augmented CNF (ACNF)

= (ITAnySubset{ C,,C,,...,.C D(S;+ S, +...+ S,)
Augmented DNF

Impact on Problem
Representation

e The disjunctive component can capture
satisfied parts of the solution subspace
(ACNF) [ZMO02]

Recorded as cubes during the solution process

f = (@’+b’+c’)(a’+b+c)(at+h’+c)(a+b+c’) + ab’c

Satisfaction cube
analogous to conflict clause

The solver terminates when an empty clause
(UNSAT) or a tautology cube (SAT) is obtained.

Impact on Problem
Representation

e Can avoid searching irrelevant parts of the
space (CCDNF) [Z06]

When a=1, values in this circuit are irrelevant
CNF would continue to search for consistent assignments

Impact on Problem
Representation

e OBF from Games [SAG+00]

Alternating universal and existential quantification

Formula structure
Try, — (I and Trg and Gg)
Try : Transition rules for U vars
I Initial Axioms
Gg: Goal axioms for E

Dual DNF CNF representation
DNF for Tr,, CNF for the Rest

Solving by Quantifier
Elimination

e Resolution based solvers [BKF95]:
Eliminate quantifiers from inside out
Existential: Resolution with CNF
Universal: Trivial with CNF
e Resolve and Expand [BO5a]
Include non-internal universal quantifier elimination using
expansion (duplication)
e Symbolic skolemization to eliminate existential
guantifiers
Skizzo [BO5Db]

e \ery sensitive to order of operations
e Greater success compared to search based solvers

QBF Competition: Success

Largest Solved Instances, QBF Eval 2008

cl BMC_
p2_ k1024 Fixed

cl BMC_
pl k1024 Fixed

vonNeum

ann-

ripple-
carry-12-c Fixed

cl BMC_
p2_k512 Fixed

cl BMC_
pl k512 Fixed

quantor3.0(2
4.72)

quantor3.0(4
7.51)

quantor3.0(1.

8)

quantor3.0(1
2.96)

quantor3.0(2
4.54)

1110430

1110430

567460

566106

566106

1110420

1110420

567148

566102

566102

312

2812460

2812460

832132

1451240

1451240

6641870

6641870

3596820

3596820

QBF Competition: Challenges |::°

Smallest Unsolved Instances, QBF Eval 2008

Class

testd _quant_squari

ng2 Fixed
testd quant2 Fixed
test3_quant4 Fixed
test4_quant4 Fixed

C499.blif 0.10_0.20
0 1 out_exact Fixed

totalVars

326
326
344

446

838

existsVars

302
302
324

422

826

forallVars

24

24

20

24

12

totalClauses totallLits

868

868

923

1204

2393

2208

2208

2419

3120

5702

existsAltern forallAltern

2 1
2 1
2 1
2 1
2 1

This Talk

e Successful application of diverse CS techniques
Logic (Deduction and Solving)
Search
Caching
Randomization
Data structures
Cache efficient algorithms

e Open challenges...
Limited understanding of why the algorithms work

Dynamic application of strategies
QBF

Summary

e SAT: Significant shift from theoretical interest to practical
Impact.
e Quantum leaps between generations of SAT solvers

e Presence of drivers results in maximum progress.
Electronic design automation — primary driver and main beneficiary
Software verification- the next frontier?

e Opens attack on even harder problems
SMT, Max-SAT, QBF...

References

e [GJ79] Michael R. Garey and David S. Johnson, Computers and
intractability: A guide to the theory of NP-completeness, W. H. Freeman and
Company, San Francisco, 1979

e [DP 60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201-215, 1960

e [DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394-397, 1962

e [SS99] J. P. Margques-Silva and Karem A. Sakallah, “GRASP: A Search
Algorithm for Propositional Satisfiability”, IEEE Trans. Computers, C-48,
5.506-521, 19909.

e [BS97]R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back
technigues to solve real world SAT instances.” Proc. AAAI, pp. 203-208,
1997

e [BSO0O0] Luis Baptista and Jodo Marques-Silva, “Using Randomization and

Learning to Solve Hard Real-World Instances of Satisfiability,” In Principles
and Practice of Constraint Programming — CP 2000, 2000.

References

e [HO7] J. Huang, “The effect of restarts on the efficiency of clause learning,”
Proceedings of the Twentieth International Joint Conference on Automated
Reasoning, 2007

e [MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik.
Chaff: Engineering and efficient sat solver. In Proc., 38th Design
Automation Conference (DAC2001), June 2001.

e [ZS96] H. Zhang, M. Stickel, “An efficient algorithm for unit-propagation” In
Proceedings of the Fourth International Symposium on Artificial Intelligence
and Mathematics,1996

e [ESO3] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003

e [BO2] F. Bacchus “Exploring the Computational Tradeoff of more Reasoning
and Less Searching”, Proc. 5th Int. Symp. Theory and Applications of
Satisfiability Testing, pp. 7-16, 2002.

e [GNO2] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver.
In Proc., DATE-2002, pages 142-149, 2002.

References

e [RO4] L. Ryan, Efficient algorithms for clause-learning SAT solvers, M. Sc.
Thesis, Simon Fraser University, 2002.

e [EBO5] N. Eén and A. Biere. Effective Preprocessing in SAT through
Variable and Clause Elimination, In Proceedings of SAT 2005

e [ZMO3] L. Zhang and S. Malik, Validating SAT solvers using an
independent resolution-based checker: practical implementations and other
applications, In Proceedings of Design Automation and Test in Europe,
2003.

e [LSBO7] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In
Proceedings of the 2007 Conference on Asia South Pacific Design
Automation

e [HJSO08] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver
description, Microsoft Research-TR-2008-83

e [ZMO2] L. Zhang and S. Malik, Towards a Symmetric Treatment of
Satisfaction and Conflicts in Quantified Boolean Formula Evaluation, In
Principles and Practice of Constraint Programming - CP 2002

References

e [KGS98] M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate
Quantified Boolean Formulae. In Proc. of 16th National Conference on
Artificial Intelligence (AAAI-98)

e [Z06] L. Zhang, Solving QBF with Combined Conjunctive and Disjunctive
Normal Form, In Proc. of National Conference on Atrtificial Intelligence, 2006

e [SAG+06] Ashish Sabharwal , Carlos Ansotegui, Carla P. Gomes,
Justin W. Hart and Bart Selman, QBF Modeling: Exploiting Player
Symmetry for Simplicity and Efficiency, In Theory and Applications of
Satisfiability Testing - SAT 2006

e [BKF95] Hans Kleine Buning, Marek Karpinski, and Andreas Flogel.
Resolution for Quantified Boolean Formulas. Information and Computation
117(1): 12-18 (1995).

e [B0O5a] A. Biere, Resolve and Expand, In Theory and Applications of
Satisfiability Testing, 2005

e [BO5b] Marco Benedetti, sKizzo: A Suite to Evaluate and Certify QBFs, In
Proceedings of Automated Deduction — CADE-20, 2005

