
REAFFIRM: Model-Based Repair of Hybrid
Systems for Improving Resiliency

Luan Viet Nguyen∗, Gautam Mohan†, James Weimer†, Oleg Sokolsky†, Insup Lee†, and Rajeev Alur†
∗ Department of Computer Science, University of Dayton, OH, USA,

† Department of Computer and Information Science, University of Pennsylvania, PA, USA

Abstract— Model-based design offers a promising approach for
assisting developers to build reliable and secure cyber-physical
systems in a systematic manner. In this methodology, a designer
first constructs a model, with mathematically precise semantics,
of the system under design, and performs extensive analysis
with respect to correctness requirements before generating the
implementation from the model. However, as new vulnerabilities
are discovered, requirements evolve aimed at ensuring resiliency.
There is currently a shortage of an inexpensive, automated
software that can effectively repair the initial design, and a
model-based system developer regularly needs to redesign and
reimplement the system from scratch.

In this paper, we propose a new methodology along with a
MATLAB software called REAFFIRM to facilitate the model-
based repair for improving the resiliency of cyber-physical
systems. REAFFIRM takes as inputs 1) an original hybrid system
modeled as a Simulink/Stateflow diagram, 2) a given resiliency
pattern specified as a model transformation script, and 3) a safety
requirement expressed as a Signal Temporal Logic formula,
and outputs a repaired model which satisfies the requirement.
The tool consists of two main modules, model transformation
followed by model synthesis. While the latter component is built
on top of the falsification tool Breach, to implement the former,
we introduce a new model transformation language for hybrid
systems, which we call HATL, to allow a designer to specify
resiliency patterns. To evaluate the proposed approach, we use
REAFFIRM to automatically synthesize the repaired models of
four different case studies.

Keywords—Model-based repair, resiliency, transformation lan-
guage, hybrid systems.

I. INTRODUCTION

A cyber-physical system (CPS) consists of computing de-
vices communicating with one another and interacting with the
physical world via sensors and actuators. Increasingly, such
systems are everywhere, from smart buildings to autonomous
vehicles to mission-critical military systems. The rapidly ex-
panding field of CPSs precipitated a corresponding growth in
security concerns for these systems. The increasing amount
of software, communication channels, sensors and actuators
embedded in modern CPSs make them likely to be more
vulnerable to both cyber-based and physics-based attacks [1],
[2], [3], [4], [5]. As an example, sensor spoofing attacks
to CPSs become prominent, where a hacker can arbitrarily
manipulate the sensor measurements to compromise secure
information or to drive the system toward unsafe behaviors.
Such attacks have successfully disrupted the braking function
of the anti-lock braking systems [6], [4], and compromised

A. Overview

1. Reaffirm Overview

Suppose the designer has initially constructed a model of a cyber-physical system that satisfies correctness
requirements, but at a later stage, this correctness guarantee is invalidated, possibly due to the emergence of
new requirements, or adversarial attacks on sensors, or violation of environment assumptions. The goal of the
Reaffirm methodology is to assist the designer to repair the model to generate a resilient version.

Figure 1: Reaffirm overview

STL Requirement
Repaired SLSF

Model

Original SLSF
Model Model Transformation

Resiliency Pattern

Parametrized
SLSF Model

Model Synthesizer

Breach

Fig. 1. REAFFIRM overview.

the insulin delivery service of a diabetes therapy system [7].
Alternatively, attackers can gain access to communication
channels, and this can be used to manipulate the switching
behavior of a smart power grid [8] or disable the brake system
of a modern vehicle [9]. Generally, constructing a behavioral
model at design time that offers resiliency for all kinds of
attacks and failures is notoriously difficult.

Traditionally a model of a CPS consists of block diagrams
describing the system architecture and a combination of state
machines and differential equations describing the system
dynamics [10]. Suppose a designer has initially constructed
a model of a CPS that satisfies correctness requirements,
but at a later stage, this correctness guarantee is invalidated,
possibly due to adversarial attacks on sensors, or violation of
environment assumptions. Current techniques for secure-by-
design systems engineering do not provide a formal way for a
designer to specify a resiliency pattern to automatically repair
system models based on evolving resiliency requirements
under unanticipated attacks.

In this paper, we propose a new methodology and an
associated software, called REAFFIRM, to assist a designer
in repairing the original model so that it continues to satisfy
the correctness requirements under the modified assumptions.
The proposed technique relies on designing a collection of
potential edits (or resiliency patterns) to the original model
to generate the new model whose parameters values can
be determined by solving the parameter synthesis problem.
Figure 1 shows an overview of REAFFIRM, which contains
two main modules 1) a model transformation, and 2) a model
synthesizer built on top of the falsification tool Breach [11].978-1-7281-9148-5/20/$31.00 c© 2020 IEEE

REAFFIRM takes the following inputs 1) the original system
modeled as a Simulink/Stateflow (SLSF) diagram, 2) the
resiliency pattern specified by the designer and 3) the safety
requirement expressed as a Signal Temporal Logic (STL) [12]
formula, and outputs the repaired SLSF model that satisfies
the safety requirement such that no counterexample found by
the falsifier or the maximum number of iterations specified by
a user is reached.

To allow a designer to specify resiliency patterns we have
developed a new model transformation language for hybrid
systems, called HATL (Hybrid Automata Transformation Lan-
guage). A HATL script is a sequence of statements that
describe the modifications over the structure of hybrid systems
modeled as hybrid automata [10]. Examples of edits to a
model include creating new modes of operations, duplicating
modes, adding transitions, modifying switching conditions,
and substituting state variables in flow equations. The pro-
posed language allows the designer to write a resiliency
pattern in a generic manner, and programmatically modify
the initial design without knowing the internal structures of
a system. The HATL interpreter is implemented in Python
with an extensible backend to allow interoperability with
different hybrid systems modeling frameworks. The current
implementation of HATL supports MATLAB and performs
transformations on SLSF models.

For evaluation, we apply REAFFIRM to automatically
synthesize the repaired models for four case studies in the
domains of automotive control, smart power systems and
aerospace applications. The first case study is a simplified
model of an adaptive cruise control (ACC) system under a
GPS sensor spoofing attack, and the resiliency pattern to fix
the model is to ignore the GPS measurement and only use
the wheel encoders, which are additional (redundant) sensors
for estimating a vehicle’s velocity. REAFFIRM automatically
synthesizes the condition that triggers a switch to a copy of
the model that ignores the GPS measurement.

The second case study is a single-machine infinite-bus
(SMIB) model, which is an approximation of a smart power
grid, under a sliding-mode attack. In this case, the mitiga-
tion strategy is to increase the minimal dwell-time to avoid
rapid changes between different operation modes. Thus, the
resiliency pattern adds a dwell-time variable in each mode
of the model, and the minimal dwell-time can be determined
automatically by REAFFIRM.

The third case study is a waypoint tracking system (WT)
which is an example of Simplex Architecture [13] where the
complex controller fails to maintain a safe operation. Here,
the resiliency pattern is adding a decision module in which
a switching condition from a complex controller to a safety
controller can be synthesized using REAFFIRM.

The fourth case study is the missile guidance system (MG)
provided by Mathworks, which is a good representative of a
practical MG system as it has more than 300 SLSF blocks. For
the MG system, we investigate two different kinds of attacks:
1) a gyroscope sensor attack, and 2) an angular noise injection
attack. The principle of a spoofing attack on the gyroscopes

of the MG system is similar to the GPS spoofing attack of
the ACC system, and then we can apply the same resiliency
pattern used to fix the ACC model for repairing the MG model.
In the case of the angular noise injection attack, REAFFIRM
can perform a global sensitivity analysis over the parameters
and control gains of the MG system, and then automatically
synthesize their new values that makes the system continue to
satisfy the correctness requirement.

In sum, the main contributions of the paper are as follows.

1) The methodology to facilitate the model-based repair for
improving the resiliency of CPSs against unanticipated
attacks and failures,

2) the design and implementation of an extensible model
transformation language for specifying resiliency patterns
used to repair CPS models,

3) the end-to-end design and implementation of the software,
which integrates the model transformation and the model
synthesis tools to automatically repair CPS models,

4) the applicability of our software on four proof-of-concept
case studies where the CPS models can be repaired to
mitigate practical attacks.

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of our proposed methodology
through a simplified example of the ACC system, and intro-
duces the architecture of REAFFIRM. Section III describes
our model transformation language used to design a resiliency
pattern for hybrid systems. Section IV presents the model syn-
thesizer of REAFFIRM. Section V presents four case studies
that illustrate the capability of REAFFIRM in automatically
repairing the original models of 1) the ACC system under
a GPS sensor spoofing attack, 2) the SMIB system under a
sliding-mode attack, 3) the WT system in the case of safety
failure, and 4) the MG system under a gyroscope sensor attack
and an angular noise injection attack. Section VI reviews the
related works to REAFFIRM. Section VII concludes the paper
and presents our future works.

II. OVERVIEW OF THE METHODOLOGY

In this section, we will explain our methodology through
a simplified example of the adaptive cruise control (ACC)
system. Assume that a designer has previously modeled the
ACC system as a combination of the vehicle dynamics and an
ACC module, and GPS measurements were considered trusted
in the initial design. In the following, we will describe the
ACC system as originally designed, an attack scenario, and
an example of resiliency pattern to repair the ACC model.
Then, we present how REAFFIRM can automatically perform
a model transformation and synthesis to construct a new ACC
model with resiliency. We note that the ACC model presented
herein is not a representative of the complexity of a true ACC
system, but a simplified example in which the dynamics and
control equations are chosen for simplicity of presentation, and
sensor measurements are not considered complex mechanisms
such as sensor fusion and Kalman filtering.

1

Spacing Control
(����, ����)

Spacing Control
(����, ����)

Updated Spacing
Control
�′�(����)

Updated Spacing
Control
�′�(����)

�(����, ����)

Speed Control
��(����, ����, ����)

Speed Control
��(����, ����, ����)

Spacing Control
��(����, ����, ����)

Spacing Control
��(����, ����, ����)

���

���

Safe Speed
Control

��
�(����, ����)

Safe Speed
Control

��
�(����, ����)

Safe Spacing
Control

��
�(����, ����)

Safe Spacing
Control

��
�(����, ����)

���

���

�(����, ����)�(����, ����)

Speed Control
��(����, ����, ����)

Speed Control
��(����, ����, ����)

Spacing Control
��(����, ����, ����)

Spacing Control
��(����, ����, ����)

���

���

Fig. 2. An original ACC model.

A. A Simplified Example of ACC System

For simplicity, we assume that the designer initially models
the ACC system (including vehicle dynamics) as a hybrid
system shown in Figure 2. The original ACC system operates
in two modes: speed control and spacing control whose
dynamics are governed by the differential equations fs and fd,
respectively. In speed control, the host car travels at a driver-set
speed. In spacing control, the host car aims to maintain a safe
distance from the lead car. The vehicle has two state variables:
d is the distance to the lead car, and v is the speed of the host
vehicle. The ACC system has two sensors that measure its
velocity v via noisy wheel encoders, venc = v + nenc , and
a noisy GPS sensor, vgps = v + ngps , where nenc and ngps
denote the encoder and GPS noises, respectively. Additionally,
the ACC system has a radar sensor that measures the distance
to the lead vehicle, drad = d + nrad , where nrad captures a
corresponding noise. The ACC system decides which mode to
use based on the real-time sensor measurements. For example,
if the lead car is too close, the controller triggers the transition
gsd to switch from speed control to spacing control. Similarly,
if the lead car is further away, the ACC system switches from
spacing control to speed control by executing the transition
gds. The safety specification of the system is that d should
always be greater than dsafe , where dsafe = v + 5. We will
describe the ACC model in more details in Section V.

Safety violation under GPS sensor attack. In this example,
we assume that after designing and verifying the initial ACC
system, it is determined that the GPS sensor can be spoofed
[14], [15]. GPS spoofing occurs when incorrect GPS packets
(possibly sent by a malicious attacker) are received by the
GPS receiver. In the ACC system, this allows an attacker to
arbitrarily change the GPS velocity measurement. Thus, a new
scenario occurs when the original assumption of GPS noise,
e.g., |ngps | ≤ 0.05 is omitted, and the new assumption is
|ngps | ≤ 50. As a result, the safety specification could be
violated under the GPS sensor attacks, and a designer needs
to repair the original model using a known mitigation strategy.

Example of resiliency pattern: ignoring GPS measurement.
The ACC system has redundancy in the sensory information of
its estimated velocity, one derived from the GPS and the other
from the wheel encoders. Thus, to provide resilience against
the GPS attacks, a mitigation strategy is to ignore the GPS
value, and use only the wheel encoders to estimate velocity.
Thus, a potential fix is first to create a copy of the original
model where the controller simply ignores the GPS reading
as it can no longer be trusted. Then, adding new transitions
from the modes of the original model to the corresponding

1

Spacing Control
(����, ����)

Spacing Control
(����, ����)

Updated Spacing
Control
�′�(����)

Updated Spacing
Control
�′�(����)

�(����, ����)

Speed Control
��(����, ����, ����)

Speed Control
��(����, ����, ����)

Spacing Control
��(����, ����, ����)

Spacing Control
��(����, ����, ����)

���

���

Safe Speed
Control

��
�(����, ����)

Safe Speed
Control

��
�(����, ����)

Safe Spacing
Control

��
�(����, ����)

Safe Spacing
Control

��
�(����, ����)

���

���

�(����, ����)�(����, ����)

Fig. 3. A repaired ACC model without a reference to GPS sensor under
spoofing attacks.

instances of the copy that uses only the wheel encoder to
measure velocity. We note that this transformation is generic,
that is, it can be applied in a uniform manner to any given
model simply by creating a duplicate version of each original
mode and transition, copying the dynamics in each mode, but
without a reference to the variable vgps .

Figure 3 illustrates the repaired model in which the transi-
tion from the original speeding and spacing control modes to
their copies is an expression over vgps and venc . Observe that
while it would be possible to use only the wheel encoders all
the time, a better velocity estimate can be obtained by using
an average velocity measurement (from both the GPS and
wheel encoders) when the GPS sensor is performing within
nominal specifications. The main analysis question is when
should the model switch from the original modes to the copied
modes during the spoofing attack. From a practical standpoint,
such a transition should occur when the GPS measurement
significantly deviates from the wheel encoder measurement,
and a transition condition can be specified as g(vgps , venc) =
|vgps − venc | ≥ θ, where θ is an unknown parameter. Since
venc = v + nenc and vgps = v + ngps , we can rewrite the
transition condition as g(vgps , venc) = |ngps − nenc | ≥ θ.
Then, one needs to synthesize the suitable value of the
parameter θ that specifies the threshold for switching from the
original copy to the new copy so that the safety requirement
is satisfied.

B. REAFFIRM Software

Our REAFFIRM prototype for the model-based repair is
built in MATLAB and consists of two main modules, corre-
sponding to model transformation and parameter synthesis. To
synthesize the model with resiliency to unanticipated attacks,
users need to provide the following inputs to REAFFIRM:
• the initial design of a hybrid system modeled in MathWorks

SLSF format,
• the resiliency pattern specified as a model transformation

script that transforms the initial model to the new model
with resiliency to unanticipated attacks, and

• the correctness (safety) requirement of the system specified
as an STL formula.
In the case of the ACC example, the inputs of REAFFIRM

are the initial SLSF model shown in Figure 2, the resiliency

pattern that creates the copied version of the original model
without a reference to the variable vgps , and the safety
requirement encoded as an STL formula,

ϕACC = �[0,∞)d[t] > 5 + v[t]. (1)

The model transformation tool of REAFFIRM takes the initial
SLSF model and the resiliency pattern (e.g., the transforma-
tion script shown in Figure 4), and then generates the new
SLSF model that contains a parameter θ that appears in the
switching condition based on the difference between the GPS
measurement and the wheel encoder measurement. Then, the
model synthesizer tool of REAFFIRM takes the parametrized
ACC model in SLSF and the STL formula ϕACC as inputs,
and then applies synthesis to find the desired value of θ over
a certain range, to ensure that ϕACC is satisfied. Internally,
the model synthesizer of REAFFIRM utilizes an open-source
model falsification tool—Breach [11] to synthesize the desired
parameters values. If the synthesizer can find the best value of
θ over the given range, then REAFFIRM outputs a competed
SLSF model which satisfies ϕACC under the GPS attacks.
Otherwise, the tool will suggest the designer to either search
over different parameter ranges or try different resiliency
patterns to repair the ACC model.

III. MODEL TRANSFORMATION

A. Representation of Hybrid System

Hybrid automata [10] are a modeling formalism popularly
used to model hybrid systems which include both continuous
dynamics and discrete state transitions. A hybrid automaton is
essentially a finite state machine extended with a set of real-
valued variables evolving continuously over time [10]. The
main structure of a hybrid automaton H includes the following
components.
• X : the finite set of n continuous, real-valued variables.
• P: the finite set of p real-valued parameters.
• Mode: the finite set of discrete modes. For each mode
m ∈ Mode, m.inv is an expression over X ∪ P that
denotes the invariant of mode m, and m.flow describes
the continuous dynamics governed by a set of ordinary
differential equations.

• Trans: the finite set of transitions between
modes. Each transition is a tuple τ

∆
=

〈source, destination, guard , reset〉, where source is
a source mode and destination is a target mode that
may be taken when a guard condition guard , which is
an expression over X ∪ P , is satisfied, and reset is an
assignment of variables in X after the transition.

We use the dot (.) notation to refer to different components of
tuples, e.g., H.Trans refers to the transitions of automaton H
and τ.guard refers to the guard of a transition τ . Since our
goal is to repair a hybrid automaton syntactically, we will not
discuss its semantics in this paper, but refer a reader to [10]
for details. We note that the model transformation language
proposed in this paper transforms a hybrid automaton based on
modifying the syntactic components of the hybrid automaton

original model is retrieved from command line arguments
model_copy = model.copyModel() # make a model copy
start a transformation
model.addParam("theta") # add new parameter theta
formode m = model.Mode {

m_copy = model.addMode(m)
m.replace(m_copy.flow,"ngps","nenc")
model.addTransition(m,m_copy,"abs(ngps-nenc)>theta")

}
fortran t = model_copy.Trans {

get source and destination modes of transition t
src = t.source
dst = t.destination
retrieve copies of source and destination modes
src_copy = model.getCopyMode(src)
dst_copy = model.getCopyMode(dst)
model.addTransition(src_copy,dst_copy,t.guard)

}
end of the transformation

Fig. 4. An example of a resiliency pattern written as a HATL script for the
ACC system.

in a generic manner. The transformation tool of REAFFIRM
can take a HATL transformation script and translate it into
an equivalent script that performs a model transformation for
different modeling framework of hybrid automata including a
continuous-time Stateflow chart.

Continuous-time Stateflow chart. In this paper, we represent
hybrid automata using continuous-time Stateflow chart, which
is a standard commercial modeling language for hybrid sys-
tems integrated within Simulink. A continuous-time Stateflow
chart supplies methods for engineers to quickly model as
well as efficiently refine, test, and generate code for hybrid
automata. The syntactic description of a continuous-time State-
flow chart is basically a hybrid automaton, with a small few
differences. In particular, a mode is a state associated with
different types of actions including a) entry action executed
when entering the state, b) exit executed when exiting the state,
and c) during (or du) action demonstrates the continuous-
time evolution of the variables (i.e., flow dynamics) when no
transition is enabled. A variable can be specified as parameter,
input, output, and local variable. Also, an SLSF model which
includes a continuous-time Stateflow chart is deterministic
since its transition is urgent and executed with priorities.
Intuitively, a transition in a Stateflow chart is triggered as
soon as the transition guard condition is satisfied, while a
hybrid automaton can stay at the current mode as long as
its invariant still holds. To overcome this gap, a recent work
proposed in [16] provides an equivalent translation for both
classes of deterministic and non-deterministic hybrid automata
to Stateflow diagrams. Other significant research have been
done to translate back and forth between hybrid automata and
SLSF models [17], [18], [19].

B. Hybrid Automata Transformation Language

In our approach, the partial model of the system, which
satisfies functional but not necessarily resiliency requirements
is originally modeled in the form of hybrid automata. The
model transformation that is at the core of the REAFFIRM tool

will then attempt to modify the components of the automata
such as modes, flows, or switching logic, by applying user-
defined resiliency patterns.

In order to specify resiliency patterns for hybrid automata,
we introduce a new language for model transformation called
HATL (Hybrid Automata Transformation Language). The goal
of HATL is to allow a designer to repair an original model
in a programmatic fashion. HATL scripts abstract model
implementation details so engineers do not need to learn
the intricacies of an individual framework. A key use of
HATL is to write generic scripts that are applicable to many
models, promoting resiliency scripts which are reusable. A
script written in HATL is a sequence of statements that specify
the changes over the structure of given hybrid automata.
HATL’s syntax and semantics are designed to make it intuitive
to anyone who is familiar with imperative languages. HATL
includes loop statements that iterate over sets of objects, such
as modes or transitions of a model. It uses dot references to
index into structures to obtain data fields or to call object-
specific methods. Assignments are mutable, and scoped within
statement blocks. Functions and methods can have variable
numbers of arguments which are eagerly evaluated.

The model transformation tool built in REAFFIRM takes
a resiliency pattern in the form of a HATL script, and then
translates each of the statements of the script into equiva-
lent transformation operations on continuous-time Stateflow
models. Figure 4 shows an example of a HATL script that
specifies a transformation from the original ACC model shown
in Figure 2 to the parametrized model shown in Figure 3.
In this script, we first create a copy of the original model.
Next, we iterate over each mode of the model by calling
the formode loop, make a copy with replacing the variable
ngps by nenc , and then add a new transition from the original
mode to the copied mode with a new guard condition. This
guard condition is a constraint specified over the difference
between ngps by nenc (i.e., the difference between vgps and
venc) and a new parameter θ, which is added into the model
using a function call addParam. Finally, we need to copy all
transitions between original modes (stored in a copied version
of the original model) and assign them to the corresponding
duplicated modes.

C. Implementation

Our current implementation dynamically interprets HATL
scripts in Python and translates them into SLSF model trans-
formations via the MATLAB Engine. Our interpreter checks
argument values at runtime to ensure only valid transformed
models are produced. If a malformed program statement is
detected, HATL will throw a verbose error message and roll
back any changes it has applied already before exiting. Addi-
tionally, these error messages are reported in terms of generic
HATL models, so an engineer writing a resiliency pattern does
not need to worry about the underlying implementation.

Currently, HATL provides enough programming abstraction
to express concise model transformations that function as
valid resiliency patterns, and more examples of these scripts

will be introduced in Section V. There is room for future
improvement, such as adding language constructs like type
checking to verify the type correctness of the model before
and after repair.

IV. MODEL SYNTHESIS

In this section, we present the model synthesizer incor-
porated in REAFFIRM which takes a parameterized model
produced by the model transformation, and a correctness
requirement as inputs, and then generates a completed model
with parameter values instantiated to satisfy the correctness
requirements. Since the structure of the completed model is
already determined after the model transformation, the model
synthesis problem then reduces to the parameter synthesis
problem. Let Ps be the set of parameters of the transformed
model H̃, given a safety specification ϕ and sets of parameter
values P̄s , find the best instance values of Ps over P̄s so that
H̃ |= ϕ. For example, the transformation of the ACC model
shown in Figure 3 introduces a new parameter θ whose value
needed to be determined so that the completed model will
satisfy the safety requirement with respect to the same initial
condition of the state variables and parameters domains of the
original model.

A. Overview of Breach

We incorporated Breach into the model synthesizer of
REAFFIRM as an analysis mechanism to perform the falsi-
fication and parameter synthesis for hybrid systems. Given a
hybrid system modeled as an SLSF diagram, an STL speci-
fication described the safety property, and specific parameter
domains, Breach [11] can perform an optimized search over
the parameter ranges to find parameter values that cause
the system violating the given STL specification. The pa-
rameter mining procedure is guided by the counterexample
obtained from the falsification, and it terminates if there is
no counterexample found by the falsifier or the maximum
number of iterations specified by a user is reached. On the
other hand, Breach can compute the sensitivity of execution
traces to the initial conditions, which can be used to obtain
completeness results by performing systematic simulations.
Moreover, Breach provides an input generator for engineers
to specify different testing input patterns such as step, pulse
width, sinusoid, and ramp signals. This input generator is
designed to be extensible, so users can write a specific input
pattern to test their model against particular attack scenarios.

We note that although Breach cannot completely prove the
system correctness, it can efficiently find bugs existing in the
initial design of CPS that are too complex to be formally
verified [20]. These bugs are essential for an engineer to
specify resiliency patterns to repair the model. Moreover, the
general problem of verifying a CPS modeled as a hybrid
system is known to be undecidable [21]. Instead, the falsifi-
cation algorithms embedded within Breach are scalable and
work properly for black-box hybrid systems with different
classes of dynamics. Thus, in practice, engineers prefer to use
counterexamples obtained by a falsification tool to refine their

design. Our prototype REAFFIRM utilizes the advantages of
SLSF modeling framework and the falsification tool Breach
to design a resiliency pattern and perform the model synthesis
for a repaired CPS model with resiliency.

B. Model Synthesis using Breach

Next, we describe how REAFFIRM uses Breach to synthe-
size parameters values for the parametrized model returned
from the model transformation tool. The parameter synthesis
procedure consists of following steps.

1) We first specify the initial conditions of state variables and
parameters, the set of parameters Ps that need to be mined,
the sets of parameter values P̄s, and the maximum time (or
number of iterations) for the optimization solver of Breach.

2) Next, we call the falsification loop within Breach to search
for a counterexample. For each iteration, if the counterex-
ample is exposed, the unsafe values of Ps will be returned.
Based on these values, the tool will automatically update the
sets of parameter values P̄s to the new sets of parameter
values P̄ ′

s ⊂ P̄s, and then continue the falsification loop.
3) The process repeats until the property is satisfied that means

the falsifier cannot find a counterexample and the user-
specified limit on the number of optimized iterations (or
time) for the solver expires.

4) Finally, the tool returns the best (and safe) values of Ps,
updates the parametrized model with these values, and then
exports the completed model. If the synthesizer fails to find
the values of Ps over the given sets of parameter values P̄s
so that the safety requirement is satisfied, it will recommend
a designer to either search over different parameter ranges
or try another resiliency pattern.

Monotonic Parameters. The search over the parameter space
of the synthesis procedure can be significantly reduced if the
satisfaction value of a given property is monotonic w.r.t to
a parameter value. Intuitively, the satisfaction of the formula
monotonically increases (respectively decreases) w.r.t to a
parameter p that means the system is more likely to satisfy the
formula if the value of p is increased (respectively decreased).
In the case of monotonicity, the parameter space can be
efficiently truncated to find the tightest parameter values such
that a given formula is satisfied. In Breach, the check of
monotonicity of a given formula w.r.t specific parameter is
encoded as an SMT (Satisfiability Modulo Theories) query and
then is determined using an SMT solver. However, the result
may be undecidable due to the undecidability of STL [22]. In
this paper, the synthesis procedure is based on the assumption
of satisfaction monotonicity. If the check of monotonicity is
undecidable over a certain parameter range, a user can manu-
ally enforce the solver with decided monotonicity (increasing
or decreasing) or perform a search over a different parameter
range.

V. MODEL REPAIR FOR RESILIENCY

In this section, we demonstrate the capability of REAF-
FIRM to repair CPSs models under unanticipated attacks. We

first revisit the ACC example and evaluate three resiliency
patterns that can be applied to repair the ACC model under
the GPS sensor spoofing attack. Second, we investigate a
sliding-mode switching attack that causes instability for a
smart grid system and how REAFFIRM can use a dwell-time
pattern to repair the model under this attack automatically.
Third, we use REAFFIRM to synthesize a switching condition
from the complex controller to the safety controller of the
WT system to avoid a safety failure. Finally, we apply the
three resiliency patterns used to fix the ACC model to repair
the MG system under a gyroscope sensor attack, and also
demonstrate how REAFFIRM can efficiently tune the control
gains and parameters of the system to mitigate an angular
noise attack. REAFFIRM was tested using MATLAB 2018a
and MATLAB 2018b executed on an x86-64 laptop with 2.8
GHz Intel(R) Core(TM) i7-7700HQ processor and 32 GB
RAM. All performance metrics reported were recorded on
this system using MATLAB 2018a. In Breach, we choose the
CMAES solver, and the maximum optimization time is 30
seconds for each iteration of the falsification loop. REAFFIRM
and all case studies investigated in this paper are available to
download at https://github.com/LuanVietNguyen/reaffirm. The
overall performance of REAFFIRM in repairing the initial
models of four case studies to mitigate their corresponding
attacks is summarized in Table I. The transformation time
reported in the table is the actual time required for the model
transformation by neglecting the overhead of loading the
MATLAB Engine in Python. Next, we will describe four case
studies in more details.

A. Adaptive Cruise Control System

Original SLSF model. We previously introduced the simpli-
fied example of the ACC system in Section II to illustrate
our approach. In this section, we present the ACC system in
more details. The ACC system can be modeled as the SLSF
model shown in Figure 5. The model has four state variables
where d and ed are the actual distance and estimated distance
between the host car and the lead vehicle, v and ev represent
the actual velocity and estimated velocity of the host car,
respectively. In this model, we assume that the lead vehicle
travels with a constant speed vl. The transition from speed
control to spacing control occurs when the estimate of the
distance is less than twice the estimated safe distance, i.e.,
ed < 10 + 2ev . A similar condition is provided for switching
from spacing control to speed control, i.e., ed ≥ 10 + 2ev .
In this case study, we assume that the designer has verified
the initial SLSF model of the ACC system against the safety
requirement ϕACC under the scenario when d(0) ∈ [90, 100],
v(0) ∈ [25, 30], |d(0) − ed(0)| ≤ 10, |v(0) − ev(0)| ≤ 5 ,
vl = 20, |nrad | ≤ 0.05, |nenc | ≤ 0.05 and |ngps | ≤ 0.05.

GPS sensor attack. To perform a spoofing attack on the
GPS sensor of the ACC model, we continuously inject false
data to manipulate its measurement value. In this case, we
omit the original assumption |ngps | ≤ 0.05, and employ the
new assumption as |ngps | ≤ 50. Using the input generator in

https://github.com/LuanVietNguyen/reaffirm

Model BD Attack/Failure Resiliency Pattern Unknown Condition PR SV TT ST

ACC 11 GPS spoofing

Ignore GPS,

measurement, use

wheel encoders value

Pattern 1 When to switch to

a safe copy
θ ∈ [0, 50]

7.08515 2 88

Pattern 2 7.08515 2 88

Pattern 3
Ratio of GPS/encoders

measurements
θ ∈ [0.1, 0.9] 0.1543 1.75 56

SMIB 15
Sliding-mode

switching

Add a dwell-time to

avoid rapid switching

Pattern

dwell-time
Minimal dwell-time θ ∈ [0, 0.3] 0.12 2 45

WT 25
Out of safe

boundary

Add a transition from

a complex controller

to a safety controller

Pattern simplex

architecture
Switching boundary θ ∈ [0, 1] 0.625 2 15

MG 310
Gyroscopes

spoofing

Ignore untrusted,

measurements, use

the trusted ones

Pattern 1 When to switch to

a safe copy
θ ∈ [0, 0.5]

0.06714 2 78

Pattern 2 0.06714 2 92

Pattern 3
Ratio of gyroscopes

measurements
θ ∈ [0.01, 0.1] 0.01127 1.75 55

Angular noise

injection

Change control

feedback (no model

transformation)

Sensitivity

analysis +

max-satisfaction

What control gains

or parameters

should be tuned

tors ∈ [0, 0.25] 0.23421 0 31

TABLE I
REAFFIRM PERFORMANCE RESULTS FOR THE ACC, SMIB, WT AND MG CASE STUDIES. BD IS THE NUMBER OF BLOCKS IN SLSF MODELS. PR IS

THE PARAMETER RANGE. SV IS THE SYNTHESIZED VALUE. TT AND ST ARE THE TRANSFORMATION AND SYNTHESIS TIME IN SECONDS, RESPECTIVELY.

Spacing_Control
du:
d_dot	=	-v+vl;
v_dot	=	2*vl	-	v	-	ev	-	0.25*(10	+	2*ev	-	ed);
ed_dot	=		vl	-	ev	+	10*(d	+	nrad	-	ed);
ev_dot	=	2*vl	+	v	-	3*ev	+	0.5*(ngps	+	nenc)
-	0.25*(10	+	2*ev	-	ed);
d_out	=	d;
v_out	=	v;
ed_out	=	ed;
ev_out	=	ev;

Speed_Control
du:
d_dot	=	-v+vl;
v_dot	=		2*vl	-	v	-	ev;
ed_dot	=		vl	-	ev	+	10*(d	+	nrad	-	ed);
ev_dot	=	2*vl	+	v	-	3*ev	+	0.5*(ngps	+	nenc);
d_out	=	d;
v_out	=	v;
ed_out	=	ed;
ev_out	=	ev;

[ed	>=	10	+	2*ev]

[ed	<	10	+	2*ev]
{d	=	d0;	v	=	v0;	ed	=	ed0;	ev	=	ev0;}

Fig. 5. The original SLSF model of the ACC system.

Breach, we can specify the GPS spoofing attack as a standard
input test signal such as a constant, ramp, step, sinusoid or
random signal. The following evaluations of three different
resiliency patterns used to repair the ACC model are based on
the same assumption that the GPS spoofing occurs at every
time point, specified as a random constant signal over the range
of [-50, 50] during 50 seconds.

Model repair for the ACC system. Under the GPS sensor
spoofing attack, the original SLSF model does not satisfy its
safety requirement and a designer needs to apply a certain
resiliency pattern to repair the model. The first resiliency
pattern for repairing the ACC system has been introduced
in Section II, which makes the copy of the original model
where the controller ignores the GPS reading as it can no
longer be trusted. However, we need to determine the best
switching condition from the original model to the copy. For
the first pattern, REAFFIRM output the repaired model with
a synthesized value of θ = 7.08515.

start a transformation
model.addParam("theta")
formode m = model.Mode {

m.replace(m.flow,"ngps", "2*theta*ngps")
m.replace(m.flow,"nenc", "2*(1-theta)*nenc")

}
end of the transformation

Fig. 6. The third resiliency pattern for the ACC system based on the linear
combination of nenc and ngps .

The second resiliency pattern for the ACC model is the
extended version of the first one where it includes a switching-
back condition from the copy to the original model when
the GPS sensor attack is detected and mitigated. An exam-
ple of such a switching-back condition is when the differ-
ence between the nenc and ngps are getting smaller, i.e.,
|ngps − nenc | < θ − ε, where ε is a positive user-defined
tolerance. For this pattern, the model transformation script can
be written similar to the one shown in Figure 4 with adding
the addTransition function from the copy mode to the original
mode with the guard condition labeled as |ngps−nenc | < θ−ε
in the formode loop. The performance of REAFFIRM for the
second pattern is similar to the first pattern with the same
synthesized value of θ = 7.08515 and ε = 0.

Alternatively, the third resiliency pattern, where we do not
need to modify the structure of the original model, is to
model the redundancy in the sensory information as a linear
combination of different sensor measurements. For example,
instead of taking the average of ngps and nenc , we can
model their relationship as θngps + (1 − θ)nenc , and then

Plant_2
du:
delta_dot	=	omega;
omega_dot	=	-10*sin(delta)	-	omega;
delta_out	=	delta;
omega_out	=	omega;

Plant_1
du:
delta_dot	=	omega;
omega_dot	=	9	-10*sin(delta)	-	omega;
delta_out	=	delta;
omega_out	=	omega;

{	omega	=	omega0;	delta	=	delta0;	}

[load	==	0]

[load	==	1]

Fig. 7. The original SLSF model of the SMIB system.

synthesize the value of θ so that the safety property is satisfied.
The transformation script of this resiliency pattern is given
in Figure 6. For this pattern, we assume that a designer still
wants to use all sensor measurements even some of them are
under spoofing attacks and would like to search for the value
of θ over the range of [0.2, 0.8] (instead of [0, 1]). Given the
same attack model for the other patterns, the synthesizer in
REAFFIRM fails to find the value of θ within the given range
to ensure that the safety property is satisfied. However, if we
enlarge the range of θ to [0.1, 0.9], the synthesizer successfully
finds the safe value θ = 0.1543.

B. Single-Machine Infinite-Bus System

Next, we study a class of cyber-physical switching attacks
that can destabilize a smart grid system model, and then
apply REAFFIRM to repair the model to provide resilience.
A smart power grid system such as the Western Electricity
Coordinating Council (WECC) 3-machine, 9-bus system [23],
can be represented as a single-machine infinite-bus (SMIB)
system described in [24]. The SMIB system is considered as a
switched system in which the physical dynamics are changed
between two operation modes based on the position of the
circuit breaker. The system has two states, δ1 and ω1, which
are the deviation of the rotor angle and speed of the local
generator G1 respectively. The stability (safety) property of
the system can be specified as the following STL formula,

ϕSMIB = �[0,T](0 ≤ δ1[t] ≤ 3.5) ∧ (−2 ≤ ω1[t] ≤ 3), (2)

where T is a simulation duration.

Original SLSF model. In this paper, we model the SMIB
system as the SLSF model displayed in Figure 7. The model
contains two operation modes whose nonlinear dynamics char-
acterize the transient stability of the local generator G1 pre-
sented in [24]. The transitions between two operation modes
depend on the status of the circuit breaker which is connected
or disconnected to the load. In the model, δ1 and ω1 are
represented by delta and omega, respectively; and the initial
conditions are delta0 ∈ [0, 1.1198] and omega0 ∈ [0, 1]. The
discrete variable load captures the open and closed status of
the circuit breaker.

Sliding-mode attack. The SMIB system has an interesting
property known as a sliding mode behavior. This behavior oc-
curs when the state of the system is attracted and subsequently
stays within the sliding surface defined by a state-dependent
switching signal s(x) ∈ R [25], [26]. When the system

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1
 (rad)

-3

-2

-1

0

1

2

3

4

1
(r

ad
/s

)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1
 (rad)

-3

-2

-1

0

1

2

3

4

1
(r

ad
/s

)

Fig. 8. Left: an unstable trajectory of the original SMIB model under the
sliding-mode attack. Right: a stable trajectory of the repaired SMIB model
under the sliding-mode attack.

start a transformation
model.addParam("theta")
model.addLocalVar("clock") # add a clock variable
formode m = model.Mode {

m.addFlow("clock_dot = 1")
}
fortran t = model.Trans {

a transition only triggers after theta seconds
t.addGuardLabel("&&","clock > theta")
reset a clock after each transition
t.addResetLabel("clock = 0")

} # end of the transformation

Fig. 9. The dwell-time resiliency pattern for the SMIB system.

is confined on a sliding mode surface, its dynamics exhibit
high-frequency oscillations behaviors, a so-called chattering
phenomenon, which is well-known in the power system de-
sign [27]. At this moment, if an attacker forces rapid switching
between two operation modes, the system will be steered out
of its desirable equilibrium position. As a result, the power
system becomes unstable even each individual subsystem is
stand-alone stable [26]. More details of the stages to construct
the sliding-mode attack can be found in [24].

Model repair for the SMIB system. A potential strategy
to mitigate a sliding-mode attack is to increase the minimum
switching time of the circuit breakers. Indeed, the designer can
repair the original model by including a minimum dwell time
in each mode of the system to prevent rapid switching. Fig-
ure 9 shows a resiliency pattern written as a HATL script that
introduces the clock variable as a timer, and the switching time
relies on the value of θ.

The model transformation of REAFFIRM takes the dwell-
time pattern shown in Figure 9, and then convert the model
to a new version that integrates the pattern with the unknown
parameter θ. Then, the model synthesis of REAFFIRM calls
Breach to search for the best (i.e., minimum) value of θ
over and the range of [0, 0.3] that ensures the final model
satisfies ϕSMIB (with T = 10 seconds) under the sliding-
mode attack. The tool returns the best value of θ as 0.12.
Figure 8 shows the unstable behavior of the original model and
the stable behavior of the repaired model under the sliding-
model attack, respectively, where the red box defines the
stable (safe) operation region of the SMIB system that can
be formalized by the STL formula ϕSMIB .

C. Waypoint Tracking System

Next, we study the waypoint tracking system (WT) [28],
which is a typical example of Simplex Architecture [13] that
uses a safety controller to steer the system to a safe state. The
WT system is briefly discussed here, with more details in [28].
The controllers of the WT system drive an autonomous vehicle
following a predefined sequence of waypoints and keep it
operating within a safe region. The vehicle motion is governed
by the non linear equations: ẋ = v cos(θ), ẏ = v sin(θ), where
(x, y), v and θ are the position, velocity and heading angle,
respectively. The WT system has two controllers: 1) a complex
controller which captures all the possible behaviors within the
physical limits of the actuator, and 2) a safety controller which
slows down and stops the vehicle as fast as possible. The key
challenge is to design a decision module which can switch
from the complex controller to the safety controller whenever
the system likely evolves toward an unsafe region.

Traditionally approaches such as Lyapunov-function-based
techniques [29], [30] or reachability-based analysis [28], [31]
have been applied to determine a switching condition between
the two controllers of a simplex model. However, these ap-
proaches require the knowledge of the system dynamics and
may have expensive computational cost. In this paper, we use
the understanding of a safety specification to synthesize a
switching condition for a decision module.

Original SLSF model. We build the SLSF model of the WT
system based on the corresponding hybrid automata of the
plant, complex controller and safety controller of the system
presented in [28]. The safe operation region of the WT system,
which has an ellipse form can be defined by the following STL
formula,

ϕWT = �[0,T]

(
(x+ 5)2

900
+

(y + 10)2

400
≤ 1

)
. (3)

For our analysis, we assume that the original model does not
contain a decision module and a safety controller, and the
complex controller of the original model fails to keep the
vehicle operating within the safe region defined by ϕWT .

Model repair for the WT system. To repair the WT model,
we need to add a given safety controller and determine a
transition from the complex controller to the safety controller.
Based on the safety property of the WT system, that transition
can be specified as (x+5)2

900 + (y+10)2

400 > θ, where θ ∈ [0, 1].
The resiliency pattern of the WT system is given in Fig-
ure 10. We note that this pattern is generic; that is, it can
be applied uniformly to any simplex model with a given
safety property. For the repaired WT model, without being
excessively conservative, we aim to find the largest value of θ
so that ϕWT always holds. Figure 11 shows a violation where
the behavior of the original model evolves beyond the safe
operation boundary, and a safe behavior of the repaired model
with the safe switching boundary, θ = 0.625, synthesized by
REAFFIRM.

start a transformation
model.addParam("theta")
cc = model.getMode("complex controller")
sc = model.getMode("safety controller")
add a transition based on a safety requirement

model.addTransition(cc,sc," (x+5)2

900 +
(y+10)2

400 > θ")
end of the transformation

Fig. 10. The resiliency pattern for the WT system.

-40 -30 -20 -10 0 10 20 30
-40

-30

-20

-10

0

10

20

Safe Operation Boundary

-40 -30 -20 -10 0 10 20 30
-40

-30

-20

-10

0

10

20

Safe switching boundary

Fig. 11. Left: a violating trajectory of the original system. Right: a safe
trajectory of the repaired model with a safe switching boundary.

D. Missile Guidance System

Original SLSF model. We consider the example of the
missile guidance system (MG) provided by Mathworks,
which is a good representative of a practical MG
system. The original SLSF model has more than
300 blocks. The details of the model can be found
at https://www.mathworks.com/help/simulink/examples/
designing-a-guidance-system-in-MATLAB-and-simulink.
html. In our study, we make a slight modification in the
Sensors of the Airframe & Autopilot subcomponent of the
original MG model. In the modified version, we model the
missile body rate measurements as an array of two different
gyroscopes, and the body rate estimation is obtained by
using the average of the measurements obtained from the two
gyroscopes. Such modification is reasonable as a practical
MG system usually uses an array of gyroscopes to estimate
the body rate of a missile. The correctness requirement of the
model is that the missile will eventually approach the target
where their distance is less than 10. This requirement can be
formulated as an STL formula

ϕMG = ♦[0,T]range[t] < 10. (4)

In the original setting, the MG model satisfies the STL require-
ment and the noisy levels of two gyroscopes are assumed as
|ngyro1| ≤ 0.05 and |ngyro2| ≤ 0.05, respectively.

Gyroscope sensor attack. The principle of a spoofing attack
on the gyroscopes of the MG system is similar to the GPS
spoofing attack of the ACC system. In this case, we omit
the original assumption |ngyro2| ≤ 0.05, and employ the new
assumption as |ngyro2| ≤ 1. As a result, the MG model no
longer satisfies the STL requirement under this assumption.

Model repair for the MG system under gyroscope sensor
attack. To repair the MG model under the gyroscope spoofing
attack, we can reuse the three different patterns used to fix

https://www.mathworks.com/help/simulink/examples/designing-a-guidance-system-in-MATLAB-and-simulink.html
https://www.mathworks.com/help/simulink/examples/designing-a-guidance-system-in-MATLAB-and-simulink.html
https://www.mathworks.com/help/simulink/examples/designing-a-guidance-system-in-MATLAB-and-simulink.html

Noise_estimator
en:	gynoise	=	0.5*(ngyro1	+	ngyro2);

(a) Original noise estimator

Noise_estimator_copy
en:	gynoise	=	0.5*(ngyro1	+	ngyro1);

Noise_estimator
en:	gynoise	=	(1-theta)*ngyro1+theta*ngyro2;

Noise_estimator2
en:	gynoise	=	0.5*(ngyro1	+	ngyro2);

[abs(ngyro2-ngyro1)	>	theta]

[abs(ngyro2-ngyro1)	<	theta]

(b) Modified estimator using pattern3

Noise_estimator_copy
en:	gynoise	=	0.5*(ngyro1	+	ngyro1);

Noise_estimator
en:	gynoise	=	0.5*(ngyro1	+	ngyro2);

[abs(ngyro1	-	ngyro2)	>	theta]

(c) Modified estimator using pat-
tern1

Noise_estimator_copy
en:	gynoise	=	0.5*(ngyro1	+	ngyro1);

Noise_estimator
en:	gynoise	=	0.5*(ngyro1	+	ngyro2);

[abs(ngyro1	-	ngyro2)	<	theta]
[abs(ngyro1	-	ngyro2)	>	theta]

(d) Modified estimator using pat-
tern2

Fig. 12. The original and modified noise estimators.

the ACC model under GPS spoofing attack. Figure 12 shows
the original gyroscope noise estimator which is vulnerable
to the spoofing attack and three different repaired versions
generated using the three resiliency patterns, respectively. For
each resiliency pattern, the synthesized values of θ and the
performance of our Reaffirm software is reported in Table I.
Angular noise injection attack. The original design of MG
system has an assumption that the angular noise in the Tracker
and Sight-line Rate Estimator components is negligible (i.e.,
set to 0). However, a practical missile guidance system often
has an angular noise which may cause a significant impact on
guidance performance. Angular noise can be considered as a
combination of thermal noise, glint effect in radar seeker re-
ceiver and the external noise generated by a stand-off jammer
or due to the change of the surrounding environment [32]. To
evaluate the MG system under angular noise injection attack,
we omit the original assumption that the angular noise level
(denoted as agun) equal to 0 and employ the new assumption
that |agun| ≤ 0.0875. Under the new assumption, the MG
model does not satisfy ϕMG.

Model repair for the MG system under angular noise
injection attack. To repair the MG model under the angular
noise injection attack, we do not need to perform a model
transformation. Instead, a potential solution is to modify
the tracking or stabilization loop parameters and gains of
the Seeker/Tracker subsystem to compensate for the angular
tracking error caused by the angular noise. The primary
analysis question is a) which parameters/gains need to be
tuned and b) what are their corresponding values that can
mitigate the angular noise injection attack. In our approach,
we answer the first part of the question by applying the
Morris’s elementary effects screening method [33], which is
the most well-established global sensitivity analysis approach
to identify the important factors that may have substantial
effects on the satisfaction value of the correctness requirement.
Then, we address the second part of the question by using
Breach to synthesize the control gains and parameters values
that can provide the maximum robustness satisfaction w.r.t the
requirement ϕMG.

Expectation of elementary effects

agun tors wgyro Ks wn
-200

-100

0

100

200

300

400

500

*

Fig. 13. The elementary effects of five different factors of the Seeker/Tracker
of the MG system w.r.t the satisfaction value of ϕMG.

Sensitivity analysis. We apply Morris method to screen the
elementary effects of five different factors of the Seeker/-
Tracker subsystem including a) agun: angular noise, b) tors:
tracking loop time constant, c) wgyro: rate gyro bandwidth,
d) Ks: rate loop bandwidth, and e) wn: estimator bandwidth
to the satisfaction value of ϕMG. In the original design,
these parameters are chosen as agun = 0, tors = 0.05,
wgyro = 200π, Ks = 40π, and wn = 7, respectively.
Figure 13 shows the elementary effects of five different
factors on the satisfaction value of ϕMG under the assumption
that agun ∈ [0, 0.0875], tors ∈ [0.05, 0.25], wgyro ∈
[180π, 220π], Ks ∈ [38π, 42π], and wn ∈ [6.95, 7.05].

In Figure 13, µ and σ denote the mean and the standard
deviation of the elementary effects, and µ? represents the mean
of the absolute values of the elementary effects of the input
factors, respectively. We can observe that three factors wgyro,
Ks, and wn have negligible impacts on the satisfaction value
while the angular noise and the tracking loop time have strong
effects. However, the average effect of agun is high and
negative that means the MG system very sensitive to the
angular noise injection attack, and it will violate ϕMG under
the assumption |agun| ≤ 0.0875. In contrast, the values of
µ and µ? of tors are equal and have the same sign, which
indicates that increasing the value of tors yields a positive
effect on the satisfaction value of ϕMG. Therefore, to mitigate
the angular noise injection attack, a potential fix is increasing
the tracking loop time.

Max-satisfaction. The model synthesizer of REAFFIRM
built on top of Breach supports an efficient optimization
approach to address the max-satisfaction problem, i.e., find-
ing the parameters values that make the system satisfy the
specification as robust as possible. In the case of the angular
noise injection attack, we want to find the best value of
tors ∈ [0.05, 0.25] that makes the MG system continue to
satisfy ϕMG under the angular noise attack. Here, the tool
finds the best value of tors as 0.23421, as shown in Table I.

VI. RELATED WORK

Model-based design of resilient CPSs. Examples of model-
based approaches to ensure resiliency include the approach
proposed in [34] that can be used to design a resilient CPS
through co-simulation of discrete-event models, a modeling
and simulation integration platform for secure and resilient
CPS based on attacker-defender games [35] with the corre-
sponding testbed [36], the resilience profiling of CPSs pre-
sented in [37], and the recent works of the design, implemen-
tation, and monitor of attack-resilient CPSs introduced in [38],
[39]. Although these approaches can leverage the modeling
and testing for a resilient CPS, they do not offer a model repair
mechanism or a generic approach to design a resiliency pattern
when vulnerabilities are discovered. Our proposed method
is complementary to these efforts as we provide a generic,
programmable way for a designer to specify a potential edit
that can effectively repair the model for improving resiliency.

Formal analysis of hybrid systems. Our approach utilizes
Breach to synthesize an SLSF model due to its advantages
in performing falsification, systematic testing and parameter
synthesis for hybrid systems. However, Breach cannot give a
guarantee that the system satisfies the correctness specification.
In certain cases, tools for verification of hybrid systems
based on computing the set of reachable states can be used
to get such a guarantee for the repaired model: examples
of such tools are d/dt [40], SpaceEx [41], Flow*[42], and
dReach[43].We choose Breach as it is more scalable.

Model transformation languages of hybrid systems. In the
context of the model transformation, GREAT is a metamodel-
based graph transformation language used to perform different
transformations on domain-specific models [44], [45]. GREAT
has been used to translate SLSF models to Hybrid Systems
Interchange Format (HSIF) [46]. Such a translation scheme
is accomplished by executing a sequence of translation rules
described using UML Class Diagram in a specific order. Other
approaches that also perform a translation from Simulink
diagrams to hybrid systems formalisms such as Timed In-
terval Calculus [47], Hybrid Communicating Sequential Pro-
cesses [48], Lustre [49], and SpaceEx [19]. HYST [50] is a
conversion tool for hybrid automata which allows the same
model to be analyzed simultaneously in several hybrid systems
analysis tools. However, the problem of designing a scripting
language to facilitate transforming models of hybrid systems
has not been addressed before.

VII. CONCLUSION AND FUTURE WORKS

We have presented a new methodology, along with the
software REAFFIRM that can effectively assist a designer to
repair CPS models under unanticipated attacks automatically.
The model transformation tool takes a resiliency pattern spec-
ified in the transformation language HATL and generates a
new model including unknown parameters whose values can
be determined by the synthesizer tool such that the safety
requirement is satisfied. We demonstrated the applicability of

REAFFIRM by using the software to efficiently repair the CPS
models of four case studies under different attack scenarios.

We plan to extend REAFFIRM in several directions. First,
we intend to perform a systematic classification of common
attacks of various types of CPS based on the work presented
in [51] and then develop an extensible library of resiliency
patterns that encapsulates general mitigation strategies to re-
pair CPS models under these common attacks. Second, we
will leverage REAFFIRM to automatically search through
the space of resiliency patterns to solve the model synthesis
problem. Third, we plan to consider more complex safety and
security specifications of CPS that can be specified using sig-
nal temporal logic (STL) for hyperproperties (HyperSTL) [52].
Besides using Breach, we also want to incorporate various
verification tools such as Flow* and dReach into REAFFIRM
to verify the repaired models formally.

REFERENCES

[1] J. Wan, A. Canedo, and M. A. Al Faruque, “Security-aware functional
modeling of cyber-physical systems,” in Emerging Technologies &
Factory Automation (ETFA), 2015 IEEE 20th Conference on. IEEE,
2015, pp. 1–4.

[2] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of
attacks in automotive cyber-physical systems,” in Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 2014, pp. 1–6.

[3] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Moderator-
Ravi, “Security as a new dimension in embedded system design,” in
Proceedings of the 41st annual Design Automation Conference. ACM,
2004, pp. 753–760.

[4] M. Al Faruque, F. Regazzoni, and M. Pajic, “Design methodologies
for securing cyber-physical systems,” in Proceedings of the 10th In-
ternational Conference on Hardware/Software Codesign and System
Synthesis. IEEE Press, 2015, pp. 30–36.

[5] T. T. Gamage, B. M. McMillin, and T. P. Roth, “Enforcing information
flow security properties in cyber-physical systems: A generalized frame-
work based on compensation,” in Computer Software and Applications
Conference Workshops (COMPSACW), 2010 IEEE 34th Annual. IEEE,
2010, pp. 158–163.

[6] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in Proceedings of
the 15th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’13. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 55–72.

[7] C. Li, A. Raghunathan, and N. K. Jha, “Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system,” in e-Health
Networking Applications and Services (Healthcom), 2011 13th IEEE
International Conference on. IEEE, 2011, pp. 150–156.

[8] S. Liu, X. Feng, D. Kundur, T. Zourntos, and K. Butler-Purry, “A class
of cyber-physical switching attacks for power system disruption,” in
Proceedings of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research. ACM, 2011, p. 16.

[9] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[10] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical computer science, vol. 138,
no. 1, pp. 3–34, 1995.

[11] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification. Springer, 2010,
pp. 167–170.

[12] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[13] L. Sha, “Using simplicity to control complexity,” IEEE Software, no. 4,
pp. 20–28, 2001.

[14] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 75–86.

[15] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of
Field Robotics, vol. 31, no. 4, pp. 617–636, 2014.

[16] S. Bak, O. A. Beg, S. Bogomolov, T. T. Johnson, L. V. Nguyen, and
C. Schilling, “Hybrid automata: from verification to implementation,”
International Journal on Software Tools for Technology Transfer, pp.
1–18, 2017.

[17] R. Alur, A. Kanade, S. Ramesh, and K. Shashidhar, “Symbolic analysis
for improving simulation coverage of simulink/stateflow models,” in
Proceedings of the 8th ACM international conference on Embedded
software. ACM, 2008, pp. 89–98.

[18] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo, “A step towards ver-
ification and synthesis from simulink/stateflow models,” in Proceedings
of the 14th international conference on Hybrid systems: computation
and control. ACM, 2011, pp. 317–318.

[19] S. Minopoli and G. Frehse, “Sl2sx translator: from simulink to spaceex
models,” in Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control. ACM, 2016, pp. 93–98.

[20] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
guided approaches for verification of automotive powertrain control
systems,” in American Control Conference (ACC), 2015. IEEE, 2015,
pp. 4086–4095.

[21] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?” in Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing. ACM, 1995, pp. 373–382.

[22] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining require-
ments from closed-loop control models,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 34, no. 11,
pp. 1704–1717, 2015.

[23] P. W. Sauer and M. Pai, “Power system dynamics and stability,” Urbana,
1998.

[24] A. K. Farraj, E. M. Hammad, D. Kundur, and K. L. Butler-Purry,
“Practical limitations of sliding-mode switching attacks on smart grid
systems,” in PES General Meeting— Conference & Exposition, 2014
IEEE. IEEE, 2014, pp. 1–5.

[25] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure
control of nonlinear multivariable systems: a tutorial,” Proceedings of
the IEEE, vol. 76, no. 3, pp. 212–232, 1988.

[26] S. Liu, B. Chen, T. Zourntos, D. Kundur, and K. Butler-Purry, “A
coordinated multi-switch attack for cascading failures in smart grid,”
IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1183–1195, 2014.

[27] A. Sabanovic, L. M. Fridman, S. Spurgeon, and S. K. Spurgeon, Variable
structure systems: from principles to implementation. IET, 2004,
vol. 66.

[28] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing
controllers for cyber-physical systems,” in 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems. IEEE, 2011, pp.
3–12.

[29] T. Johnson, “Stability analysis of simplex architecture controlled in-
verted pendulum,” Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign., http://www. academia.
edu/276649, 2008.

[30] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in 2009 15th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2009, pp. 99–107.

[31] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” ACM Transactions on Embedded Comput-
ing Systems (TECS), vol. 15, no. 2, p. 26, 2016.

[32] Q.-l. XIA, Y.-y. LIU, Z.-k. QI, and T. GUO, “Study of proportional
navigation guidance error caused by angular noise and glint effect [j],”
Systems Engineering and Electronics, vol. 8, 2008.

[33] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola, Global sensitivity analysis: the primer.
John Wiley & Sons, 2008.

[34] J. Fitzgerald, K. Pierce, and C. Gamble, “A rigorous approach to the
design of resilient cyber-physical systems through co-simulation,” in De-
pendable Systems and Networks Workshops (DSN-W), 2012 IEEE/IFIP
42nd International Conference on. IEEE, 2012, pp. 1–6.

[35] X. Koutsoukos, G. Karsai, A. Laszka, H. Neema, B. Potteiger, P. Vol-
gyesi, Y. Vorobeychik, and J. Sztipanovits, “Sure: A modeling and
simulation integration platform for evaluation of secure and resilient
cyber–physical systems,” Proceedings of the IEEE, vol. 106, no. 1, pp.
93–112, 2018.

[36] H. Neema, B. Potteiger, X. Koutsoukos, G. Karsai, P. Volgyesi, and
J. Sztipanovits, “Integrated simulation testbed for security and resilience
of cps,” in Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. ACM, 2018, pp. 368–374.

[37] M. Jackson and J. Fitzgerald, “Resilience profiling in the model-based
design of cyber-physical systems,” in 14th Overture Workshop: Towards
Analytical Tool Chains, Technical Report ECE-TR-28, 2016, pp. 1–15.

[38] J. Weimer, R. Ivanov, S. Chen, A. Roederer, O. Sokolsky, and I. Lee,
“Parameter-invariant monitor design for cyber–physical systems,” Pro-
ceedings of the IEEE, vol. 106, no. 1, pp. 71–92, 2018.

[39] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee,
“Design and implementation of attack-resilient cyberphysical systems:
With a focus on attack-resilient state estimators,” IEEE Control Systems,
vol. 37, no. 2, pp. 66–81, 2017.

[40] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2002, pp. 365–370.

[41] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Computer Aided Verification (CAV),
ser. LNCS. Springer, 2011.

[42] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 258–263.

[43] S. Kong, S. Gao, W. Chen, and E. Clarke, “dreach: δ-reachability
analysis for hybrid systems,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2015, pp. 200–205.

[44] A. Agrawal, G. Karsai, and F. Shi, “Graph transformations on domain-
specific models,” Journal on Software and Systems Modeling, vol. 37,
pp. 1–43, 2003.

[45] A. Agrawal, G. Karsai, and Á. Lédeczi, “An end-to-end domain-driven
software development framework,” in Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. ACM, 2003, pp. 8–15.

[46] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of
simulink/stateflow models to hybrid automata using graph transforma-
tions,” Electronic Notes in Theoretical Computer Science, vol. 109, pp.
43–56, 2004.

[47] C. Chen, J. S. Dong, and J. Sun, “A formal framework for modeling and
validating simulink diagrams,” Formal Aspects of Computing, vol. 21,
no. 5, pp. 451–483, 2009.

[48] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou,
“A calculus for hybrid csp,” in Asian Symposium on Programming
Languages and Systems. Springer, 2010, pp. 1–15.

[49] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time simulink to lustre,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 4, no. 4, pp. 779–818, 2005.

[50] S. Bak, S. Bogomolov, and T. T. Johnson, “Hyst: a source transformation
and translation tool for hybrid automaton models,” in Proceedings of
the 18th International Conference on Hybrid Systems: Computation and
Control. ACM, 2015, pp. 128–133.

[51] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems
security—a survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp.
1802–1831, 2017.

[52] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson,
“Hyperproperties of real-valued signals,” in Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and Models
for System Design, 2017, pp. 104–113.

	I Introduction
	II Overview of the Methodology
	II-A A Simplified Example of ACC System
	II-B REAFFIRM Software

	III Model Transformation
	III-A Representation of Hybrid System
	III-B Hybrid Automata Transformation Language
	III-C Implementation

	IV Model Synthesis
	IV-A Overview of Breach
	IV-B Model Synthesis using Breach

	V Model Repair for Resiliency
	V-A Adaptive Cruise Control System
	V-B Single-Machine Infinite-Bus System
	V-C Waypoint Tracking System
	V-D Missile Guidance System

	VI Related Work
	VII Conclusion and Future Works
	References

