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Context: Continuous Constraints

Continuous constraints:

Same as discrete ones, except for the domains of their variables:

continuous
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Context: Continuous Constraints

Continuous constraints:

Same as discrete ones, except for the domains of their variables:

continuous

Example:
a chemistry problem:

14 ∗ z12 + 6 ∗ z1 ∗ z2 + 5 ∗ z1 − 72 ∗ z22
− 18 ∗ z2 = 850 ∗ z3 − 2.0e − 9,

0.5 ∗ z1 ∗ z22 + 0.01 ∗ z1 ∗ z2 + 0.13 ∗ z22 + 0.04 ∗ z2 = 4.0e4,

0.03 ∗ z1 ∗ z3 + 0.04 ∗ z3 = 850

zi ∈ [−1000;+1000]
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Solving Continuous Constraints

Enumeration is not an option
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Solving Continuous Constraints

Enumeration is not an option

We use intervals to guarantee a complete search:

The search goes from the complete search space down to solutions

What do we do with these intervals during the search to find

solutions?

Intervals are contracted (possibly discarded) along the search
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Symbolic-Numeric Algorithms

Numeric part of the algorithms = the interval computations to

contract the domains
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Symbolic-Numeric Algorithms

Numeric part of the algorithms = the interval computations to

contract the domains

Symbolic part of the algorithms = the design of these

contractors, and more
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Approaches to domain contraction (1)

Let us assume we want to find zeros.

Historically: the Newton method

Let’s assume c : f(x) = 0, where x ∈ D.
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Let us assume we want to find zeros.

Historically: the Newton method
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(

m(D) −
f(m(D))

f ′(D)

)

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 6/30



Approaches to domain contraction (1)

Let us assume we want to find zeros.

Historically: the Newton method

Let’s assume c : f(x) = 0, where x ∈ D.

N(D) = D ∩

(

m(D) −
f(m(D))

f ′(D)

)

Limitations:

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 6/30



Approaches to domain contraction (1)

Let us assume we want to find zeros.

Historically: the Newton method

Let’s assume c : f(x) = 0, where x ∈ D.

N(D) = D ∩

(

m(D) −
f(m(D))

f ′(D)

)

Limitations:

What if 0 ∈ f ′(D)?

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 6/30



Approaches to domain contraction (1)

Let us assume we want to find zeros.

Historically: the Newton method

Let’s assume c : f(x) = 0, where x ∈ D.

N(D) = D ∩

(

m(D) −
f(m(D))

f ′(D)

)

Limitations:

What if 0 ∈ f ′(D)?  no contraction

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 6/30



Approaches to domain contraction (1)

Let us assume we want to find zeros.

Historically: the Newton method

Let’s assume c : f(x) = 0, where x ∈ D.

N(D) = D ∩

(

m(D) −
f(m(D))

f ′(D)

)

Limitations:

What if 0 ∈ f ′(D)?  no contraction
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Approaches to domain contraction (1)

Let us assume we want to find zeros.

Historically: the Newton method

Let’s assume c : f(x) = 0, where x ∈ D.

N(D) = D ∩

(

m(D) −
f(m(D))

f ′(D)

)

Limitations:

What if 0 ∈ f ′(D)?  no contraction

Reasons for this:

D is so large that f is not monotonic on D

f ′(D) is overestimated, hence including a 0 while it is not

part of the range
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Approach to domain contraction (2)

Let us assume we have a linear constraint to solve.

Let our constraint be:

a1x1 + a2x2 + . . . + anxn = b

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 7/30



Approach to domain contraction (2)

Let us assume we have a linear constraint to solve.

Let our constraint be:

a1x1 + a2x2 + . . . + anxn = b

Natural approach: the Gauss-Seidel method:

xi =
a1x1 + a2x2 + . . . + ai−1xi−1 + ai+1xi+1 + . . . + anxn

ai
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Natural approach: the Gauss-Seidel method:

xi =
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Approach to domain contraction (2)

Let us assume we have a linear constraint to solve.

Let our constraint be:

a1x1 + a2x2 + . . . + anxn = b

Natural approach: the Gauss-Seidel method:

xi =
a1x1 + a2x2 + . . . + ai−1xi−1 + ai+1xi+1 + . . . + anxn

ai

= Symbolic inversion on xi for a numerical contraction

Limitation: What if the constraint is not linear?
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Approach to domain contraction (3)

Let us assume we have a nonlinear constraint to solve.

Let our constraint be:

cos(x) + 3ztan(y) = 2  x = cos−1(2 − 3ztan(y))

= symbolic inversion of (nonlinear) constraints
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Approach to domain contraction (3)

Let us assume we have a nonlinear constraint to solve.

Let our constraint be:

cos(x) + 3ztan(y) = 2  x = cos−1(2 − 3ztan(y))

= symbolic inversion of (nonlinear) constraints

Different approaches to such inversion:

Kearfott 1991: decomposition of the constraints into

primitive, easily invertible constraints

Ceberio & Granvilliers 2000: recursive inversion of terms

Hansen & Walster 2003: inversion of f as f = g − h where

g is easy to invert
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Inverted constraints
Provide with an approximation of the domain of each variable

= projection of the constraint (subset) onto each variable’s

dimension
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Inverted constraints
Provide with an approximation of the domain of each variable

= projection of the constraint (subset) onto each variable’s

dimension

Example: x2 + y2
− 1 = 0 with x, y ∈ [0, 2]

y = (1 − x2)1/2 = (1 − [0, 4])1/2 = [−1, 1]
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Inverted constraints
Provide with an approximation of the domain of each variable

= projection of the constraint (subset) onto each variable’s

dimension

Example: x2 + y2
− 1 = 0 with x, y ∈ [0, 2]

y = (1 − x2)1/2 = (1 − [0, 4])1/2 = [−1, 1]

 since we know that y ∈ [0, 2], now we know that the consistent part

of this domain is [0, 1]

We can do the same with x and narrow it scope to [0, 1]

“One" approximation per variable and per constraint

Each constraint contributes to reducing the domain of each variable

Problem with this approach:

Result = intersection of approximations

What we aim at = approximation of intersection
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Challenges

Weaknesses of interval computations:

Overestimation leads to slower solving processes

Weaknesses of the domain contractions (≡ constraint

consistency techniques):

The locality of reasonings leads to slower solving processes
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Approaches (1)

Efficiency of interval computations:

Overestimation: syntax-dependent evaluations
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Approaches (1)

Efficiency of interval computations:

Overestimation: syntax-dependent evaluations

Therefore: symbolic pre-processing techniques

Horner; Hong & Stahl; Ceberio & Granvilliers

0
1 1.1

p : x 7→ 2x5 + x3
− 3x2

hp : x 7→ x2(−3 + x(1 + 2x2))
evaluation of p

evaluation of hp

p, hp
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Approaches (1)

Efficiency of interval computations:

Overestimation: syntax-dependent evaluations

Therefore: symbolic pre-processing techniques

Horner; Hong & Stahl; Ceberio & Granvilliers

0
1 1.4

p : x 7→ x8
− 2x5

hp : x 7→ x5(x3
− 2)

Mcrp : x 7→ x2((x3
− 1)2 − 1)

evaluation of hp

evaluation of Mcrp

p
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Approaches (1)

Efficiency of interval computations:

Overestimation: syntax-dependent evaluations

Therefore: symbolic pre-processing techniques

Horner; Hong & Stahl; Ceberio & Granvilliers

But: still not exact (NP-hard to achieve)
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Overestimation: syntax-dependent evaluations

Therefore: symbolic pre-processing techniques

Horner; Hong & Stahl; Ceberio & Granvilliers

But: still not exact (NP-hard to achieve)

Otherwise: shaving technique

Decomposition of intervals into smaller ones that are evaluated

Relies on the inclusion property of interval arithmetic
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Approaches (1)

Efficiency of interval computations:

Overestimation: syntax-dependent evaluations

Therefore: symbolic pre-processing techniques

Horner; Hong & Stahl; Ceberio & Granvilliers

But: still not exact (NP-hard to achieve)

Otherwise: shaving technique

Decomposition of intervals into smaller ones that are evaluated

Relies on the inclusion property of interval arithmetic

Achieves better interval evaluations

But: expensive
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

C :

8

>

>

>

>

>

<

>

>

>

>

>

:

c1 : x + y + x2 + xy + y2 = 0

c2 : x + t + xy + t2 + x2 = 0

c3 : y + z + x2 + z2 = 0

c4 : x + z + x2 + y2 + z2 + xy = 0

defined over E = [−100, 100]4,
4 solutions reached in 140ms using realpaver [Granvilliers, 2002].
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x +y +u1 +u2 +u3 = 0

lc2 : x +t +u1 +u2 +u4 = 0

lc3 : y +z +u1 +u5 = 0

lc4 : x +z +u1 +u2 +u3 +u5 = 0

and the abstracted system:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

u1 = x2

u2 = xy

u3 = y2

u4 = t2

u5 = z2
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : u1 +y +x +u2 + u3 = 0

lc′
2

: y −t −u4 + u3 = 0

lc′
3

: −z −u5 +x +u2 + u3 = 0

lc′
4

: −t −u4 +x +u2 +2u3 = 0
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x2 +y +x +xy + y2 = 0

lc′
2

: y −t −t2 + y2 = 0

lc′
3

: −z −z2 +x +xy + y2 = 0

lc′
4

: −t −t2 +x +xy +2y2 = 0
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x2 +y +x +xy + y2 = 0

lc′
2

: y −t −t2 + y2 = 0

lc′
3

: −z −z2 +x +xy + y2 = 0

lc′
4

: −t −t2 +x +xy +2y2 = 0

The new system is solved in 240ms!!
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Let us consider again the same problem. We begin with the linearized system:
8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x +y +u1 +u2 +u3 = 0

lc2 : x +t +u1 +u2 +u4 = 0

lc3 : y +z +u1 +u5 = 0

lc4 : x +z +u1 +u2 +u3 +u5 = 0
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

First step of elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc3 : y +z +u1 +u5 = 0

lc1 : x +y +u1 +u2 +u3 = 0

lc2 : x +t +u1 +u2 +u4 = 0

lc′
4

: −x +y −u2 −u3 = 0

Control criterion: controls the densification of the “linear” system

User linear part: 0

Abstracted linear part: −2
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Second step of elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc3 : y +z +u1 +u5 = 0

lc
′

4
: −x +y −u2 −u3 = 0

lc′
1

: 2y +u1 = 0

lc2 : x +t +u1 +u2 +u4 = 0

Control criterion: controls the densification of the “linear” system

User linear part: 0

Abstracted linear part: −1
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Third step of elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc3 : y +z +u1 +u5 = 0

lc′
4

: −x +y −u2 −u3 = 0

lc
′

1
: 2y +u1 = 0

lc′
2

: −x +2y −t −u2 −u4 = 0

Control criterion: controls the densification of the “linear” system

User linear part: +1

Abstracted linear part: −1
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Triangularized system
8

>

>

>

>

>

<

>

>

>

>

>

:

lc′
2

: −t −x −u2 −u4 +2y = 0

lc′
4

: −x −u2 −u3 +y = 0

lc3 : +u5 +z +u1 + y = 0

lc′
1

: +u1 +2y = 0

Concretization: nonlinear terms are restored

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 13/30



Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Concretization phase
8

>

>

>

>

>

<

>

>

>

>

>

:

c′
1

: −t −x −xy −t2 +2y = 0

c′
2

: −x −xy −y2 +y = 0

c′
3

: z2 +z +x2 + y = 0

c′
4

: x2 +2y = 0

Post-processing: simplification of the system using specific constraints

xi = f(x1, . . . , xi−1, xi+1, . . . , xn)
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Post-processing: x2 = −2y

CT :

8

>

>

>

>

>

<

>

>

>

>

>

:

cT

1
: −t −x −xy −t2 +2y = 0

cT

2
: −x −xy −y2 +y = 0

cT
′

3
: z2 +z − y = 0

cT

4
: +x2 +2y = 0

Solving stage: 4 solutions reached in 10ms!
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Approaches (2)

Efficiency of domain contraction:

Redundant constraints: “the more the better”

Linearization: as the solving process goes, eliminate non-linear terms

Triangularization: Gaussian-like elimination

Common Sub-Expressions technique
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Outline of the presentation

Overview of Symbolic-Numeric Algorithms

Challenges

Applications

Future directions?
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Applications

Chemistry

Aeronautics

Software verification

Bio-medical engineering

Geosciences

Car industry

Security

Grid computing

...
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Software verification

What is the general problem?
Verifying programs: check that they are consistent with their
specifications
and/or generating test cases
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Software verification

What is the general problem?
Verifying programs: check that they are consistent with their
specifications
and/or generating test cases

How to model this problem as a constraint problem?
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Software verification

What is the general problem?
Verifying programs: check that they are consistent with their
specifications
and/or generating test cases

How to model this problem as a constraint problem?

1. Transform both the specification S and program P as constraint
problems

2. Solve S ∧ ¬ P

3. If there is no solution: the program is verified
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Software verification

What is the general problem?
Verifying programs: check that they are consistent with their
specifications
and/or generating test cases

How to model this problem as a constraint problem?

1. Transform both the specification S and program P as constraint
problems

2. Solve S ∧ ¬ P

3. If there is no solution: the program is verified

4. Otherwise we have test cases for counter-examples
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Bio-medical engineering: Gait Analysis

What is the general problem?
Diagnosing patients’ gait
Long-term objective: automating and guiding the therapy
= an intelligent system for gait therapy
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Bio-medical engineering: Gait Analysis

What is the general problem?
Diagnosing patients’ gait
Long-term objective: automating and guiding the therapy
= an intelligent system for gait therapy

What do we know about the gait?
Gait measurements: through markers placed on patients’ joints

How to model this problem as a constraint problem?

1. It can be a parameter estimation problem: but need a single
model

2. It can be translated into a pattern constraint problem: qualitative
approach
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Geosciences

What is the problem?
Finding the structure of the earth in a given region
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Measurements of a signal travel time
+ a model whose parameters describe the structure of the earth
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Geosciences

What is the problem?
Finding the structure of the earth in a given region

What data is at our disposal to determine it?
Measurements of a signal travel time
+ a model whose parameters describe the structure of the earth

How to model it as constraints?
Parameter estimation
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Security in Computer Networks

What is the problem?
Determining whether there is a risk of information leakage in a
MLS computer network

If necessary, make the network safe
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Security in Computer Networks

What is the problem?
Determining whether there is a risk of information leakage in a
MLS computer network

If necessary, make the network safe

How to model it as constraints?
Variables = network connections

Constraints = no invalid connection + no risk of leakage

Limitations...
The odds are that there will be no “satisfactory” solution

The constraints are too strong: modeling a “too secure” network
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Security in Computer Networks

What is the problem?
Determining whether there is a risk of information leakage in a
MLS computer network

If necessary, make the network safe

How to model it as constraints?
Variables = network connections

Constraints = no invalid connection + no risk of leakage

Soft constraints?
Keep the validity constraints: they model the MLS policy

Relax the risk constraints: aim at the minimum risk

Add the objective that the cuts have to be “minimum”: to avoid
ending up with a network without connections
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Outline of the presentation

Overview of Symbolic-Numeric Algorithms

Challenges

Applications

Future directions?
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Future directions of work? (1)

Existing challenges:

Extension of global constraints

Combining the current work on DAGs with triangularization

approaches

“New" kinds of interval arithmetic

e.g., circular arithmetic of Siegfried Rump
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Future directions of work? (2)

New challenges?

Robustness of solutions

Use of numeric tensors, n-d arrays to better represent the

dependence between variables’ “values"

(discussions from NSF-sponsored workshop, CoProD’08)

Similar to shaving to some extent (forward looking)

Can bring improvement thanks to the availability of information (n-d)
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Conclusion

Symbolic-Numeric algorithms for constraint solving:

Necessary due to the nature of the problem (use of intervals)

The combination occurs at different stages: e.g., pre-processing,

completely integrated

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 23/30



Conclusion

Symbolic-Numeric algorithms for constraint solving:

Necessary due to the nature of the problem (use of intervals)

The combination occurs at different stages: e.g., pre-processing,

completely integrated

Many challenges still to be addressed, including:

Pursuing existing research directions

Exploring new representations: such as tensors, circular arithmetic
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The end

Thank you for your attention
ANY QUESTIONS?

Martine Ceberio

mceberio@utep.edu

www.constraintsolving.com

www.martineceberio.fr

University of Texas at El Paso
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How to solve continuous constraints?

• Enumeration is not an option...
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How to solve continuous constraints?

• Enumeration is not an option...

• Algorithms based on intervals

Intervals are enumerated and the whole search space is covered

⋆ Branch and Bound (B&B):

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Movie/movie_undergraduate.mpg

⋆ More sophisticated consistency algorithms:

Box / Hull-consistencies and their combinations

Result in Branch and Prune algorithms (B&P)
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How is Branch and Prune different?

Discarding boxes in no longer based on the constraints’

evaluations only

Consistency techniques are used to filter out / prune elements

that do not satisfy the constraints
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B& B vs. B& P

Consider f(x, y) = x2 + y2
− 1 = 0 where x and y ∈ [0, 2].
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Consider f(x, y) = x2 + y2
− 1 = 0 where x and y ∈ [0, 2].

B& B: Evaluating f on [0, 2]2 gives [−1, 7] which contains 0

 we have to keep the whole domain and bisect it for further

information

B& P: Using a consistency technique can lead to:

y = (1 − x2)1/2 = (1 − [0, 4])1/2 = [−1, 1]
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B& B vs. B& P

Consider f(x, y) = x2 + y2
− 1 = 0 where x and y ∈ [0, 2].

B& B: Evaluating f on [0, 2]2 gives [−1, 7] which contains 0

 we have to keep the whole domain and bisect it for further

information

B& P: Using a consistency technique can lead to:

y = (1 − x2)1/2 = (1 − [0, 4])1/2 = [−1, 1]

 since we know that y ∈ [0, 2], now we know that the

consistent part of this domain is [0, 1]

We can do the same with x and narrow it scope to [0, 1]
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B& B vs. B& P

Consider f(x, y) = x2 + y2
− 1 = 0 where x and y ∈ [0, 2].

B& B: Evaluating f on [0, 2]2 gives [−1, 7] which contains 0

 we have to keep the whole domain and bisect it for further

information

B& P: Using a consistency technique can lead to:

y = (1 − x2)1/2 = (1 − [0, 4])1/2 = [−1, 1]

 since we know that y ∈ [0, 2], now we know that the

consistent part of this domain is [0, 1]

We can do the same with x and narrow it scope to [0, 1]

Then, we have to bisect if we want more information

but the domain to bisect is much smaller (25%) than with B& B

NSF Workshop on Symbolic Computation for Constraint Satisfaction Problems, 14 November 2008 – p. 27/30



What are the solutions like?

Example from chemistry:

14 ∗ z2

1
+ 6 ∗ z1 ∗ z2 + 5 ∗ z1 − 72 ∗ z2

2
− 18 ∗ z2 = 850 ∗ z3 − 2.0e − 9,

0.5 ∗ z1 ∗ z2

2
+ 0.01 ∗ z1 ∗ z2 + 0.13 ∗ z2

2
+ 0.04 ∗ z2 = 4.0e4,

0.03 ∗ z1 ∗ z3 + 0.04 ∗ z3 = 850

zi ∈ [−1000; +1000]
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What are the solutions like?

Example from chemistry:

14 ∗ z2

1
+ 6 ∗ z1 ∗ z2 + 5 ∗ z1 − 72 ∗ z2

2
− 18 ∗ z2 = 850 ∗ z3 − 2.0e − 9,

0.5 ∗ z1 ∗ z2

2
+ 0.01 ∗ z1 ∗ z2 + 0.13 ∗ z2

2
+ 0.04 ∗ z2 = 4.0e4,

0.03 ∗ z1 ∗ z3 + 0.04 ∗ z3 = 850

zi ∈ [−1000; +1000]

Solutions:
OUTER BOX 1 z1 ∈ [124.7643488370932, 124.7643488370934]

z2 ∈ [25.28546066708894, 25.28546066708898]

z3 ∈ [224.6935300130224, 224.6935300130227]

OUTER BOX 2 z1 ∈ [131.7475644308769, 131.7475644403561]

z2 ∈ [−24.62787829918984,−24.62787829860991]

z3 ∈ [212.9030823228049, 212.9030823233716]
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z2 ∈ [−24.62787829918984,−24.62787829860991]

z3 ∈ [212.9030823228049, 212.9030823233716]

Comments?
Not accurate...
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Comments?
Not accurate... Really?

Noise
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Solutions:
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z2 ∈ [−24.62787829918984,−24.62787829860991]

z3 ∈ [212.9030823228049, 212.9030823233716]

Comments?
Not accurate... Really?

Noise : part of it can be filtered as a post-processing step

Duplicates...
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What are the solutions like?

Solutions:
OUTER BOX 1 z1 ∈ [124.7643488370932, 124.7643488370934]

z2 ∈ [25.28546066708894, 25.28546066708898]

z3 ∈ [224.6935300130224, 224.6935300130227]

OUTER BOX 2 z1 ∈ [131.7475644308769, 131.7475644403561]

z2 ∈ [−24.62787829918984,−24.62787829860991]

z3 ∈ [212.9030823228049, 212.9030823233716]

Comments?
Not accurate... Really?

Noise : part of it can be filtered as a post-processing step

Duplicates... This is a real problem
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Constraint consistency techniques

Most of them are local...
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Constraint consistency techniques

Most of them are local... Locality of Reasonings

x
2 + x

4

1

1

4

1−1

4
x

y

y0 = 0.618
Reduction

of y

Reduction
of x

x0 = 0.786

c1 : y = x2

c2 : y = 1 − x4

⇓

c1 : y = x2

c′
2

: x2
= 1 − x4
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Some results

Problem v Initial Pb. Triangul. Pb.

Time Sol. Time Sol.

Bratu 7 1.10 3 0.60 4

8 0.70 2 0.10 2

10 2.30 2 0.10 2

13 20.50 6 0.10 2

14 46.40 11 0.20 2

15 94.40 12 0.20 2
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Some results

Problem v Initial Pb. Triangul. Pb.

Time Sol. Time Sol.

Bratu 7 1.10 3 0.60 4

8 0.70 2 0.10 2

10 2.30 2 0.10 2

13 20.50 6 0.10 2

14 46.40 11 0.20 2

15 94.40 12 0.20 2

+ Recent work of Gilles Trombettoni et al. on combining these ideas
within the consistency techniques.
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