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Hi all,

Hope you have already made your travel arrangements.
*We need to finalize the program and send it to NSF in a few days, so please respond to this
message with the title of your talk.*

I am proposing a tentative schedule and topics.

Friday, Nov 14,
Location: FDIC Building, Arlington, VA (a few blocks from NSF bldg)

Tentative schedule:

o0

.30 -- 9.00 Coffee / Breakfast
9.00 -- 9.15 Welcome and agenda

w

9.15 -- 11.15 Computational Tools for Constraint Satisfaction Problems
[Talks: 25 min + 5 min for questions]

Sharad Malik: SAT/QBF Solvers
Clark Barrett: SMT Solvers

Jose Meseguer: Rewriting tools
Bart Selman: Solvers in Planning
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SAT and QBF: Trick or Treat
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The Trick...

The daunting NP-completeness...
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bi TR ) * * =
I can’t find an efficient algorithm, but neither can all these famous people.”

[GJI79]



The Treat...

e Large and vibrant SAT community
SAT Portal

Satlib Research Infrastructure
60K benchmarks
SAT solver competitions
Public domain solvers

e \Wide practical application of SAT
More from de Moura, McMillan and others later...
e Emboldened researchers to attack harder
problems
QBF and SMT



SAT Solver Competition
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SAT Solver Competition
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This Talk

e Successful application of diverse CS techniques
e Logic (Deduction and Solving)
e Search
e Caching
e Randomization
e Data structures
e Cache efficient algorithms
e Open challenges...
e Limited understanding of why the algorithms work

e Dynamic application of strategies
o OBF
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SAT Solvers:
A Condensed History

e Deductive/Formula Solving
Davis-Putnam 1960 [DP]
Iterative existential quantification by resolution
e Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Search with unit propagation
e Conflict Driven Clause Learning [CDCL]
GRASP, RelSat: Integrate a constraint learning procedure, 1996
e Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2000 onwards

Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...



Problem Representation

e Conjunctive Normal Form
Representation of choice for modern SAT solvers

Easy conversion of other representations to CNF
E.g. Circuit to CNF using the Tseitin Transformation

(a+b+c)(a'+b’+c)(a'+b+c’)(a+b'+C’)

RS

Variables Literals Clauses




Deduction Workhorse I: ,
Resolution °

e Resolution of a pair of distance-one clauses

@+b+@ +h (9+h +@+1

N

a+b+g+h +f

Resolvent implied by the original clauses, thus can be
added back to the CNF without changing the formula



Davis Putnam Algorithm

e |[terative existential quantification of variables [DP 60]
e Using resolution

f (a ) (a %@) (a’/+ c)(a’/+ c) f

db,f  (@a+@+e)@+e+d) @ @+c)@+c) 3b,f
i{b,a}, f

3b,c}, f (a+e+d @{@

i{b,c,a,e,d}, f 1 () i{b,a,c}, f

UNSAT
SAT

Potential memory explosion problem!



SAT Solvers:
A Condensed History

e Deductive
e Davis-Putnam 1960 [DP]
e |Iterative existential quantification by resolution
e Backtrack Search
e Davis, Logemann and Loveland 1962 [DLL]
e Search with unit propagation
e Conflict Driven Clause Learning [CDCL]
e GRASP, RelSat: Integrate a constraint learning procedure, 1996
e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...



DLL Search

e Search the decision tree for a
satisfying assignment

e Unit propagation to prune
search

e Deduction Workhorse II: Unit
literal rule

e All but one literal in a clause Is
assigned false
(v1=0 + v2=0 + v3=7?)
v3 must be 1 for the formula to be
satisfiable
e Unit propagation is the iterative

application of this rule

[DLL62]



SAT Solvers:
A Condensed History

e Deductive
e Davis-Putnam 1960 [DP]
e |Iterative existential quantification by resolution

e Backtracking Search
e Davis, Logemann and Loveland 1962 [DLL]
e Search with unit propagation
e Conflict Driven Clause Learning [CDCL]
e GRASP, RelSat: Integrate a constraint learning procedure, 1996

e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...



Conflict Driven Learning

X1+ x4 [SS99,BS96] /
X1 + X3 + X8 ’

X1+ x8 + x12 »
x2 +x11

X7 + X3 +x9

X7 + X8 + X9’

X7+ x8 + x10’ @
/

X7+ x10 + x12 ,

x1=0, x4=1

@ x3=1, x8=0, x12=1

@ x7=1, x9= 0, 1

x2=0, x11=1

Implication graph:
record history of unit implications




Conflict Driven Learning

X1 + x4
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X3=1AX7=1AX8=0 — conflict




Conflict Driven Learning

X1 + x4

X1 + X3 + X8
X1+ x8 + x12
x2 +x11

X7 + X3 +x9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

@ x1=0, x4=1
V4

@ x3=1, x8=0, x12=1
@ x2=0, x11=1
V4

@ x7=1, x9=1

X3=1AX7=1AX8=0 — conflict

Add conflict clause: x3'+x7'+x8




Conflict Driven Learning
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Conflict Driven Learning

1 + x4 @ x1=0, x4=1
/

X1 + x3 + x8’ ’
X1+ x8+ x12 »

x2 + x11 @

"+ -+ )

X7 + x8 + x9’

X7 + x8 + x10’ @
/

X7 +x10 + x12 ,

R ———

x3=1, x8=0, x12=1

x2=0, x11=1

[
[

X7=1, x9=1

Backtrack to the decision level of x3=1




What'’s the big deal?

Conflict clause: x1’+x3+x5’

Significantly prune the search space —
learned clause is useful forever!

Useful in generating future conflict
clauses.

Very effective deduction/caching for
search space pruning.
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Restarts

Abandon the

current search

tree and

reconstruct a

new one

The clauses

learned prior to
the restart are
still there after
the restart and
can help pruning
the search space

Adds to
robustness in the
solver

Effective

randomization [BSOO H07] Conflict clause: x1’+x3+x5’




SAT Solvers:
A Condensed History

e Deductive

e Davis-Putnam 1960 [DP]

e lterative existential quantification by resolution
e Backtracking Search

e Davis, Logemann and Loveland 1962 [DLL]

e Search with unit propagation

e Conflict Driven Clause Learning [CDCL]
e GRASP, RelSat: Integrate a constraint learning procedure, 1996

e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation
Boolean Constraint Propagation, Decision Heuristics, ...



Success with Chaff (2000)

e First major instance: Tough

e Industrial Processor Verification
Bounded Model Checking, 14 cycle behavior

e Statistics

1 million variables

10 million literals initially
200 million literals including added clauses
30 million literals finally

4 million clauses (initially)
200K clauses added

1.5 million decisions

3 hour run time
[IMMZ+01]




Constants Matter

Motivating Metrics: Decisions, Instructions, Cache

Performance and Run Time

1dix_c_mc_ex_bp f
Num Variables 776
Num Clauses 3725
Num Literals 10045
zChaff SATO GRASP
# Decisions 3166 3771 1795
# Instructions 86.6M 630.4M 1415.9M
#L1/L2 24M [ 1.7TM 188M / 79M 416M / 153M
accesses
% L1/L2 4.8% /[ 4.6% 36.8% /9.7% 32.9% /50.3%
misses
# Seconds 0.22 4.41 11.78




Unit Propagation Dominates

>80% of execution time!

while() { —

iIs_conflicting = propagate unit();

1IT(lis_conflicting) {
iIT (no_free vars) return SATISFIABLE;
make_decision(); // Decision Heuristic

}
1T(1is_conflicting) {
1T (no_unforced_decisions) return UNSAT;

new_constraint = analyze conflict(); // Learning

literal = last assigned(new_constraint);

backtrack to(asserting level(new constraint));

assign(invert(literal)); // Conflict Driven Assertion



Tracking fewer literals per clause?

e A clause with 2 non-false literals can neither
be unit nor conflicting
SATO’s Head/Tall lists are based on this idea [HS96]

Chaff’'s 2 literal watching develops it further
IMMZ+01]
Has significant implications on the algorithms
No updates needed on backtracking

Efficient Data Structures/Algorithms matter



Memory Accesses: Different BCP

Mechanisms

Billions of Access
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02 Lits Watch

Benchmarks




Level 1 Data Cache Miss Rates:

Different BCP Methods
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SAT Solvers:
A Condensed History

e Deductive

e Davis-Putnam 1960 [DP]

e lterative existential quantification by resolution
e Backtracking Search

e Davis, Logemann and Loveland 1962 [DLL]

e Search with unit propagation

e Conflict Driven Clause Learning [CDCL]
e GRASP,RelSat: Integrate a constraint learning procedure, 1996

e Locality Based Search

e Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards

e Added focus on efficient implementation

Boolean Constraint Propagation, Decision Heuristics, ...



Decision Heuristics

while(1) {
iIs_conflicting = propagate unit();

1IT(lis_conflicting) {
iIT (no_free vars) return SATISFIABLE;
make_decision(); // Decision Heuristic

+

1T(1is_conflicting) {
IT (no_unforced decisions) return UNSAT;
new_constraint = analyze conflict(); // Learning
decision = last unforced decision(nhew _constraint);

backtrack to(decision);
make_forced_decision(invert(decision));



Locality Based Search

©C

e By focusing on a sub-space, the covered spaces tend to
coalesce

e More opportunities for resolution since most of the variables are
common.



Locality Based Search:
Decision Heuristics

e Intuitions:
Take a more local view of the problem

Dynamically identify important constraints and variables
Explore space close to recent conflicts

e Not very compute-intensive

e Use relatively simple data structures

e Widely Used
VSIDS (Variable State Independent Decaying Sum) in Chaff
MiniSAT [ESO3]
Berkmin [GNO2]
VMTF in Seige [R0O4]




More Deduction

Focused Resolution
e Significant deduction to simplify the initial CNF instance

e Minisat (SatElite) has efficient implementation [EBO5]
Variable elimination by resolution
Krom subsumption checks
Backward subsumption checks
Efficient hash based subsumption algorithms

e Hyper-resolution [BO2Z]
e Interestingly, these techniques can also be used during the
solving process itself

VER — used in Resolve-Expand QBF solver
Krom Subsumption — conflict clause minimization in Minisat



Proof Certification and Unsat
Ccores

e An UNSAT Iinstance reduces to an empty
clause at the end of the deduction/search
process

e Can log the resolution trace and
iIndependently validate this proof of
unsatisfiability

e Additional value in diagnosing the cause of
unsatisfiability

Unsat Core [ZMO03]



The Core as a Checker By-
Product 2
O Empty

‘ Core Clauses

‘ O Original Clauses
O/ ‘ Learned Clauses

e Unsat Core may be a small fraction of the original clauses
e Multiple applications



Multi-threaded SAT

e Increasingly relevant with multi-core
processing

e Basic idea:

Divide search space among threads
Share learned clauses across threads

e Chip-multiprocessors make this real
PMINISAT, miraXT [LSBO7], manySAT [HJSO08]
Learned clauses retain relevance across threads
Scalability?



Multi-threaded SAT
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Quantified Boolean Formulas

Quantification
Level 1

Quantification
e Quantified Boolean Formula Level n
FIQX) -+ QX9

where Q, (i=1,---, n) is either 3 or V¥, ¢ is a propositional formula
e Example:

vude(ute’)(u'+e)
de,e;Vu,U,usde,e,e; f(e,,e,,65,6,4,65,Uq,U,,Us)
e QOBF Problem:
Is F satisfiable?

e P-Space Complete, theoretically harder than NP-Complete
problems such as SAT [GJ79]



QBF Solvers

e Like SAT

Search and Deduce

e Not like SAT
Problem re
Search
Deduce

oresentation




The QBF Search Tree

e Je,e-vVu,u,ude,e,e; f(e,,e,,65,6,4,6:5,Us,U,Us)

e Need multiple satisfying assignments

e Need to track conflicting as well as satisfying sub-
spaces

e4, e5

ul, u2, u3

el, e2, e3

1 1111 1 1 1



Search Based QBF Algorithms

e Work by gradually assigning variables
e A partial assignment =

[KGS98]




Search Based QBF Algorithms

e Work by gradually assigning variables

e A partial assignment =

e Undetermined
Continue search




Search Based QBF Algorithms

e Work by gradually assigning variables

e A partial assignment =
e Undetermined

e Conflict

Backtrack
Record the reason




Search Based QBF Algorithms

e Work by gradually assigning variables

e A partial assignment =
Undetermined
Conflict

Satisfied
Backtrack g\

Determine the covered satisfying space




Impact on Problem
Representation

Let¢p=C,C,...C,, = S; +S, +..+ S,

Then:

¢

=(C,;C,..C,+S,;+S,+..+S,))
Combined Conjunctive Disjunctive Normal Form (CCDNF)

=C,C,..C, (S +S, +..+S,)

=(C, C,...C,, + ZAnySubset{ S, S,,...,S.})
Augmented CNF (ACNF)

= (ITAnySubset{ C,,C,,...,.C D(S;+ S, +...+ S,)
Augmented DNF



Impact on Problem
Representation

e The disjunctive component can capture
satisfied parts of the solution subspace
(ACNF) [ZMO02]

Recorded as cubes during the solution process

f = (@’+b’+c’)(a’+b+c)(at+h’+c)(a+b+c’) + ab’c

Satisfaction cube
analogous to conflict clause

The solver terminates when an empty clause
(UNSAT) or a tautology cube (SAT) is obtained.



Impact on Problem
Representation

e Can avoid searching irrelevant parts of the
space (CCDNF) [Z06]

When a=1, values in this circuit are irrelevant
CNF would continue to search for consistent assignments



Impact on Problem
Representation

e OBF from Games [SAG+00]

Alternating universal and existential quantification

Formula structure
Try, — (I and Trg and Gg)
Try : Transition rules for U vars
I Initial Axioms
Gg: Goal axioms for E

Dual DNF CNF representation
DNF for Tr,, CNF for the Rest



Solving by Quantifier
Elimination

e Resolution based solvers [BKF95]:
Eliminate quantifiers from inside out
Existential: Resolution with CNF
Universal: Trivial with CNF
e Resolve and Expand [BO5a]
Include non-internal universal quantifier elimination using
expansion (duplication)
e Symbolic skolemization to eliminate existential
guantifiers
Skizzo [BO5Db]

e \ery sensitive to order of operations
e Greater success compared to search based solvers



QBF Competition: Success

Largest Solved Instances, QBF Eval 2008

cl BMC_
p2_ k1024 Fixed

cl BMC_
pl k1024 Fixed

vonNeum
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ripple-
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quantor3.0(2
4.72)
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7.51)
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2.96)
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4.54)
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QBF Competition: Challenges |::°

Smallest Unsolved Instances, QBF Eval 2008

Class

testd _quant_squari

ng2 Fixed
testd quant2 Fixed
test3_quant4 Fixed
test4_quant4 Fixed

C499.blif 0.10_0.20
0 1 out_exact Fixed

totalVars

326
326
344

446

838

existsVars

302
302
324

422

826

forallVars

24

24

20

24

12

totalClauses totallLits

868

868

923

1204

2393

2208

2208

2419

3120

5702

existsAltern forallAltern

2 1
2 1
2 1
2 1
2 1



This Talk

e Successful application of diverse CS techniques
Logic (Deduction and Solving)
Search
Caching
Randomization
Data structures
Cache efficient algorithms

e Open challenges...
Limited understanding of why the algorithms work

Dynamic application of strategies
QBF



Summary

e SAT: Significant shift from theoretical interest to practical
Impact.
e Quantum leaps between generations of SAT solvers

e Presence of drivers results in maximum progress.
Electronic design automation — primary driver and main beneficiary
Software verification- the next frontier?

e Opens attack on even harder problems
SMT, Max-SAT, QBF...
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