
Space-efficient Query Evaluation over
Probabilistic Event Streams

Rajeev Alur

University of Pennsylvania

Yu Chen

University of Pennsylvania

Kishor Jothimurugan

University of Pennsylvania

Sanjeev Khanna

University of Pennsylvania

Abstract
Real-time decision making in IoT applications relies upon

space-efficient evaluation of queries over streaming data.

To model the uncertainty in the classification of data being

processed, we consider the model of probabilistic strings —

sequences of discrete probability distributions over a finite

set of events, and initiate the study of space complexity of

streaming computation for different classes of queries over

such probabilistic strings.

We first consider the problem of computing the probabil-

ity that a word, sampled from the distribution defined by

the probabilistic string read so far, is accepted by a given

deterministic finite automaton. We show that this regular

pattern matching problem can be solved using space that is

only poly-logarithmic in the string length (and polynomial

in the size of the DFA) if we are allowed a multiplicative

approximation error. Then we show how to generalize this

result to quantitative queries specified by additive cost reg-

ister automata — these are automata that map strings to

numerical values using finite control and registers that get

updated using linear transformations. Finally, we consider

the case when updates in such an automaton involve tests,

and in particular, when there is a counter variable that can

be either incremented or decremented but decrements only

apply when the counter value is non-zero. In this case, the

desired answer depends on the probability distribution over

the set of possible counter values that can range from 0 to

𝑛 for a string of length 𝑛. Under a mild assumption, namely

probabilities of the individual events are bounded away from

0 and 1, we show that there is an algorithm that can compute

all 𝑛 entries of this probability distribution vector to within

additive 1/poly(𝑛) error using space that is only �̃� (
√
𝑛). In

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00

https://doi.org/10.1145/3373718.3394747

establishing these results, we introduce several new techni-

cal ideas that may prove useful for designing space-efficient

algorithms for other query models over probabilistic strings.

CCS Concepts: • Theory of computation→ Streaming
models; Streaming, sublinear and near linear time al-
gorithms; Regular languages.

Keywords: Query processing over streams, Streaming algo-

rithms, Probabilistic streams.

ACM Reference Format:
Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna.

2020. Space-efficient Query Evaluation over Probabilistic Event

Streams. In Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS ’20), July 8–11, 2020, Saarbrücken,
Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3373718.3394747

1 Introduction
Real-time decision making in IoT applications such as smart

buildings and wearable devices relies upon processing of

large data streams in an efficient and incremental manner.

In this context, the input to the decision making policy can

be modeled as a stream of data values, and a theoretical un-

derstanding of the trade-offs among space complexity, time

complexity, and accuracy of the desired computation in a

streaming fashion can inform the design and implementation

of the policy [1, 11]. An example of an application domain

where space-efficient streaming algorithms already play a

key role is network traffic engineering which requires de-

tection of traffic anomalies in real time while maintaining

minimal state within the network router [3, 12, 14]. Our work

is motivated by the observation that in many IoT applications

there is an inherent uncertainty in the individual data items

being processed. In such a case, the input should ideally be

modeled as a stream of probability distributions over data

values, and we need an understanding of trade-offs between

resource bounds and accuracy for streaming computations

over such probabilistic streams (see [5, 6] for early work on

this topic).

In this paper, we restrict our attention to data streams spec-

ified as probabilistic strings over a finite alphabet Σ, where
each item is an independent discrete probability distribution

over Σ. Given a query over strings, that is, a function 𝑓 from

Σ∗ to a set of decision values, one can naturally associate a

https://doi.org/10.1145/3373718.3394747
https://doi.org/10.1145/3373718.3394747
https://doi.org/10.1145/3373718.3394747

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

function
˜𝑓 that maps a probabilistic string to a distribution

over the decision values. Depending on the application, we

may be interested in computing, given an input probabilistic

string, how the expected decision value compares with a

threshold value, or more generally, a profile of the distri-

bution itself that can be queried. Our goal is to study, for

different classes of queries 𝑓 , the space complexity of solving

such computational problems over probabilistic strings in a

streaming fashion.

The first class of queries we study is the class of regular
languages since not only is this the simplest and theoreti-

cally well-understood class, but is also integrated in query

languages for specifying streaming computations in prac-

tical applications [3, 9]. In this case, given a deterministic

finite automaton A and a probabilistic string, the streaming

algorithm is taskedwith computing the probability thatA ac-

cepts the string read so far at every step. A probabilistic string

naturally defines a current probability distribution over the

finite set of states of A, but the space required to store the

exact probabilities in this distribution can grow linearly with

the length of the input. We show that standard geometric

discretization technique used in approximation algorithms

as well as in streaming algorithms can be adapted for this

problem resulting in a single-pass streaming algorithm that

computes the answer to within a desired multiplicative accu-

racy and uses space that is only poly-logarithmic in the size

of the input string and polynomial in the size of the DFA A
(Theorem 3.3).

Next we turn our attention to computation of quantitative

queries over strings specified using cost register automata
— these are automata that map strings to numerical values

using a DFA-based control, which can be used to detect reg-

ular patterns in input streams, and a set of registers that are

updated on transitions, which can be used to compute quanti-

tative properties depending on which operations are allowed

during updates [2]. In additive cost register automata, all up-

dates have to be linear transformations, and in this case we

show how probabilistic strings can be processed in a stream-

ing fashion to compute the expected value of the output of

the automaton within a multiplicative approximation error

and space that is polylogarithmic in the size of the input

string (Theorem 4.2).

New challenges arise when the specification of a query 𝑓

mapping strings to numerical values involves conditional up-
dates to registers. The simplest form of conditional updates

correspond to the case when there is a counter variable that

can either be incremented or decremented, but a decrement

is applicable only when the counter value is non-zero. Be-

havior modeled by such a counter is common in quantitative

queries that involve requests and corresponding responses.

While such queries can be evaluated efficiently in a stream-

ing fashion over strings, when individual events involve

uncertainty, we want to know if we can estimate the counter

value efficiently in a streaming fashion.

In this setting with conditional updates, given a probabilis-

tic string of length 𝑛, the information relevant to making a

decision now is a probability distribution over the counter

values which can range from 0 to 𝑛. As such a complete

specification of this probability distribution requires Ω(𝑛)
space, even ignoring the precision issues (the probabilities

for certain counter values can be exponentially small). In fact,

the task of computing this probability distribution in sublin-

ear space is non-trivial even if there is a standalone counter,

with no associated finite state control, that is undergoing

probabilistic increments and decrements with a barrier at 0

that prevents the counter value from going below 0. Our first

key technical contribution is to handle the non-linearity in-

troduced by the barrier at 0. We show that using only �̃� (
√
𝑛)

space, we can compute the (𝑛 + 1)-dimensional vector of

probabilities that gives for each 𝑖 ∈ {0, 1, 2, ..., 𝑛} the proba-
bility that the counter has value 𝑖 at the end of the stream, to

within a total variation distance of 1/poly(𝑛). Note that this
means in particular, each entry in the vector is computed to

within an additive error of 1/poly(𝑛). We show this result by

establishing a dynamic concentration result that allows us to

compress the probability vector – we show that at any time,

with high probability, the counter value is within a band of

size �̃� (
√
𝑛). This band though is not static but is dynamically

shifting as the stream progresses. But we show that it is

possible to accurately track this band at each step and then

focus on computing only the entries inside the band.

We finally extend this result to the setting where there

is an underlying DFA based control and each probabilistic

event results in a probabilistic transition to another state in

the DFA. This introduces a new technical challenge, namely,

an update to the counter value now can depend on the cur-

rent state of the DFA; the current state in turn depends on

the previous trajectory of the DFA. This means that the prob-

ability of an increment or decrement at any step now has

potentially long-range dependencies to the events previously

encountered in the stream. We use the coupling technique
used in the analysis of Markov chains (see, [10], for instance)

to bound these long-range dependencies under a mild as-

sumption, namely probabilities of the individual events are

bounded away from 0 and 1. It is worth highlighting that

we prove this result without making any assumptions on

the structure of the underlying DFA which is allowed to be

an arbitrary directed graph where states can exhibit arbi-

trary reachability structure including non-trivial periodic

behaviors. Putting together these ideas, we show that there

is a single-pass streaming algorithm that can compute the

probability distribution vector for a register undergoing con-

ditional updates with an arbitrary underlying DFA based

control to within additive 1/poly(𝑛) error using space that
is only �̃� (

√
𝑛) (Theorem 4.14).

We believe our approach of dynamically compressing

probability distributions under conditional updates as well

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

as techniques for handling long-range dependencies when

string processing is based on a DFA, may prove useful for

designing space-efficient algorithms for other query models

over probabilistic strings.

Organization: The rest of the paper is organized as fol-

lows. In Section 2 we describe the computational model for

analyzing (streaming) query evaluation over probabilistic

strings. In Section 3 we study regular queries specified us-

ing DFAs, and Section 4 deals with quantitative extensions

of finite automaton using registers with linear updates and

using a counter with barrier.

Related Work
The probabilistic data stream model introduced by Jayram

et al. [5] is an extension of the standard data stream model

[1, 11] which models data uncertainty using (sub)probability

distribution functions (pdf s) over a discrete set of data val-
ues with bounded support. A (probabilistic) data point in

a probabilistic data stream is given by a small number of

value-probability pairs. The total probability of the specified

values might be less than 1 in which case there is a non

zero probability that the data point is missing. The model

of probabilistic strings introduced here, in spite of being

similar to probabilistic data streams, exhibits two key dif-

ferences. Firstly, we consider probability distributions over

events rather than data values where the set of events is fi-

nite and indicate qualitative properties about the underlying

data. For example, an event 𝑎 could represent the data value

being in an interval (𝑙𝑎, 𝑟𝑎). Secondly, the number of possible

events is considered to be small allowing us to summarize

the uncertainty in the data succinctly and more importantly,

in a way that captures enough information to process certain

queries. There has been many developments in streaming

algorithms over probabilistic data streams [4, 6, 7] which

consider the problem of computing the expected value of

specific aggregation functions such as MIN, MAX and AVERAGE.
In contrast, our focus is on generic algorithms that work for

certain classes of queries. Moreover, the techniques used in

these papers are tailored to estimate the expectation of the

given aggregate function directly. Some of our techniques

can be applied in a more general setting to estimate the en-

tire probability distribution over the range of the query for

some classes of queries.

Closely related to our work is the work on event queries

[13] which presents a query language to specify qualitative

properties of a sequence of events. The authors provide al-

gorithms to compute the probability that the (probabilistic)

stream seen so far satisfies a property specified in their lan-

guage. Their technique is based on the ability to maintain a

distribution over the set of states of a finite automaton over

the set of events. However, the issue of increasing precision

when multiplying probabilities is not addressed. We provide

a way to deal with this problem and give precise theoretical

guarantees on space complexity for “regular" queries as well

as other, more complex, quantitative query classes.

2 The Computational Model
In this section, we define the notion of probabilistic strings

and look at the definition and interpretation of queries over

such strings. We also review the streaming model of compu-

tation in our context.

2.1 Probabilistic Strings
Let Σ be a finite set of input symbols. A string𝑤 over Σ is a

finite sequence of symbols from Σ. We denote the set of all

strings over Σ by Σ∗. We useD(Σ) to represent the set of all
distributions over Σ.

D(Σ) =
{
𝜋 : Σ→ [0, 1]

���∑
𝜎 ∈Σ

𝜋 (𝜎) = 1

}
Definition 2.1. A probabilistic string 𝛼 of length 𝑛 over Σ
is a finite sequence of distributions 𝛼1, ..., 𝛼𝑛 where each 𝛼𝑖 ∈
D(Σ). The set of all probabilistic strings over Σ is denoted by
D(Σ)∗.

Given a probabilistic string 𝛼 of length 𝑛, D𝛼 represents

the distribution over strings of length 𝑛 in which the symbol

at 𝑖𝑡ℎ position is drawn from the distribution 𝛼𝑖 independent

of the other positions. Hence, the probability of a string

𝑤 = 𝑤1, ...,𝑤𝑛 under D𝛼 is given by Π𝑛𝑖=1
𝛼𝑖 (𝑤𝑖).

Example 2.2. Consider Σ = {𝑎, 𝑏}. A probabilistic string 𝛼
of length 𝑛 over Σ can be described by a sequence of numbers
𝑝1, ..., 𝑝𝑛 where each 𝑝𝑖 ∈ [0, 1] denotes the probability that
the 𝑖𝑡ℎ symbol is 𝑎, whereas the probability of 𝑏 is given by
1 − 𝑝𝑖 . The probability of the string 𝑎𝑛 under D𝛼 is given by
Π𝑛𝑖=1

𝑝𝑖 .

A string query is a function 𝑓 : Σ∗ → 𝐷 where the range

𝐷 is a subset of the reals. We extend string queries to queries

over probabilistic strings by taking expectation. Given a

string query 𝑓 , we can define a function
˜𝑓 : D(Σ)∗ →

conv(𝐷)1 that maps a probabilistic string 𝛼 to the expected

value of 𝑓 w.r.t. D𝛼 .

˜𝑓 (𝛼) = E𝑤∼D𝛼
[𝑓 (𝑤)] =

∑
|𝑤 |=𝑛

𝑓 (𝑤)
𝑛∏
𝑖=1

𝛼𝑖 (𝑤𝑖)

In this paper, we are particularly interested in two kinds

of queries:

• 𝐷 = {0, 1}. In this case, the query can be thought

of as a language 𝐿𝑓 ⊆ Σ∗ defined by 𝐿𝑓 = {𝑤 |
𝑓 (𝑤) = 1}. The expected value of 𝑓 w.r.t. D𝛼 is the

same as the probability that a string, randomly cho-

sen according to D𝛼 , belongs to the language 𝐿𝑓 , i.e.,

˜𝑓 (𝛼) = Pr𝑤∼D𝛼
[𝑤 ∈ 𝐿𝑓].

1conv(𝐷) denotes the convex hull of 𝐷 .

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

Example 2.3. Consider Σ = {𝑎, 𝑏}. Let 𝑓 be the indica-
tor function of the language 𝑎∗. Then, given 𝛼 ∈ D(Σ)∗
of length 𝑛, ˜𝑓 (𝛼) = Π𝑛𝑖=1

𝛼𝑖 (𝑎).

• 𝐷 = N. In this case, 𝑓 could be computing some quan-

titative property of the given string. Let us look at two

examples:

Example 2.4. Σ = {𝑎, 𝑏} and 𝑓 maps a string 𝑤 to
the sum of the number of 𝑎′𝑠 and twice the number
of 𝑏 ′𝑠 in 𝑤 . Given a probabilistic string 𝛼 of length 𝑛,
˜𝑓 (𝛼) = ∑𝑛

𝑖=1
𝛼𝑖 (𝑎) + 2

∑𝑛
𝑖=1
𝛼𝑖 (𝑏) = 𝑛 +

∑𝑛
𝑖=1
𝛼𝑖 (𝑏).

Example 2.5. Σ = {𝑎, 𝑏} and 𝑓 works as follows: Ini-
tialize a counter to 0; read the input string letter-by-letter,
incrementing the counter on reading 𝑎 and decrementing
on reading 𝑏 if the counter is non-zero; output the final
value of the counter. Here the input string is viewed as
a sequence of updates to a counter that always stays
non-negative. It is not straightforward to characterize ˜𝑓

in this case and is studied in Section 4.

2.2 The Streaming Model
The streaming model of computation was formalized in the

seminal work of Alon, Matias, and Szegedy [1] as a frame-

work for processing large data sets using small space. The

past two decades have seen many exciting developments on

streaming algorithms; we refer an interested reader to this

survey [11]. In the streaming model, the input is a stream

of values 𝑣1, ..., 𝑣𝑛 from a discrete domain 𝑉 and the goal

is to compute some function 𝑔 in a single pass over the

input sequence, using space that is sublinear in 𝑛 and poly-

logarithmic in |𝑉 |.
Given an integer 𝑘 , let us denote by ∥𝑘 ∥ the number of

bits in the binary representation of 𝑘 . The size of a rational

number 𝑝 = 𝑘1/𝑘2 is defined to be ∥𝑝 ∥ = max(∥𝑘1∥, ∥𝑘2∥).
We will say that the description complexity of a distribution

𝜋 ∈ D(Σ) is 𝑡 if the probability of any symbol under 𝜋 has

size at-most 𝑡 . The set of distributions over Σwith description

complexity 𝑡 is denoted by D(Σ)𝑡 .

D(Σ)𝑡 =
{
𝜋 ∈ D(Σ)

��� ∀𝜎, ∥𝜋 (𝜎)∥ ≤ 𝑡 }
A probabilistic string has description complexity 𝑡 if it is

a sequence of distributions from D(Σ)𝑡 . Given a query 𝑓

and a probabilistic string 𝛼 ∈ D(Σ)∗𝑡 of length 𝑛, we are

interested in the problem of computing
˜𝑓 (𝛼) in the streaming

model, i.e., we want to compute
˜𝑓 (𝛼) in a single pass over

𝛼 using space that is sublinear in 𝑛 and polynomial in |Σ|
and 𝑡 . Moreover, in some cases, we are also interested in

computing the distribution of 𝑓 underD𝛼 with similar space

complexity.

Consider the query in Example 2.3. The problem here re-

duces to computing a product of 𝑛 numbers. If the streaming

algorithm is to simply store the product of the numbers seen

so far, and update the product on reading every number, the

space used could be linear in 𝑛 because the precision of the

product grows linearly in the size of the stream. In general,

it might not be feasible to output exact answers and hence,

we resort to algorithms that approximate the answer
˜𝑓 to a

specified accuracy.

Formally, for any 𝜀 ∈ (0, 1), we say that an estimate 𝑣

of
˜𝑓 is an 𝜀-approximation if 𝑣 ∈ [(1 − 𝜀) ˜𝑓 , (1 + 𝜀) ˜𝑓]. Note

that, for 𝜀 ∈ (0, 1/2), if we have an estimate 𝑣 of ˜𝑓 such that

𝑣 ∈ [(1−𝜀2) ˜𝑓 ,
˜𝑓

(1−𝜀2)], it implies that 𝑣 is an 𝜀-approximation.

We call an estimate 𝑣 of ˜𝑓 𝜀-accurate if 𝑣 ∈ [(1−𝜀) ˜𝑓 ,
˜𝑓

(1−𝜀)]. In
this paper, we give algorithms that compute 𝜀-approximate

estimates by first computing 𝜀2
-accurate estimates.

3 Regular Languages
In this section, we consider {0,1}-valued queries that are

characteristic functions of a regular language, in other words,

queries 𝑓 such that 𝐿𝑓 is regular. Any such query can be

represented by a finite automaton over the input alphabet Σ.
We denote by A = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) a Deterministic Finite

Automaton (DFA) over Σ where 𝑄 is a finite set of states,

𝛿 : 𝑄 × Σ→ 𝑄 is the transition function, 𝑞0 ∈ 𝑄 is the initial

state and 𝐹 ⊆ 𝑄 is the set of final states. Given a DFAA and a

probabilistic string 𝛼 ∈ D(Σ)∗𝑡 of length 𝑛, the problem is to

compute Pr𝑤∼D𝛼
[𝑤 ∈ L(A)] where L(A) is the language

of the automaton A.

Example 2.3 is an instance of this problem. The challenge

presented in Section 2.2, namely storing the product of num-

bers seen so far, can be handled using a geometric grouping

idea. It turns out that the solution can be extended to deal

with the general problem of computing the probability that

a random string (drawn from the distribution defined by an

input probabilistic string) is accepted by a given DFA. This

is discussed in Section 3.2.

3.1 A Streaming Algorithm to Estimate Product
We present here a streaming algorithm to estimate the prod-

uct of 𝑛 numbers to a specified accuracy. Given a stream of

rational numbers 𝑝1, ..., 𝑝𝑛 from the range [0, 1] such that

∥𝑝𝑖 ∥ ≤ 𝑡 for all 𝑖 ∈ {1, ..., 𝑛}, and an 𝜀 ∈ (0, 1/2), the goal is
to find a number 𝑣 such that 𝑣 ∈ [(1 − 𝜀)𝑃, 𝑃/(1 − 𝜀)] where
𝑃 = Π𝑛𝑖=1

𝑝𝑖 .

Algorithm. The starting point for our algorithm is a par-

tition of the range [0,1] into buckets such that each bucket

is parameterized by a small integer. Let 𝜀 ′ = 𝜀/2𝑛. The
bucket corresponding to an integer 𝑥 is given by 𝐵𝜀′ (𝑥) =
((1 − 𝜀 ′)𝑥+1, (1 − 𝜀 ′)𝑥]. Instead of storing the exact product,

we only store the (approximate) bucket it belongs to. The

product of two numbers represented by buckets 𝐵𝜀′ (𝑥) and
𝐵𝜀′ (𝑦) can be approximated by the bucket 𝐵𝜀′ (𝑥 + 𝑦). This
gives us a streaming algorithm (Algorithm 3.1) that approxi-

mates 𝑃 .

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Algorithm 3.1: Estimating product of 𝑛 numbers

Initialize 𝑥 ← 0;

for 𝑖 = 1, ..., 𝑛 do
On reading 𝑝𝑖 , find the integer 𝑦𝑖 such that

𝑝𝑖 ∈ 𝐵𝜀′ (𝑦𝑖);
Update 𝑥 ← 𝑥 + 𝑦𝑖 ;

Return 𝑣 = (1 − 𝜀 ′)𝑥

We next analyze the accuracy and the space requirements of

the algorithm.

Approximation Guarantee. We can easily show by induc-

tion on 𝑖 that, in the 𝑖𝑡ℎ iteration, Π𝑖𝑗=1
𝑝 𝑗 ≤ (1 − 𝜀 ′)𝑥 ≤

(1/(1 − 𝜀 ′)𝑖)Π𝑖𝑗=1
𝑝 𝑗 . Therefore, 𝑃 ≤ 𝑣 and 𝑃 ≥ (1 − 𝜀 ′)𝑛𝑣 .

Using the binomial expansion of (1 − (𝜀/2𝑛))𝑛 , we can see

that, for large enough 𝑛, (1 − (𝜀/2𝑛))𝑛 ≥ 1 − 𝜀. Therefore,
we have the guarantee that 𝑣 ≥ 𝑃 ≥ (1 − 𝜀)𝑣 .

Space Complexity. Since ∥𝑝𝑖 ∥ is bounded above by 𝑡 , 𝑝𝑖 ≥
1/2𝑡 for all 𝑖 (If any 𝑝𝑖 is zero the algorithm returns zero).

Therefore for any 𝑖 ,

(1 − 𝜀 ′)𝑦𝑖 ≥ 1/2𝑡

This gives (𝑒−𝜀′)𝑦𝑖 ≥ (1 − 𝜀 ′)𝑦𝑖 ≥ 1/2𝑡 where we have used
the fact that 1 + 𝑧 ≤ 𝑒𝑧 forall 𝑧. Substituting the value of

𝜀 ′ and taking log on both sides, we get 𝜀𝑦𝑖/2𝑛 ≤ 𝑡 ln(2)
and hence 𝑦𝑖 ≤ 4𝑛𝑡/𝜀. Observing that 𝑥 =

∑𝑛
𝑖=1
𝑦𝑖 , we have

𝑥 ≤ 4𝑛2𝑡/𝜀. This proves that the space used for storing 𝑥 is

𝑂 (log(4𝑛2𝑡/𝜀)).
In each iteration, 𝑦𝑖 is computed using binary search. To

do this, we need a space efficient way to compare numbers

of the form (1 − 𝜀 ′)𝑦 with 𝑝𝑖 . We make use of the following

lemma.

Lemma 3.1. Given two rational numbers 𝑧 > 0 and 𝑝 > 0

and an integer 𝑦, we can check if 𝑧𝑦 < 𝑝 using 𝑂 (∥𝑦∥(∥𝑦∥ +
log(∥𝑧∥)) + log(∥𝑝 ∥)) space.

Proof. WLOG assume 𝑦 > 0. To compute 𝑧𝑦 , exponentiation

is done by repeated squaring using a space-efficient algo-

rithm for multiplication. Suppose 𝑧 is an integer. Let bit𝑗 (𝑧𝑘)
denote the 𝑗 th bit of 𝑧𝑘 . Given integers 𝑧 > 0, 𝑘 > 0 and

𝑗 ≥ 0, we can compute bit𝑗 (𝑧𝑘) recursively as follows.

We know that multiplication of two integers can be done

in log-space. To compute bit𝑗 (𝑧𝑘), we use a log-space algo-
rithm 𝐴 to compute the product of 𝑧 ⌊𝑘/2⌋ and 𝑧 ⌊𝑘/2⌋ (also
multiply the product with 𝑧 if 𝑘 is odd). Keep a counter for

the number of bits output by 𝐴. Whenever an output bit

is produced, increment the counter and if the value of the

counter is 𝑗 , output that bit, ignoring it otherwise. When the

algorithm needs to read a specific bit 𝑗 ′ of 𝑧 ⌊𝑘/2⌋ , recursively
compute bit𝑗 ′ (𝑧, ⌊𝑘/2⌋). If 𝑧 is a rational we can compute

any particular bit of the numerator or the denominator of 𝑧𝑦

using the above procedure. Hence we can compare 𝑧𝑦 with

𝑝 bit-by-bit after cross multiplying the numerators with the

denominators.

The recursion depth of the above computation is𝑂 (log(𝑦)),
i.e., 𝑂 (∥𝑦∥). Let 𝑧num and 𝑧den denote the numerator and

denominator if 𝑧 respectively. Then the space used by a re-

cursive call is𝑂 (log(∥𝑧𝑦
max
∥)) where 𝑧max = max(𝑧num, 𝑧den).

But ∥𝑧𝑦
max
∥ ≤ 𝑦 (∥𝑧∥ + 1) and therefore log(∥𝑧𝑦

max
∥) ≤ ∥𝑦∥ +

log(∥𝑧∥+1) giving us the required space bound (The log(∥𝑝 ∥)
term shows up because of the cross multiplication step). We

ignore the space needed to store the values 𝑧 and 𝑝 in this

lemma as it is a part of storage space (which is included in

the space used by the streaming algorithm separately) and

is not a part of the additional space used by this comparison

procedure. □

After rounding 𝜀 to the nearest power of 1/2 we can en-

sure that ∥𝜀∥ = 𝑂 (⌈log(1/𝜀)⌉). Making use of the fact that

0 ≤ 𝑦𝑖 ≤ 4𝑛𝑡/𝜀 and Lemma 3.1, we can compute 𝑦𝑖 us-

ing 𝑂 (log(𝑛𝑡/𝜀) (log(𝑛𝑡/𝜀) + log(log(𝑛/𝜀))) + log(𝑡)) space.
Hence, the total space used by the streaming algorithm is

𝑂 (log(𝑛𝑡/𝜀)2 + 𝑡).

3.2 Finite Automata
We now present a streaming algorithm to estimate the prob-

ability that a given probabilistic string belongs to a given

regular language. We are given a DFA A = (𝑄, Σ, 𝛿, 𝑞0, 𝐹).
On input 𝛼 ∈ D(Σ)∗𝑡 of length 𝑛 and 𝜀 ∈ (0, 1/2), let 𝑃 =

Pr𝑤∼D𝛼
[𝑤 ∈ L(A)]. We seek to find a number 𝑣 such that

𝑣 ∈ [(1 − 𝜀)𝑃, 𝑃/(1 − 𝜀)].

Algorithm.We maintain, for every state 𝑞 ∈ 𝑄 , the prob-
ability (under D𝛼) of reaching 𝑞 after reading the first 𝑖

symbols, denoted by P𝑖 (𝑞) and finally, output the sum of

probabilities of the final states. This can be done in a stream-

ing fashion as described in Algorithm 3.2.

Algorithm 3.2: Computing DFA acceptance proba-

bility

Initialize: For every 𝑞 ∈ 𝑄 \ {𝑞0}, set P0 (𝑞) = 0 and

set P0 (𝑞0) = 1;

for 𝑖 = 1, ..., 𝑛 do
On reading 𝛼𝑖 , Update the P array:

P𝑖 (𝑞) =
∑
𝑞′,𝜎

𝛿 (𝑞′,𝜎)=𝑞

P𝑖−1 (𝑞′)𝛼𝑖 (𝜎)

Return 𝑣 =
∑
𝑞∈𝐹 P

𝑛 (𝑞)

We approximate the values in P using buckets. Define 𝜀 ′ =
𝜀/2𝑛𝑚where𝑚 is the number of transitions inA (i.e., |𝑄 | |Σ|).
We represent each value in the array P using a bucket 𝐵𝜀′ (𝑥)
for some integer 𝑥 ∈ N. In the update step, multiplication

adds the exponents, i.e., 𝐵𝜀′ (𝑥) ×𝐵𝜀′ (𝑦) ≈ 𝐵𝜀′ (𝑥 +𝑦) (Instead
of 𝛼𝑖 (𝜎) use (1−𝜀 ′)𝑦𝑖 (𝜎) where 𝑦𝑖 (𝜎) is the integer such that

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

𝛼𝑖 (𝜎) ∈ 𝐵𝜀′ (𝑦𝑖 (𝜎))). To perform addition, we add the terms

two at a time. To add 𝐵𝜀′ (𝑥1) and 𝐵𝜀′ (𝑥2) we search for the

integer𝑦 such that (1−𝜀 ′)𝑥1 + (1−𝜀 ′)𝑥2 ∈ 𝐵𝜀′ (𝑦) which is the
same as the largest𝑦 such that (1−𝜀 ′)𝑦 ≥ (1−𝜀 ′)𝑥1+(1−𝜀 ′)𝑥2

.

If such a 𝑦 is less than 0, we use 0 instead.

The analysis is similar to Section 3.1.

Approximation Guarantee. Let P̂𝑖 (𝑞) denote the (approximate)

value of P𝑖 (𝑞) as computed by our algorithm where the value

corresponding to a bucket 𝐵𝜀′ (𝑥) is (1 − 𝜀 ′)𝑥 . We can prove

by induction on 𝑖 that P̂
𝑖 (𝑞) ≥ P𝑖 (𝑞) ≥ (1− 𝜀 ′)𝑖𝑚 P̂𝑖 (𝑞) for all

𝑞 ∈ 𝑄 (In each iteration, the product introduces a multiplica-

tive error of atmost (1−𝜀 ′) and there are𝑚−1 additions each

of which introduces a multiplicative error of atmost (1− 𝜀 ′)).
Then, for large enough 𝑛, 𝑣 ≥ 𝑃 ≥ (1 − (𝜀/2𝑛𝑚))𝑛𝑚𝑣 ≥
(1 − 𝜀)𝑣 .

Space Complexity. Since the smallest non-zero value possible

is 1/2𝑛𝑡 , and the estimates are always larger than the actual

values, we have that for any 𝑖 ∈ {1, ..., 𝑛} and 𝑞 ∈ 𝑄 , P̂𝑖 (𝑞) ≥
1/2𝑛𝑡 . If P̂𝑖 (𝑞) = (1− 𝜀 ′)𝑥 , then (1− 𝜀/2𝑛𝑚)𝑥 ≥ 1/2𝑛𝑡 giving
us 𝑥 ≤ 4𝑛2𝑚𝑡/𝜀. Therefore the space needed to store the

array P̂ is 𝑂 (|𝑄 | log(𝑛𝑚𝑡/𝜀)). To bound the space used by

the computation at each step, we need the following lemma

in addition to Lemma 3.1.

Lemma 3.2. Given a rational number 𝑧 with 0 < 𝑧 < 1 and
two integers 𝑥1 and 𝑥2 with ∥𝑥 𝑗 ∥ ≤ 𝑡𝑥 for 𝑗 ∈ {1, 2}, we can
compute the largest integer 𝑦 such that 𝑧𝑦 ≥ 𝑧𝑥1 + 𝑧𝑥2 using
𝑂 (𝑡𝑥 (𝑡𝑥 + log(∥𝑧∥))) space.

Proof. We perform a binary search for such a 𝑦. The com-

parison is done using the same approach as in the proof of

Lemma 3.1 with the help of a recursive algorithm to com-

pute particular bits of a given power of 𝑧. The addition in

the RHS can also be done in log space. The overall recur-

sion depth is 𝑂 (𝑡𝑥) and the space used by a recursive call is

𝑂 (𝑡𝑥 + log(∥𝑧∥)) giving us the required space bound. □

As beforewe can ensure that ∥𝜀∥ = 𝑂 (⌈log(1/𝜀)⌉). Lemma

3.1 and Lemma 3.2 imply that the computation at each step

can be performed using𝑂 (log(𝑛𝑚𝑡/𝜀)2) space. Hence the to-
tal space used is𝑂 (log(𝑛𝑚𝑡/𝜀)2+|𝑄 | log(𝑛𝑚𝑡/𝜀)+𝑚 log(𝑚)+
𝑡 |Σ|) where the last two terms are simply the space needed

to store the input DFA and the probability vector at each

step. We can obtain an 𝜀-approximation by computing an

𝜀2
-accurate estimate, giving us the following theorem.

Theorem 3.3. Given a DFA A over the alphabet Σ with
𝑚 transitions, a probabilistic string 𝛼 ∈ D(Σ)∗𝑡 of length 𝑛
and an 𝜀 ∈ (0, 1/2), we can compute an 𝜀-approximation of
Pr𝑤∼D𝛼

[𝑤 ∈ L(A)] in a single pass over 𝛼 using 𝑂 (𝑡 |Σ| +
log(𝑛𝑚𝑡/𝜀)2 +𝑚 log(𝑛𝑚𝑡/𝜀)) space.

4 Quantitative Properties
In this section, we look at N-valued queries 𝑓 : Σ∗ → N, that
can be specified by automata based models. We first consider

finite state machines with registers that are updated using

linear functions. Later, we investigate a model with finite

states and a counter with two kinds of updates: increment

and decrement, but with the constraint that the decrement

applies only when the counter is non-zero.

4.1 Additive Cost Register Automata
We now consider a model called Cost Register Automata

(CRA) introduced in [2]. It consists of a finite state control

along with a finite number of registers. The state transitions

are independent of the register values and the registers are

updated based on the previous state and the symbol read.

We consider a special case of CRAs in which the registers

store values from N and the updates are linear. We call such

machines Additive CRAs.
Formally, an Additive Cost Register Automaton (ACRA)A

over the alphabet Σ is a tuple (𝑄, Σ, 𝛿, 𝑞0, 𝑟 ,M, u, v0, 𝝆) where
𝑄 is a finite set of states, 𝛿 : 𝑄 ×Σ→ 𝑄 is the state transition

function, 𝑞0 ∈ 𝑄 is the initial state, 𝑟 ∈ N is the number of

registers,M : 𝑄 × Σ→ N𝑟 2

and u : 𝑄 × Σ→ N𝑟 dictate the
register update function 𝜇A : 𝑄 × Σ × N𝑟 → N𝑟 given by

𝜇A (𝑞, 𝜎, v) = M(𝑞, 𝜎)v + u(𝑞, 𝜎) where M(𝑞, 𝜎) is viewed as

an 𝑟 × 𝑟 matrix. v0 ∈ N𝑟 is the vector of initial values of the
registers and 𝝆 : 𝑄 → N𝑟 is the aggregation function that

combines the register values to produce a natural number.

A configuration of A is a pair consisting of a state and a

vector representing register values, (𝑞, v) ∈ 𝑄 × N𝑟 . On an

input string 𝑤 = 𝑤1, ...,𝑤𝑛 , a run of A on 𝑤 is a sequence

of configurations (𝑞0, v0), (𝑞1, v1), ..., (𝑞𝑛, v𝑛) such that for

all 𝑖 ∈ {1, ..., 𝑛}, 𝑞𝑖 = 𝛿 (𝑞𝑖−1,𝑤𝑖) and v𝑖 = 𝜇A (𝑞𝑖−1,𝑤𝑖 , v𝑖−1).
The output of the automaton, denoted 𝑓A (𝑤) is given by

𝝆 (𝑞𝑛)𝑇 v𝑛 .
On input an ACRA𝐴 and a probabilistic string 𝛼 ∈ D(Σ)∗𝑡

we are interested in computing
˜𝑓A (𝛼) = E𝑤∼D𝛼

[𝑓A (𝑤)] (in
the streaming model). We’ll assume that all values in v0,M,

u and 𝝆 can be represented using 𝑡 bits.

Algorithm. Let P𝑖 (𝑞) ∈ [0, 1] denote the probability (under
D𝛼) of reaching state 𝑞 after reading the first 𝑖 symbols. We

use v(𝑤) ∈ N𝑟 to denote the vector of register values after
reading the string 𝑤 . Let E𝑖𝑐 (𝑞) ∈ R𝑟 denote the expected
values of the registers after reading the first 𝑖 symbols, given

that the state reached is 𝑞, i.e, E𝑖𝑐 (𝑞) = E𝑤∼D𝛼
[v(𝑤≤𝑖) |

𝛿 (𝑞0,𝑤≤𝑖) = 𝑞] where𝑤≤𝑖 denotes the prefix of𝑤 of length

𝑖 . Define E𝑖 (𝑞) = P𝑖 (𝑞)E𝑖𝑐 (𝑞). Then,

E𝑖 (𝑞) =
∑
|𝑤′ |=𝑖

𝛿 (𝑞0,𝑤
′)=𝑞

D𝛼 (𝑤 ′)v(𝑤 ′) (1)

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

where D𝛼 (𝑤 ′) = Π𝑖𝑗=1
𝛼 𝑗 (𝑤 ′𝑗) is the probability that a string

𝑤 drawn from D𝛼 has 𝑤 ′ as a prefix. The streaming algo-

rithm stores two arrays P and E which contain P𝑖 (𝑞) and
E𝑖 (𝑞) respectively (for all 𝑞). P can be updated in the same

way as in Algorithm 3.2. The following lemma gives the up-

date rule for E. The proof is straightforward using Equation 1
and can be found in Appendix A.1.

Lemma 4.1. For all 𝑖 > 0,

E𝑖 (𝑞) =
∑
𝑞′,𝜎

𝛿 (𝑞′,𝜎)=𝑞

𝛼𝑖 (𝜎)
[
M(𝑞′, 𝜎)E𝑖−1 (𝑞′) +P𝑖−1 (𝑞′)u(𝑞′, 𝜎)

]
(2)

Now,
˜𝑓A (𝛼) = E𝑤∼D𝛼

[𝑓A (𝑤)] which can be stated in

terms of conditional expectations as

∑
𝑞∈𝑄 P𝑛 (𝑞)E[𝑓A (𝑤) |

𝛿 (𝑞0,𝑤) = 𝑞]. Note that if the last state is 𝑞, then 𝑓A (𝑤) =
𝝆 (𝑞)𝑇 v(𝑤). Using linearity of expectation, we getE[𝑓A (𝑤)] =∑
𝑞∈𝑄 P𝑛 (𝑞)𝝆 (𝑞)𝑇 E𝑛𝑐 (𝑞) =

∑
𝑞∈𝑄 𝝆 (𝑞)𝑇 E𝑛 (𝑞). This gives us

the streaming algorithm presented in Algorithm 4.1.

Algorithm 4.1: Computing expected output of an

ACRA

Initialize P: For every 𝑞 ∈ 𝑄 \ {𝑞0}, set P0 (𝑞) = 0 and

set P0 (𝑞0) = 1;

Initialize E: For every 𝑞 ∈ 𝑄 \ {𝑞0}, set E0 (𝑞) = 0 ∈ R𝑟
and set E0 (𝑞0) = v0;

for 𝑖 = 1, ..., 𝑛 do
On reading 𝛼𝑖 , update the P array:

P𝑖 (𝑞) =
∑
𝑞′,𝜎

𝛿 (𝑞′,𝜎)=𝑞

P𝑖−1 (𝑞′)𝛼𝑖 (𝜎).

Update the E array according to Equation 2.

Return

∑
𝑞∈𝑄 𝝆 (𝑞)𝑇 E𝑛 (𝑞)

As before, we use buckets to approximate the values in

both the arrays. We are also given an approximation fac-

tor 𝜀 as input. Let 𝜀 ′ = 𝜀/4𝑛𝑚𝑟 where 𝑚 is the number of

transitions in A. We use buckets of the form 𝐵𝜀′ (𝑥) to store

values. Here, the values can be greater than 1 and hence 𝑥

can be negative. Addition and multiplication is performed

on buckets in the same way as in Section 3.

Approximation Guarantee. Let P̂𝑖 (𝑞) and Ê
𝑖 (𝑞) denote the

approximations of P𝑖 (𝑞) and E𝑖 (𝑞) respectively. Since the

operations on buckets always over-estimate, we have that

P̂
𝑖 (𝑞) ≥ P𝑖 (𝑞), and Ê𝑖 (𝑞)𝑘 ≥ E𝑖 (𝑞)𝑘 , for all 𝑞 ∈ 𝑄 , 𝑖 ∈ [𝑛], and
𝑘 ∈ [𝑟], where the subscript 𝑘 indicates the 𝑘 th component of

the vector. Since there are atmost 2𝑚𝑟 operations involved in

computing any particular entry in each iteration and each op-

eration introduces a multiplicative error of atmost (1−𝜀 ′), we
get P𝑖 (𝑞) ≥ (1− 𝜀 ′)2𝑖𝑚𝑟 P̂𝑖 (𝑞) and E𝑖 (𝑞)𝑘 ≥ (1− 𝜀 ′)2𝑖𝑚𝑟 Ê

𝑖 (𝑞)𝑘
for all 𝑞, 𝑖 and 𝑘 . If 𝑣 is the final result of the algorithm,

𝑣 ≥ ˜𝑓A (𝛼) ≥ (1 − 𝜀/4𝑛𝑚𝑟)2𝑛𝑚𝑟𝑣 ≥ (1 − 𝜀)𝑣 for large 𝑛.

Space Complexity. It is easy to see that all non-zero values

(in P and E) are bounded from below by 1/2𝑛𝑡 . Since we

always maintain an over-estimate, for any bucket 𝐵𝜀′ (𝑥)
stored in memory, (1− 𝜀/4𝑛𝑚𝑟)𝑥 ≥ 1/2𝑛𝑡 which implies 𝑥 ≤
8𝑛2𝑚𝑟𝑡/𝜀. Also, note that the values in P are bounded above

by 1 and values in E are bounded by the largest value any

register can take for any input word of length𝑛, which can be

atmost (4𝑟)𝑛𝑡 (by induction on 𝑛). From the approximation

guarantee we get that (1 − 𝜀 ′)𝑥+2𝑛𝑚𝑟 ≤ (4𝑟)𝑛𝑡 which proves

that 𝑥 ≥ −4𝑛2𝑚𝑟𝑡 log(4𝑟)/𝜀 − 2𝑛𝑚𝑟 . Hence the space used

by a single value is𝑂 (log(𝑛𝑚𝑟𝑡/𝜀)). Thus the total space for
storing the two arrays P̂ and Ê is 𝑂 (|𝑄 |𝑟 log(𝑛𝑚𝑟𝑡/𝜀)).
Using Lemmas 3.1 and 3.2, the computation in any itera-

tion can be performed using𝑂 (log(𝑛𝑚𝑟𝑡/𝜀)2) space. Taking
into account the space needed to store the input automaton

and the input probabilities at each step, we arrive at the

following theorem.

Theorem 4.2. Given an ACRAA over the alphabet Σ with𝑚
transitions and 𝑟 registers, a probabilistic string 𝛼 ∈ D(Σ)∗𝑡 of
length𝑛 and an 𝜀 ∈ (0, 1/2), we can compute an 𝜀-approximate
estimate of the expected output of A w.r.t. D𝛼 , ˜𝑓A (𝛼) in a
single pass over 𝛼 using 𝑂 (log(𝑛𝑚𝑟𝑡/𝜀)2 +𝑚𝑟 log(𝑛𝑚𝑡/𝜀) +
𝑚𝑟 2 + 𝑡 |Σ|) space.

4.2 Adding Non-linear Updates
We have thus far considered a model where the register

updates are linear. We now introduce a setting where the

updates exhibit a non-linear behavior. Specifically, we will

consider the case of a single register that behaves as a counter

that undergoes increments and decrements but its value can

never go below 0. In other words, the counter has a barrier

at 0. As we will see, several new technical ideas are needed

to handle this non-linearity.

The query here is specified using a finite automaton with

a non-negative counter which is a special kind of CRAs

given by A = (𝑄, Σ, 𝛿, 𝑞0, 𝑢, 𝑣0) where 𝑄, 𝛿 and 𝑞0 are de-

fined as before. There is a single counter X. The counter

update function is given by 𝑢 : 𝑄 × Σ→ {+1,−1}; on read-

ing 𝜎 at state 𝑞,𝑢 (𝑞, 𝜎) is either an increment or a decrement

and 𝑣0 ∈ N is the initial value of the counter. On an in-

put string 𝑤 = 𝑤1, ...,𝑤𝑛 , a run of A on 𝑤 is a sequence

(𝑞0, 𝑣0), ..., (𝑞𝑛, 𝑣𝑛) where each (𝑞𝑖 , 𝑣𝑖) ∈ 𝑄 ×N and for all 𝑖 ∈
{1, ..., 𝑛}, 𝑞𝑖 = 𝛿 (𝑞𝑖−1,𝑤𝑖) and 𝑣𝑖 = max(𝑣𝑖−1 + 𝑢 (𝑞𝑖−1,𝑤𝑖), 0).
We are interested in estimating the expected value of the fi-

nal value of the counter 𝑣𝑛 w.r.t.D𝛼 for an input probabilistic
string 𝛼 ∈ D(Σ)∗𝑡 .
To start with, we first consider an automaton which has

only a single state, say 𝑞0. Specifically, the setting of the

problem is as follows: the symbol set Σ has two elements, say

𝑎 and 𝑏. 𝑢 (𝑞0, 𝑎) = 1 and 𝑢 (𝑞0, 𝑏) = −1, in other words, the

counter 𝑋 will increase by 1 when the automaton processes

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

an 𝑎 and will decrease by 1 when a 𝑏 is processed; however,

if the counter value is already zero, then a decrement is not

applied and the counter value remains 0.

For this single state case, we will give an algorithm that

computes an approximation of the complete distribution of

the counter values after reading a probabilistic string 𝛼 ∈
D(Σ)∗𝑡 of length 𝑛, with �̃� (

√
𝑛) space, where �̃� hides loga-

rithmic factors. We measure the quality of approximation by

the total variation distance between the true distribution and

the distribution output by the algorithm. The total variation

distance of two distributions D1 and D2 over a finite set 𝑉

is given by TVD(D1,D2) = 1

2

∑
𝑣∈𝑉 |D1 (𝑣) − D2 (𝑣) | where

D𝑗 (𝑣) is the probability of 𝑣 underD𝑗 for 𝑗 ∈ {1, 2}. We can

thus use the (approximate) output distribution to compute

the expected value of the counter w.r.t. D𝛼 . The rest of this
(sub) section is devoted to proving the following theorem.

Theorem4.3. There is a single pass streaming algorithm that,
given a probabilistic string 𝛼 ∈ D(Σ)∗𝑡 of length 𝑛, computes a
probability distribution over the counter values at the end of the
streamwhose total variation distance from the true distribution
of the counter values is𝑂

(
1

𝑛2

)
and uses𝑂

(√
𝑛 log(𝑛)3+𝑡

)
space.

We start by setting up some notation. Let 𝑝𝑖 be the prob-

ability that the 𝑖𝑡ℎ symbol is 𝑎 and (1 − 𝑝𝑖) be the proba-

bility that the 𝑖𝑡ℎ symbol is 𝑏 (same as in Example 2.2). Let

𝑋1, 𝑋2, . . . , 𝑋𝑛 be random variables where the variable 𝑋𝑖
takes value 1 with probability 𝑝𝑖 , and value −1 with proba-

bility (1 − 𝑝𝑖). We denote by 𝑋≤𝑖 the counter value at step
𝑖 (with barrier at 0). Our approach is based on linking the

behavior of the counter with a barrier at 0 with that of a

counter with no barrier at 0. We will refer to this latter

counter as the unrestricted counter. For 1 ≤ 𝑖 ≤ 𝑛, we define
𝑋𝑈≤𝑖 =

∑𝑖
𝑗=1
𝑋𝑖 . Thus 𝑋

𝑈
≤𝑖 denotes the counter value after 𝑖

items have been processed if there were no barrier at 0, and

the counter was initialized to 0. Finally, let 𝐿𝑖 = min𝑗≤𝑖 {𝑋𝑈≤ 𝑗 }
and 𝐿𝐸𝑖 = min𝑗≤𝑖 {E[𝑋𝑈≤ 𝑗]}, denote respectively the least

value achieved and the least expected value of the unre-

stricted counter in processing the first 𝑖 items in the stream.

Now we give two crucial properties of the counter with

a barrier. Lemma 4.4 describes a connection between the

counter with barrier and the unrestricted counter. Using this

connection, we then prove in Lemma 4.5 that the value of

the counter with barrier remains concentrated in a narrow

range at any point. We will prove our result in the more

general setting where the counter starts with an arbitrary

initial value 𝑣0 (which is typically 0). This general version

will be useful for a result in the next section.

Lemma 4.4. Suppose the counter value is initially set to 𝑣0.
Then for any 1 ≤ 𝑖 ≤ 𝑛, 𝑋≤𝑖 = 𝑣0 + 𝑋𝑈≤𝑖 −min{0, 𝑣0 + 𝐿𝑖 }.
Proof. We first prove that if 𝑣0 = 0 then 𝑋≤𝑖 = 𝑋𝑈≤𝑖 − 𝐿𝑖 .
Suppose 𝑗 ∈ {1, ...𝑖} is the last time before step 𝑖 such that

𝐿𝑖 = 𝑋
𝑈
≤ 𝑗 . We prove that 𝑗 is then the last time before step 𝑖

such that𝑋≤ 𝑗 = 0. The lemma then follows from the identity,

𝑋≤𝑖 =
∑𝑖
𝑘=𝑗+1𝑋𝑘 = 𝑋𝑈≤𝑖 − 𝑋𝑈≤ 𝑗 which holds because the

barrier is never touched (i.e. the counter never becomes 0)

after step 𝑗 .

If 𝑗 is not the last time before 𝑖 with 𝑋≤ 𝑗 = 0, then there

are two cases; either the last time is before 𝑗 or the last time

is after 𝑗 .

• Case 1: If the last time is before 𝑗 , then 𝑋≤ 𝑗 > 0.

Suppose the last time is 𝑘 where 𝑘 < 𝑗 , then the barrier

is not touched between steps (𝑘 + 1) through 𝑗 , which
means 𝑋≤ 𝑗 = 𝑋𝑈≤ 𝑗 − 𝑋𝑈≤𝑘 . So 𝑋

𝑈
≤ 𝑗 > 𝑋𝑈≤𝑘 , which is a

contradiction since 𝐿𝑖 = 𝑋
𝑈
≤ 𝑗 .

• Case 2: If the last time is after 𝑗 . Let 𝑘 be the first
time that 𝑋≤𝑘 = 0 after time 𝑗 . The barrier is then not

touched between steps (𝑗 +1) through 𝑘 , which means

𝑋≤𝑘−𝑋≤ 𝑗 = 𝑋𝑈≤𝑘−𝑋
𝑈
≤ 𝑗 . Since𝑋≤𝑘 = 0,𝑋𝑈≤𝑘 ≤ 𝑋

𝑈
≤ 𝑗 , this

is a contradiction since 𝑗 is the last time that 𝐿𝑖 = 𝑋
𝑈
≤ 𝑗 .

When 𝑣0 > 0, if 𝐿𝑖 + 𝑣0 ≤ 0 then the counter has touched

the barrier at least once. Using a similar argument as above,

we get 𝑋≤𝑖 = 𝑋𝑈≤𝑖 − 𝐿𝑖 = 𝑣0 + 𝑋𝑈≤𝑖 − (𝑣0 + 𝐿𝑖). If 𝐿𝑖 + 𝑣0 > 0,

then the counter has never touched the barrier, the value

is the same as the counter without a barrier, which means

𝑋≤𝑖 = 𝑣0 + 𝑋𝑈≤𝑖 . □

Lemma 4.5. Suppose the counter value is initially set to 𝑣0.
Then with probability at least 1 − 1

𝑛2
, for any 1 ≤ 𝑖 ≤ 𝑛,

|𝑋≤𝑖 − (𝑣0 + E[𝑋𝑈≤𝑖] −min{𝑣0 + 𝐿𝐸𝑖 , 0}) | < 16

√
𝑛 log𝑛.

Proof. Let 𝑌𝑖 = (𝑋𝑖 + 1)/2 and 𝑌≤𝑖 =
∑𝑖
𝑗=1
𝑌𝑗 , then 𝑋

𝑈
≤𝑖 =

2𝑌≤𝑖 − 𝑖 . Since 𝑌𝑖s are independent 0-1 random variables,

by the Chernoff bounds, |𝑌≤𝑖 − E[𝑌≤𝑖] | < 4

√
𝑛 log𝑛 with

probability at least 1 − 1

𝑛3
, which means |𝑋𝑈≤𝑖 − E[𝑋𝑈≤𝑖] | <

8

√
𝑛 log𝑛 also with probability at least 1 − 1

𝑛3
.

Applying union bound on all 𝑖 , with probability at least

1 − 1

𝑛2
, |𝑋𝑈≤𝑖 − E[𝑋𝑈≤𝑖] | < 8

√
𝑛 log𝑛 for every 1 ≤ 𝑖 ≤ 𝑛. In

this event, for any 𝑖 ,

𝐿𝑖 = min

𝑗≤𝑖
{𝑋𝑈≤ 𝑗 } > min

𝑗≤𝑖
{E[𝑋𝑈≤ 𝑗]−8

√
𝑛 log𝑛} = 𝐿𝐸𝑖 −8

√
𝑛 log𝑛

On the other hand, suppose 𝑗 is a time when 𝐿𝐸𝑖 = E[𝑋𝑈≤ 𝑗],
then

𝐿𝑖 ≤ 𝑋𝑈≤ 𝑗 < E[𝑋𝑈≤ 𝑗] + 8

√
𝑛 log𝑛 = 𝐿𝐸𝑖 + 8

√
𝑛 log𝑛

So |𝐿𝑖 − 𝐿𝐸𝑖 | < 8

√
𝑛 log𝑛 in this event. So for all 1 ≤ 𝑖 ≤ 𝑛,

|min{𝑣0 + 𝐿𝑖 , 0} −min{𝑣0 + 𝐿𝐸𝑖 , 0}| < 8

√
𝑛 log𝑛.

By Lemma 4.4, 𝑋≤𝑖 = 𝑣0 + 𝑋𝑈≤𝑖 − min{0, 𝑣0 + 𝐿𝑖 }, which
implies |𝑋≤𝑖 − (𝑣0 +E[𝑋𝑈≤𝑖] −min{𝑣0 +𝐿𝐸𝑖 , 0}) | < 16

√
𝑛 log𝑛

with probability at least 1 − 1

𝑛2
. □

We next give an algorithm to compute the probability dis-

tribution of the counter values. For clarity of exposition, we

first assume that we can store a probability value to arbitrary

precision using only 1 bit of space. We then show how to

eliminate this assumption.

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Algorithm. For each 𝑖 ∈ {1, ..., 𝑛} and 𝑣 ∈ N∩[𝑣0−𝑛, 𝑣0+𝑛],
let P𝑖 [𝑣] denote the probability that the counter value is 𝑣

after step 𝑖 , i.e., the probability that 𝑋≤𝑖 = 𝑣 . We maintain an

approximation of the array P𝑖 which we denote by P̂
𝑖
. The

key point is that we do not explicitly store P𝑖 [𝑣] for every
possible counter value 𝑣 but only for 𝑂 (

√
𝑛 log𝑛) values of

𝑣 . The values 𝑣 of interest at step 𝑖 (for P̂
𝑖
) will be precisely

the integer values within a distance of 16

√
𝑛 log𝑛 from (𝑣0 +

E[𝑋𝑈≤𝑖] − min{𝑣0 + 𝐿𝐸𝑖 , 0}). If an entry 𝑣 falls outside this

range, we implicitly have P̂
𝑖 [𝑣] = 0.

We now describe how the array P̂
𝑖
is computed from the

array P̂
𝑖−1

. It is easy to see that the values P𝑖 [𝑣] satisfy the

following equation:

P𝑖 [𝑣] =
{
𝑝𝑖 · P𝑖−1 [𝑣 − 1] + (1 − 𝑝𝑖) · P𝑖−1 [𝑣 + 1] if 𝑣 > 0

(1 − 𝑝𝑖) (𝑃𝑖−1 [0] + 𝑃𝑖−1 [1]) if 𝑣 = 0

We use this equation to update P̂
𝑖
storing only the values in

the range of interest. Values not present in P̂
𝑖−1

are treated

as 0 when computing P̂
𝑖
. We can delete P̂

𝑖−1

after computing

P̂
𝑖
, so the total space used in storing the array P̂

𝑖
after any

step 𝑖 is 𝑂 (
√
𝑛 log𝑛). (Note that both E[𝑋𝑈≤𝑖] and 𝐿𝐸𝑖 can be

maintained using only 𝑂 (log𝑛) space).

Lemma 4.6. 2 TVD(P̂𝑛, P𝑛) =
𝑣0+𝑛∑
𝑣=𝑣0−𝑛

|P̂𝑛 [𝑣] − P𝑛 [𝑣] | < 1

𝑛2
.

Proof. A realization 𝑅 = (𝑅0, 𝑅1, 𝑅2, . . . , 𝑅𝑛) is a sequence

of counter values such that for all 1 ≤ 𝑖 ≤ 𝑛, 𝑋≤𝑖 = 𝑅𝑖 and
𝑋≤0 = 𝑣0. We say a realization 𝑅 is good until time 𝑖 if for each
𝑗 ≤ 𝑖 , |𝑅 𝑗 −(𝑣0+E[𝑋𝑈≤ 𝑗] −min{𝑣0+𝐿𝐸𝑗 , 0}) | < 16

√
𝑛 log𝑛. We

say a realization 𝑅 is bad if 𝑅 is not good until time 𝑛. Let𝐺𝑖,𝑣
be the set of all realizations 𝑅 that are good until time 𝑖 and

𝑅𝑖 = 𝑣 . We will prove that for any 𝑖, 𝑣 , P̂
𝑖 [𝑣] = ∑

𝑅∈𝐺𝑖,𝑣
Pr(𝑅)

where Pr(𝑅) is the probability of 𝑅 under D𝛼 . With this

equation, the lemma follows from Lemma 4.5 which shows

that the total probability mass of bad realizations is bounded

by
1

𝑛2
.

We prove P̂
𝑖 [𝑣] = ∑

𝑅∈𝐺𝑖,𝑣
Pr(𝑅) by induction on 𝑖 . In the

base case, if 𝑖 = 0, since any possible realization 𝑅 is good

until 𝑖 and has 𝑅0 = 𝑣0,

∑
𝑅∈𝐺𝑖,𝑣

Pr(𝑅) is 1 if 𝑣 = 𝑣0 and 0

otherwise which is exactly the same as P̂
𝑖 [𝑣]. Now suppose,

by inductive hypothesis, that for any 0 ≤ 𝑗 ≤ 𝑖 − 1 the

statement is true. Consider a value 𝑣 ∈ N∩ [𝑣0 −𝑛, 𝑣0 +𝑛]. If
|𝑣 − (𝑣0+E[𝑋𝑈𝑖] −min{𝑣0+𝐿𝐸𝑖 , 0}) | ≥ 16

√
𝑛 log𝑛, then any 𝑅

with 𝑅𝑖 = 𝑣 is not good until time 𝑖 and P̂
𝑖 [𝑣] = 0. Otherwise

if 𝑣 > 0, we have,

P̂
𝑖 [𝑣] = 𝑝𝑖 P̂

𝑖−1 [𝑣 − 1] + (1 − 𝑝𝑖)P̂
𝑖−1 [𝑣 + 1]

= 𝑝𝑖

∑
𝑅∈𝐺𝑖−1,𝑣−1

Pr(𝑅) + (1 − 𝑝𝑖)
∑

𝑅∈𝐺𝑖−1,𝑣+1

Pr(𝑅)

Let 𝐸𝑖 be the event that the realization of the counter is good

until time 𝑖 , then
∑
𝑅∈𝐺𝑖,𝑣

Pr(𝑅) = Pr(𝑋≤𝑖 = 𝑣 ∧ 𝐸𝑖). So, for
𝑣 > 0,

P̂
𝑖 [𝑣] = 𝑝𝑖Pr(𝑋≤𝑖−1 = 𝑣 − 1 ∧ 𝐸𝑖−1)

+ (1 − 𝑝𝑖)Pr(𝑋≤𝑖−1 = 𝑣 + 1 ∧ 𝐸𝑖−1)
= Pr(𝑋≤𝑖 = 𝑣 ∧ 𝐸𝑖−1)
= Pr(𝑋≤𝑖 = 𝑣 ∧ 𝐸𝑖)

=
∑
𝑅∈𝐺𝑖,𝑣

Pr(𝑅)

The third equation holds because |𝑣−(𝑣0+E[𝑋𝑈≤𝑖] −min{𝑣0+
𝐿𝐸𝑖 , 0}) | < 16

√
𝑛 log𝑛. The case when 𝑣 = 0 is similar. □

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. We implement the above algorithm by

allocating 10 log𝑛 bits of space for each probability value.

The input probabilities are approximated to 10 log𝑛 bit of

precision. Since the algorithm only maintains 𝑂 (
√
𝑛 log𝑛)

values, the total number of bits used is 𝑂 (
√
𝑛 log(𝑛)3).

Every single calculation step involved in computing an

entry P̂
𝑖 [𝑣] introduces an 𝑂 (1

𝑛10
) additive error. Since the

total number of calculations performed by the algorithm is

𝑂 (𝑛
√
𝑛 log𝑛), the cumulative error caused due to the bounded

precision calculations is𝑜 (1

𝑛3
). It thus follows fromLemma 4.6

that the total variation distance between the output and the

true distribution is 𝑂 (1

𝑛2
). □

4.3 Counter Independent Automata
In this section, we generalize the results of Section 4.2 to

handle automata with multiple states and we also let Σ to be

an arbitrary finite alphabet. As before the counter 𝑋 has a

barrier at 0.

We associate a directed graph𝐺 with the automaton such

that the vertices of 𝐺 are the states of the automaton. There

is a directed edge (𝑞, 𝑞′) in 𝐺 if the state 𝑞 can reach the

state 𝑞′ within one step. We first show that if the input

automaton satisfies three assumptions below, we can still

compute the probability distribution of the final counter

value w.r.t. D𝛼 given a probabilistic string 𝛼 ∈ D(Σ)∗𝑡 . Then
we show that the first two assumptions can be eliminated

(shown in Section 4.6), leaving only a mild assumption on

probability values seen in the stream, namely, the probability

values are bounded away from 0 and 1.

Assumption 1. 𝐺 is strongly connected, that is, every pair
of vertices in 𝐺 is connected by a path.

Assumption 2. 𝐺 is aperiodic, that is, for every vertex 𝑠 in𝐺 ,
GCD of the set {ℓ | there is a walk of length ℓ from 𝑠 to itself}
is 1.

Assumption 3. There is a constant 𝜂 > 0 such that for any
1 ≤ 𝑖 ≤ 𝑛 and 𝜎 ∈ Σ, 𝜂 < 𝛼𝑖 (𝜎) < 1 − 𝜂.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

Define𝑋𝑖 as the value of the update𝑢 (𝑞, 𝜎) at time 𝑖 , define

𝑋𝑈≤𝑖 , 𝐿𝑖 , 𝐿
𝐸
𝑖 the same as in the previous section. Let 𝑌𝑖 =

(𝑋𝑖 + 1)/2 and 𝑌𝑈≤𝑖 =
∑𝑖
𝑗=1
𝑌𝑖 be the number of increments

seen after processing 𝑖 items. We denote by 𝑆𝑖 the random

state after processing 𝑖 items. For any random variable 𝑍 , let

D(𝑍) be the probability distribution of 𝑍 .

Note that if the counter does not have a barrier, then the

automaton is an Additive CRA; we can maintain E[𝑋𝑈≤𝑖]
and 𝐿𝐸𝑖 with �̃� (1) space using the algorithm presented in

Section 4.1, but using bounded precision arithmetic instead

of buckets for approximation. However, in this setting, 𝑋𝑖 ’s

are not independent. In order to use the same idea as in

Section 4.2, we need to prove that the distribution of 𝑋𝑈≤𝑖 is

still concentrated over �̃� (
√
𝑛) values.

Lemma4.7. For any𝐾 , with probability at least 1− 1

𝑛3
, |𝑋𝑈≤𝐾−

E[𝑋𝑈≤𝐾] | ≤ 16

√
𝑛𝐶 · log𝑛, where 𝐶 is a constant that only

depends on |𝑄 | and 𝜂.

The proof relies on the following Lemma 4.8 which shows

that if two positions 𝑖 and 𝑗 are far enough, then 𝑆𝑖 and 𝑆 𝑗
are almost independent. We first state the lemma and prove

it later in Section 4.4.

Lemma 4.8. There exists a constant 𝐶 > 0 which depends
only |𝑄 | and 𝜂, such that for any positions 𝑖 and 𝑗 with 𝑗 − 𝑖 ≥
𝐶 log𝑛, TVD(D(𝑆 𝑗 | 𝑆𝑖 = 𝑞𝑖),D(𝑆 𝑗 | 𝑆𝑖 = 𝑞′𝑖)) = 𝑜

(
1

𝑛3

)
for

all pairs of states 𝑞𝑖 and 𝑞′𝑖 in 𝑄 .

We will also use the following concentration bound which

is similar to the Chernoff bounds, but allows the random

variables to have low dependencies among each other. We

prove this proposition in Section 4.5.

Proposition 4.9. Let 𝑍 =
∑𝑁
𝑖=1
𝑍𝑖 where 𝑍1, 𝑍2, . . . , 𝑍𝑁 are

𝑁 indicator random variables with the following property: for
any 𝑖 ∈ {1, ..., 𝑁 } and an 𝑖 − 1 dimensional binary vector V,
|E[𝑍𝑖] − E[𝑍𝑖 |

∧𝑖−1

𝑗=1
𝑍 𝑗 = 𝑉𝑗] | < 1/𝑁 2. Then for any 0 < 𝛿 <

1, Pr(|𝑍 − E[𝑍] | > 𝛿𝑁) < 𝑒−𝛿2𝑁 /4.

We are now ready to prove Lemma 4.7. We start by briefly

reviewing the idea of the proof. By Lemma 4.8, we know that

if 𝑌𝑖 and 𝑌𝑗 are “far away”, then they are almost independent.

We can then partition 𝑌𝑖 ’s into groups so that the random

variables in each group are almost independent. We then

use Proposition 4.9 to prove that the sum of the variables in

each group is concentrated, which implies that 𝑋𝑈≤𝑖 is also
concentrated.

Proof of Lemma 4.7. For sake of clarity, let us assume 𝐾 = 𝑛.

Let 𝑖, 𝑗 ∈ {1, ..., 𝑛} be indices with 𝑗 − 𝑖 > 𝐶 log𝑛 where 𝐶 is

the same constant as in Lemma 4.8. By Lemma 4.8, for any

pair of states 𝑞 and 𝑞′, TVD(D(𝑆 𝑗−1 | 𝑆𝑖 = 𝑞),D(𝑆 𝑗−1 | 𝑆𝑖 =
𝑞′)) = 𝑜 (1

𝑛3
), which implies that for any pair of states 𝑞 and

𝑞′,
∑
𝑞′∈𝑄 |Pr(𝑆 𝑗−1 = 𝑞′) − Pr(𝑆 𝑗−1 = 𝑞′ | 𝑆𝑖 = 𝑞) | = 𝑜 (1

𝑛3
).

Hence for any 𝑦 ∈ {0, 1} and 𝑞 ∈ 𝑄 ,
|Pr(𝑌𝑗 = 𝑦) − Pr(𝑌𝑗 = 𝑦 | 𝑆𝑖 = 𝑞) |

=

���∑
𝑞′∈𝑄

Pr(𝑌𝑗 = 𝑦 | 𝑆 𝑗−1 = 𝑞
′) · Pr(𝑆 𝑗−1 = 𝑞

′) − Pr(𝑌𝑗 = 𝑦 | 𝑆𝑖 = 𝑞)
���

=

���∑
𝑞′∈𝑄

Pr(𝑌𝑗 = 𝑦 | 𝑆 𝑗−1 = 𝑞
′)
(
Pr(𝑆 𝑗−1 = 𝑞

′) − Pr(𝑆 𝑗−1 = 𝑞
′ | 𝑆𝑖 = 𝑞)

) ���
<

1

𝑛3

where we have used independence of 𝑌𝑗 and 𝑆𝑖 given 𝑆 𝑗−1.

Since for any 𝑘 ≤ 𝑖 , 𝑌𝑗 and 𝑌𝑘 are independent given 𝑆𝑖 , we
have, for any 𝑦,𝑦 ′ ∈ {0, 1} and 𝑞 ∈ 𝑄 , Pr(𝑌𝑗 = 𝑦 | 𝑌𝑖 =

𝑦 ′, 𝑆𝑖 = 𝑞) = Pr(𝑌𝑗 = 𝑦 | 𝑆𝑖 = 𝑞). Now let 𝐼 ⊆ {1, ..., 𝑖} be a
subset of indices before 𝑖 . Given any |𝐼 |-dimensional binary

vector V = (𝑉𝑘)𝑘∈𝐼 and 𝑦 ∈ {0, 1}, we have,

Pr(𝑌𝑗 = 𝑦 |
∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘)

=
∑
𝑞∈𝑄

Pr(𝑌𝑗 = 𝑦 |
∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘 , 𝑆𝑖 = 𝑞) · Pr(𝑆𝑖 = 𝑞 |
∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘)

=
∑
𝑞∈𝑄

Pr(𝑌𝑗 = 𝑦 | 𝑆𝑖 = 𝑞) · Pr(𝑆𝑖 = 𝑞 |
∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘)

<
∑
𝑞∈𝑄
(Pr(𝑌𝑗 = 𝑦) +

1

𝑛3
) · Pr(𝑆𝑖 = 𝑞 |

∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘)

= (Pr(𝑌𝑗 = 𝑦) +
1

𝑛3
) ·

∑
𝑞∈𝑄

Pr(𝑆𝑖 = 𝑞 |
∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘)

= Pr(𝑌𝑗 = 𝑦) +
1

𝑛3

Similarly, we have Pr(𝑌𝑗 = 𝑦 |
∧
𝑘∈𝐼 𝑌𝑘 = 𝑉𝑘) > Pr(𝑌𝑗 = 𝑦) −

1

𝑛3
, which give us, for any 𝑖, 𝑗 ∈ {1, ..., 𝑛} with 𝑗 − 𝑖 > 𝐶 log𝑛,

𝑦 ∈ {0, 1} and V ∈ {0, 1}𝐼 for some 𝐼 ⊆ {1, ..., 𝑖},

|Pr(𝑌𝑗 = 𝑦) − Pr(𝑌𝑗 = 𝑦 |
∧
𝑘∈𝐼

𝑌𝑘 = 𝑉𝑘) | <
1

𝑛3
(3)

Let 𝑀 = ⌊2𝐶 log𝑛⌋. For any 1 ≤ 𝑘 ≤ 𝑀 , define 𝑁𝑘 =

⌊𝑛+(𝑀−𝑘)
𝑀
⌋. Divide 𝑌𝑖 ’s into 𝑀 groups as follows: For any

1 ≤ 𝑘 ≤ 𝑀 and 0 ≤ ℓ < 𝑁𝑘 , let 𝑌
𝑘
ℓ = 𝑌ℓ𝑀+𝑘 . Let 𝑌

𝑘 =∑𝑁𝑘−1

ℓ=0
𝑌𝑘ℓ .

By Inequality (3), for any ℓ > 0, 𝑘 and 𝑉 ∈ {0, 1}ℓ−1
have

|Pr(𝑌𝑘ℓ = 1) − Pr(𝑌𝑘ℓ = 1 | ∧ℓ−1

𝑗=1
𝑌𝑘𝑗 = 𝑉𝑗) | < 1

𝑛3
< 1

𝑁 3

𝑘

. By

Proposition 4.9, for any 𝑘 , with probability at least 1 − 1

𝑛4
,

|𝑌𝑘 − E[𝑌𝑘] | ≤ 4

√
𝑁𝑘 log𝑛.

Take union bound over 𝑘 , with probability at least 1 − 1

𝑛3
,

we have,

|𝑌𝑈≤𝑛 − E[𝑌𝑈≤𝑛] | ≤
𝑀∑
𝑘=1

|𝑌𝑘 − E[𝑌𝑘] |

≤ 4

𝑀∑
𝑘=1

√
𝑁𝑘 log𝑛

≤ 8

√
𝐶 log𝑛 ·

√
𝑛 log𝑛

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

= 8

√
𝑛𝐶 · log𝑛

where the last inequality follows from Cauchy-Schwarz. Re-

alizing that 𝑋𝑈≤𝑛 = 2𝑌𝑈≤𝑛 − 1, we get the required bound. □

By replacing the use of the Chernoff boundswith Lemma 4.7

in the proof of Lemma 4.5, we get that with probability

at least 1 − 1

𝑛2
, for any 1 ≤ 𝑖 ≤ 𝑛, 𝑋≤𝑖 lies within an

𝑂 (
√
𝑛𝐶 log𝑛)-sized band around 𝑣0+E[𝑋𝑈≤𝑖]−min{𝑣0+𝐿𝐸𝑖 , 0}.

Therefore we can maintain an approximate distribution of

(𝑆𝑖 , 𝑋≤𝑖) using 𝑂 (|𝑄 |
√
𝑛𝐶 log𝑛) values where each value

takes 𝑂 (log𝑛) bits of space. E[𝑋𝑈≤𝑖] and 𝐿𝐸𝑖 can be main-

tained using 𝑂 (|𝑄 | log𝑛) space by maintaining E[𝑋𝑈≤𝑖 | 𝑆𝑖 =
𝑞] for every 𝑞 ∈ 𝑄 . Therefore, using similar arguments as in

the proof of Theorem 4.3 we obtain the following result.

Lemma 4.10. For any CRA A with a single counter (with
barrier at 0) having updates from the set {+1,-1} with the un-
derlying graph being strongly connected and aperiodic, there
is a single pass streaming algorithm that, given a probabilistic
string 𝛼 ∈ D(Σ)∗𝑡 satisfying Assumption 3, computes a prob-
ability distribution over the counter values at the end of the
streamwhose total variation distance from the true distribution
of the counter values is 𝑂 (1

𝑛2
) and uses 𝑂 (𝐶 ′

√
𝑛 · log(𝑛)2 + 𝑡)

space, where 𝐶 ′ depends only on |A| and 𝜂.

4.4 Proof of Lemma 4.8
We start with a brief overview of the proof. The main in-

gredient in the proof is to utilize the coupling technique

which is often used in proving results about the mixing time

of Markov Chains. In this technique, one shows that two

independent runs that may start at different states end up

meeting within a certain bounded period of time. The ex-

ecutions can then be coupled from here on. We show that

Assumptions 1 through 3 guarantee such a coupling. In par-

ticular, Assumptions 1 and 2 guarantee that for any two runs

it is possible to reach the same state in a short period of time,

and Assumption 3 guarantees that this event happens with

high probability.

We start with a simple proposition about strongly con-

nected aperiodic graphs.

Proposition 4.11. If a directed graph 𝐺 = (𝑉 , 𝐸) is strongly
connected and aperiodic, then for any vertices 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , there
is an integer 𝐿 such that both 𝑣𝑎 and 𝑣𝑏 could reach 𝑣𝑐 in 𝐿
steps.

Proof. Since the graph𝐺 is aperiodic, the GCD of the lengths

of walks from 𝑣𝑐 to itself is 1. Let𝑊𝑙𝑘1,𝑊 𝑙𝑘2, . . . ,𝑊 𝑙𝑘𝐾 be

a set of walks from 𝑣𝑐 to itself such that the GCD of their

lengths is 1. By B𝑒zout’s identity, there is an integer vector

(ℓ1, ℓ2, . . . ℓ𝐾) such that

∑𝐾
𝑖=1
ℓ𝑖 |𝑊𝑙𝑘𝑖 | = 1. Let 𝑑𝑎 and 𝑑𝑏 be

the distance from 𝑣𝑎 and 𝑣𝑏 to 𝑣𝑐 respectively. If 𝑑𝑎 = 𝑑𝑏 ,

then the statement immediately follows. Otherwise, suppose

𝑑𝑎 < 𝑑𝑏 . Consider the path starting from 𝑑𝑎 as follows: we

first go to 𝑣𝑐 with the path of length 𝑑𝑎 , then for any 𝑖 such

that ℓ𝑖 > 0, we go through𝑊𝑙𝑘𝑖 and back to 𝑣𝑐 , ℓ𝑖 (𝑑𝑏 − 𝑑𝑎)
times. Similarly, consider the path from 𝑣𝑏 as follows: we

first go to 𝑣𝑐 along the path of length 𝑑𝑏 , then for any 𝑖 such

that ℓ𝑖 < 0, we traverse𝑊𝑙𝑘𝑖 and back to 𝑣𝑐 , −ℓ𝑖 (𝑑𝑏 − 𝑑𝑎)
times. The difference between the lengths of these two paths

is 𝑑𝑎 − 𝑑𝑏 + (𝑑𝑏 − 𝑑𝑎)
∑𝐾
𝑖=1
ℓ𝑖 |𝑊𝑙𝑘𝑖 | = 0. □

We use a coupling argument to prove Lemma 4.8. Let

𝑖 ∈ {1, ..., 𝑛} and 𝑞𝑖 , 𝑞′𝑖 ∈ 𝑄 be any two states. Consider the

following probabilistic process: Simulate two simultaneous

runs over the automaton, starting at 𝑞𝑖 and 𝑞
′
𝑖 respectively.

Process symbols from position 𝑖 onwards, updating the states

according to the transitions of the automaton. At any time

𝑘 ≥ 𝑖 , if the two runs are at different states, then the next

symbols showing up in the two runs are independently sam-

pled from 𝛼𝑘 . However, if they are at the same state, the next

symbols showing up in the two runs are jointly sampled

from 𝛼𝑘 , and hence are identical (ensuring that from now on,

the two runs remain in the same state). For any pair of states

𝑞, 𝑞′ in𝑄 and time 𝑘 ≥ 𝑖 , we define 𝑃𝑘
𝑞,𝑞′ to be the probability

of the two runs being in states 𝑞 and 𝑞′, respectively, at time

𝑘 . Formally, 𝑃𝑘
𝑞,𝑞′ is defined inductively as follows:

• 𝑃𝑖
𝑞,𝑞′ =

{
1 if 𝑞 = 𝑞𝑖 and 𝑞

′ = 𝑞′𝑖
0 otherwise

• If 𝑞 ≠ 𝑞′ and 𝑘 > 𝑖 ,

𝑃𝑘𝑞,𝑞′ =
∑
𝑠≠𝑠′

𝑃𝑘−1

𝑠,𝑠′ ·Pr(𝑆𝑘 = 𝑞 | 𝑆𝑘−1 = 𝑠)·Pr(𝑆𝑘 = 𝑞′ | 𝑆𝑘−1 = 𝑠
′)

• If 𝑞 = 𝑞′ and 𝑘 > 𝑖 ,

𝑃𝑘𝑞,𝑞′ =
∑
𝑠≠𝑠′

𝑃𝑘−1

𝑠,𝑠′ · Pr(𝑆𝑘 = 𝑞 | 𝑆𝑘−1 = 𝑠) · Pr(𝑆𝑘 = 𝑞′ | 𝑆𝑘−1 = 𝑠
′)

+
∑
𝑠

𝑃𝑘−1

𝑠,𝑠 · Pr(𝑆𝑘 = 𝑞 | 𝑆𝑘−1 = 𝑠)

With this definition, we make the following two observa-

tions.

Observation 1. For any time 𝑘 ≥ 𝑖 and state 𝑞 ∈ 𝑄 , Pr(𝑆𝑘 =

𝑞 | 𝑆𝑖 = 𝑞𝑖) =
∑
𝑞′ 𝑃

𝑘
𝑞,𝑞′ , similarly, for any 𝑞′ ∈ 𝑄 , Pr(𝑆𝑘 = 𝑞′ |

𝑆𝑖 = 𝑞
′
𝑖) =

∑
𝑞 𝑃

𝑘
𝑞,𝑞′ .

Observation 2. The probability that two independent runs
starting from 𝑞𝑖 and 𝑞′𝑖 at time 𝑖 meet each other in the same
state before time 𝑘 is

∑
𝑞 𝑃

𝑘
𝑞,𝑞 .

We now complete the remaining details of the proof.

Proof of Lemma 4.8. By Observation 1,

TVD(D(𝑆 𝑗 | 𝑆𝑖 = 𝑞𝑖),D(𝑆 𝑗 | 𝑆𝑖 = 𝑞′𝑖))

=
1

2

∑
𝑞

| Pr(𝑆 𝑗 = 𝑞 | 𝑆𝑖 = 𝑞𝑖) − Pr(𝑆 𝑗 = 𝑞 | 𝑆𝑖 = 𝑞′𝑖) |

=
1

2

∑
𝑞

���∑
𝑞′
𝑃
𝑗

𝑞,𝑞′ −
∑
𝑞′
𝑃
𝑗

𝑞′,𝑞

���

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

≤ 1

2

∑
𝑞

(∑
𝑞′≠𝑞

𝑃
𝑗

𝑞,𝑞′ +
∑
𝑞′≠𝑞

𝑃
𝑗

𝑞′,𝑞

)
= 1 −

∑
𝑞

𝑃
𝑗
𝑞,𝑞

Let 𝐶 = 4|𝑄 |2 (1

𝜂
)2𝐿 (|𝑄 |) where 𝐿(|𝑄 |) is the upper bound of

𝐿 in Proposition 4.11 when the graph 𝐺 has |𝑄 | vertices. By
Observation 2, it is sufficient to prove that two independent

runs starting from 𝑞𝑖 and 𝑞
′
𝑖 at time 𝑖 meet each other before

time 𝑗 has probability 1 − 𝑜 (1

𝑛3
) if 𝑗 − 𝑖 ≥ 𝐶 log𝑛. Fix an

arbitrary state 𝑞, by Proposition 4.11, there exists two paths

to 𝑞 from any two states, with the same length which is

at most 𝐿(|𝑄 |). So during any time period of length 𝐿(|𝑄 |),
two independent runs meet with each other with probability

at least 𝜂2𝐿 (|𝑄 |)
by Assumption 3. Since 𝐿(|𝑄 |) ≤ |𝑄 |2, if

𝑗 − 𝑖 ≥ 𝐶 log𝑛, there are at least 4(1

𝜂
)2𝐿 (|𝑄 |) log(𝑛) such non-

overlapping time periods. With probability 1 − 𝑜 (1

𝑛3
), two

independent runs meet with each other during at least one

of these time periods. □

4.5 Proof of Proposition 4.9
The main idea is to construct a Doob martingale and use

Azuma’s inequality to obtain the concentration bound.

For any integer 0 ≤ 𝑖 ≤ 𝑁 , let F𝑖 be the 𝜎-algebra of set
{𝑍1, 𝑍2, . . . , 𝑍𝑖 }. Then for any 0 ≤ 𝑖 < 𝑗 ≤ 𝑁 , F𝑖 ⊂ F𝑗 , which
implies that {F0, F1, . . . , F𝑁 } is a filtration. Let 𝑍𝑖 = E[𝑍 |
F𝑖] for any 0 ≤ 𝑖 ≤ 𝑁 , {𝑍0, 𝑍1, . . . , 𝑍𝑁 } is a Doob martingale.

Then, for any 1 ≤ 𝑖 ≤ 𝑁 , we have

|𝑍𝑖 − 𝑍𝑖−1 | = |E[𝑍 | F𝑖] − E[𝑍 | F𝑖−1] |

=

��� 𝑁∑
𝑗=1

(E[𝑍 𝑗 | F𝑖] − E[𝑍 𝑗 | F𝑖−1])
���

≤
𝑁∑
𝑗=1

|E[𝑍 𝑗 | F𝑖] − E[𝑍 𝑗 | F𝑖−1] |

When 𝑗 < 𝑖 ,

E[𝑍 𝑗 | F𝑖] = E[𝑍 𝑗 | F𝑖−1]
When 𝑗 = 𝑖 ,

|E[𝑍 𝑗 | F𝑖] − E[𝑍 𝑗 | F𝑖−1] | ≤ 1

since 𝑍 𝑗 is an indicator variable.

When 𝑗 > 𝑖 ,

|E[𝑍 𝑗 |F𝑖] − E[𝑍 𝑗 | F𝑖−1] |
≤|E[𝑍 𝑗 | F𝑖] − E[𝑍 𝑗] | + |E[𝑍 𝑗 | F𝑖−1] − E[𝑍 𝑗] |

≤ 2

𝑁 2

where the last inequality holds because for any 𝑗 > 𝑖 ,

|E[𝑍 𝑗 | F𝑖] − E[𝑍 𝑗] | = E
𝑍𝑖+1,...,𝑍 𝑗−1

[
|E[𝑍 𝑗 | F𝑗−1] − E[𝑍 𝑗] |

]
<

1

𝑁 2
.

So,

|𝑍𝑖 − 𝑍𝑖−1 | ≤ 1 +
𝑁∑

𝑗=𝑖+1

2

𝑁 2
≤ 1 + 2

𝑁

By Azuma’s inequality, for any 𝛾 > 0,

Pr(|𝑍𝑁 − 𝑍0 | ≥ 𝛾) ≤ exp

(−𝛾2

2

∑𝑁
𝑖=1
(1 + 2

𝑁
)2
)
< 𝑒

−𝛾2

4𝑁

Note that 𝑍𝑁 = 𝑍 and 𝑍0 = E[𝑍]. Therefore, letting 𝛾 = 𝛿𝑁 ,

we have

Pr(|𝑍 − E[𝑍] | ≥ 𝛿𝑁) < 𝑒 −𝛿
2𝑁
4

□

4.6 Eliminating the first two Assumptions
In this section, we describe how to eliminate the first two

assumptions on the structure of the automaton. Note that we

only use the first two assumptions in the proof of Lemma 4.8,

so we only need to show how to modify the proof of this

lemma alone to make the argument still work without these

two assumptions.

Eliminating the Aperiodicity Assumption
We say that the period associated with a vertex 𝑠𝑎 in𝐺 is 𝛾 if

GCDof the set {ℓ | there is a walk of length ℓ from 𝑠𝑎 to itself}
is𝛾 . Since𝐺 is strongly connected, every vertex has the same

period, say 𝐾 > 1, which is the period of the graph 𝐺 . We

first form 𝐾 sets of states 𝑄0, 𝑄1, . . . 𝑄𝐾−1 with

⋃
ℓ 𝑄ℓ = 𝑄

such that 𝑞0 ∈ 𝑄0 and any state in 𝑄ℓ can only reach a

state in 𝑄 (ℓ+1) mod 𝐾 in one step. We now construct graphs

𝐺0,𝐺1, . . . ,𝐺𝐾−1 as follows: the vertex set of𝐺ℓ is𝑄ℓ and for

any pair of states 𝑞 and 𝑞′ in𝐺ℓ , there is an edge (𝑞, 𝑞′) in𝐺ℓ
if and only if 𝑞 can reach 𝑞′ in exactly 𝐾 steps in 𝐺 . Since 𝐾

is the period of 𝐺 , each 𝐺ℓ is necessarily an aperiodic graph.

If 𝑞 has an edge to 𝑞′ in 𝐺ℓ , then by Assumption 3, if the

automaton is in state 𝑞 at some time, then after 𝐾 steps, the

automaton is in state 𝑞′ with probability at least 𝜂𝐾 . Using

a similar argument as in the proof of Lemma 4.8, we obtain

the following lemma.

Lemma 4.12. Suppose the input satisfies Assumptions 1 and
3, then there is a constant 𝐶 > 0 which depends only on |𝑄 |
and 𝜂 such that, for any times 𝑖 and 𝑗 with 𝑗 − 𝑖 ≥ 𝐶𝐾 log𝑛,
TVD(D(𝑆 𝑗 |𝑆𝑖 = 𝑞𝑖),D(𝑆 𝑗 |𝑆𝑖 = 𝑞′𝑖)) = 𝑜 (1

𝑛3
) for any pair of

states 𝑞𝑖 and 𝑞′𝑖 in 𝑄 (𝑖 mod 𝐾) .

Then using the same argument as in Lemma 4.10, we

have an algorithm to solve the problem if the input satisfies

Assumptions 1 and 3.

Lemma 4.13. For any CRA A with a single counter (with
barrier at 0) having updates from the set {+1,-1} with the un-
derlying graph being strongly connected with period 𝐾 , there
is a single pass streaming algorithm that, given a probabilistic
string 𝛼 ∈ D(Σ)∗𝑡 satisfying Assumption 3, computes a prob-
ability distribution over the counter values at the end of the

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

streamwhose total variation distance from the true distribution
of the counter values is𝑂 (1

𝑛2
) and uses𝑂 (𝐶 ′

√
𝐾𝑛 · log(𝑛)2+𝑡)

space where 𝐶 ′ depends only on |A| and 𝜂.

Eliminating the Strongly Connected Assumption
Suppose the graph 𝐺 is not strongly connected, let 𝑄 ′ be
the union of all strongly connected components of 𝐺 that

have out-degree 0 in the SCC graph of 𝐺 . By Assumption 3,

for each time period of length |𝑄 |, with probability 𝜂 |𝑄 | , the
automata will reach a state in𝑄 ′. So after 3(1

𝜂
) |𝑄 | log𝑛 steps,

the automata is at a state in 𝑄 ′ with probability at least

1 − 𝑜 (1

𝑛2
). Once the automata reaches a state in an SCC of

out-degree 0, it cannot leave such an SCC, so we only need

to focus on this SCC. We formalize this idea in what follows.

In the first 3(1

𝜂
) |𝑄 | log𝑛 steps, we maintain a table 𝑇 :

𝑄 × [𝑣0 − 3(1

𝜂
) |𝑄 | log𝑛, 𝑣0 + 3(1

𝜂
) |𝑄 | log𝑛] → [0, 1] where

the entry𝑇 (𝑞, 𝑘) stores the probability that the automaton is

at state 𝑞 and the counter has value 𝑘 . At time 3(1

𝜂
) |𝑄 | log𝑛,

for any state 𝑞 in𝑄 ′, we solve the problem when initial state

is 𝑞 and 𝑣0 = 0. Instead of maintaining the distribution of the

counter itself, we maintain the distribution of 𝐿𝑖 and 𝑋
𝑈
≤𝑖 . By

Lemma 4.13, we can compute these two distributions with

𝑂 (
√
𝑛 · log

2 𝑛) space. To distinguish between different 𝑞’s,

denote these two values as 𝐿
𝑞

𝑖
and 𝑋

𝑈 ,𝑞

≤𝑖 . Then for any value

𝑘 ∈ [𝑣0 − 3(1

𝜂
) |𝑄 | log𝑛, 𝑣0 + 3(1

𝜂
) |𝑄 | log𝑛], let 𝑋𝑞,𝑘≤𝑛 be the

value of the counter if we start at 𝑞 with initial value 𝑘 . By

Lemma 4.4, we can compute the distribution of 𝑋
𝑞,𝑘

≤𝑛 with

the distribution of 𝐿
𝑞

𝑖
and 𝑋

𝑈 ,𝑞

≤𝑖 . Finally, output D(𝑋≤𝑛) =∑
𝑞,𝑘 𝑇 (𝑞, 𝑘) · D(𝑋

𝑞,𝑘

≤𝑛).
For each 𝑞, storing 𝑋

𝑈 ,𝑞

≤𝑖 and 𝐿
𝑞

𝑖
requires𝑂 (

√
𝑛 log

2 𝑛) bits
of space. Each D(𝑋𝑞,𝑘≤𝑛) also requires 𝑂 (

√
𝑛 log

2 𝑛) bits of
space and there are |𝑄 | · 6(1

𝜂
) |𝑄 | log𝑛 pairs of 𝑞 and 𝑘 , so

storing all D(𝑋𝑞,𝑘≤𝑛) requires 𝑂 (
√
𝑛 log

3 𝑛) bits of space. 𝑇
has |𝑄 | · 6|𝑄 | (1

𝜂
) |𝑄 | log𝑛 = 𝑂 (log𝑛) entries. So storing 𝑇

requires 𝑂 (log
2 𝑛) bits of space.

Theorem 4.14. For any CRA A with a single counter (with
barrier at 0) having updates from the set {+1,-1}, there is a single
pass streaming algorithm that, given a probabilistic string
𝛼 ∈ D(Σ)∗𝑡 satisfying Assumption 3, computes a probability
distribution over the counter values at the end of the stream
whose total variation distance from the true distribution of the
counter values is 𝑂 (1

𝑛2
) and uses 𝑂 (𝐶 ′

√
𝑛 · log(𝑛)3 + 𝑡) space,

where 𝐶 ′ depends only on |A| and 𝜂.

5 Conclusions
We have studied the space complexity of single-pass stream-

ing computation for different classes of queries over proba-

bilistic strings. In particular, we designed a poly-logarithmic

space algorithm for estimating the probability of a regu-

lar pattern appearing in a probabilistic event stream, to

within an arbitrary specified precision. We also developed an

�̃� (
√
𝑛) space streaming algorithm for computing the distri-

bution profile for queries that involve conditional updates to

a counter variable. Our result is based on a technical insight

that may be of independent interest, namely, at any point

in the stream, the range of counter values can be narrowed

down with high probability to a band of �̃� (
√
𝑛) values.

Future work and Open problems
Recent work on monitoring systems for quantitative queries

has focused on design, implementation, and empirical evalu-

ation of query languages over streaming data where theoret-

ical foundations allow the compiler to provide guarantees on

resource usage [9, 14]. A natural next step is to extend these

query languages to allow computation over probabilistic data

streams based on the theoretical insights of this paper.

We assumed throughout the paper that a bound on the

length 𝑛 of the input stream is known in advance. If such a

bound is not known a priori, we can use standard doubling

idea to extend our results to handle streams with unknown

length.

Another interesting direction for future work is to prove

non-trivial space lower bounds for single-pass streaming

algorithms for computational problems studied in this paper.

For example, for the problem considered in section 3.1, what

is the space complexity for an exact single-pass streaming

algorithm to determine whether or not the product of the

input numbers is below a specified threshold value. If we

allow the input stream to contain arbitrary rational numbers,

instead of rational numbers in the interval [0, 1] as is the
case in our context, then the Ω(𝑛) communication bound for

Eqality (see, [8], for instance) can be adapted to show an

Ω(𝑛) lower bound on the space required for a deterministic

single-pass streaming algorithm (see Appendix A.2). How-

ever, a lower bound in our setting remains an open problem.

Finally, our results on handling conditional counter updates

(for instance, Theorem 4.3) raise the question of whether the

upper bound �̃� (
√
𝑛) on space usage is optimal. We conjec-

ture that any single-pass streaming algorithm that computes

the probability distribution over counter values to within

an inverse polynomial precision (i.e. TVD from the actual

distribution is inverse polynomially small), requires Ω(
√
𝑛)

space.

Acknowledgements.We thank the anonymous reviewers

for their insightful comments. This research was partially

supported by NSF awards CCF-1763514, CCF-1723567, CCF-

1617851, CCF-1763514 and CCF-1934876.

References
[1] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Com-

plexity of Approximating the Frequency Moments. J. Comput. Syst.
Sci. 58, 1 (1999), 137–147.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Rajeev Alur, Yu Chen, Kishor Jothimurugan, and Sanjeev Khanna

[2] Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund

Raghothaman, and Yifei Yuan. 2013. Regular Functions and Cost Regis-

ter Automata. In Proceedings of the 28th Annual ACM/IEEE Symposium
on Logic in Computer Science. 13–22.

[3] Kevin Borders, Jonathan Springer, and Matthew Burnside. 2012.

Chimera: A Declarative Language for Streaming Network Traffic Anal-

ysis. In Proceedings of the 21st USENIX Conference on Security Sympo-
sium. 19–19.

[4] GrahamCormode andMinos Garofalakis. 2007. Sketching Probabilistic

Data Streams. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data. 281–292.

[5] T. S. Jayram, Satyen Kale, and Erik Vee. 2007. Efficient Aggregation

Algorithms for Probabilistic Data. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. 346–355.

[6] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee. 2007.

Estimating Statistical Aggregates on Probabilistic Data Streams. In

Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems. 243–252.

[7] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey Xu Yu, and Xuemin Lin. 2010.

Sliding-window Top-k Queries on Uncertain Streams. The VLDB Jour-
nal 19, 3 (2010), 411–435.

[8] Eyal Kushilevitz and Noam Nisan. 2006. Communication Complexity.
Cambridge University Press.

[9] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur,

Zachary G. Ives, and Sanjeev Khanna. 2017. StreamQRE: Modular

Specification and Efficient Evaluation of Quantitative Queries over

Streaming Data. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 693–708.

[10] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Comput-
ing: Randomized Algorithms and Probabilistic Analysis. Cambridge

University Press.

[11] S. Muthukrishnan. 2005. Data Streams: Algorithms and Applications.

Foundations and Trends in Theoretical Computer Science 1, 2 (2005).
[12] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in

Real-time. Computer Networks 31, 23-24 (1999), 2435–2463.
[13] Christopher Ré, Julie Letchner, Magdalena Balazinksa, and Dan Suciu.

2008. Event Queries on Correlated Probabilistic Streams. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of
Data. 715–728.

[14] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and

Boon Thau Loo. 2017. Quantitative Network Monitoring with NetQRE.

In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM. 99–112.

Query Evaluation over Probabilistic Streams LICS ’20, July 8–11, 2020, Saarbrücken, Germany

A Appendix
A.1 Proof of Lemma 4.1
Lemma. For all 𝑖 > 0,

E𝑖 (𝑞) =
∑
𝑞′,𝜎

𝛿 (𝑞′,𝜎)=𝑞

𝛼𝑖 (𝜎)
[
M(𝑞′, 𝜎)E𝑖−1 (𝑞′) + P𝑖−1 (𝑞′)u(𝑞′, 𝜎)

]
Proof. From Equation 1,

E𝑖 (𝑞) =
∑
|𝑤′ |=𝑖

𝛿 (𝑞0,𝑤
′)=𝑞

D𝛼 (𝑤 ′)v(𝑤 ′)

=
∑
|𝑤′′ |=𝑖−1

∑
𝜎 ∈Σ

𝛿 (𝑞0,𝑤
′′𝜎)=𝑞

D𝛼 (𝑤 ′′𝜎)v(𝑤 ′′𝜎)

=
∑
𝑞′∈𝑄

∑
|𝑤′′ |=𝑖−1

𝛿 (𝑞0,𝑤
′′)=𝑞′

∑
𝜎 ∈Σ

𝛿 (𝑞′,𝜎)=𝑞

D𝛼 (𝑤 ′′)𝛼𝑖 (𝜎)
[
M(𝑞′, 𝜎)v(𝑤 ′′) + u(𝑞′, 𝜎)

]
=

∑
𝑞′∈𝑄

∑
𝜎 ∈Σ

𝛿 (𝑞′,𝜎)=𝑞

𝛼𝑖 (𝜎)
∑
|𝑤′′ |=𝑖−1

𝛿 (𝑞0,𝑤
′′)=𝑞′

[
M(𝑞′, 𝜎)

(
D𝛼 (𝑤 ′′)v(𝑤 ′′)

)
+ D𝛼 (𝑤 ′′)u(𝑞′, 𝜎)

]
=

∑
𝑞′,𝜎

𝛿 (𝑞′,𝜎)=𝑞

𝛼𝑖 (𝜎)
[
M(𝑞′, 𝜎)

(∑
|𝑤′′ |=𝑖−1

𝛿 (𝑞0,𝑤
′′)=𝑞′

D𝛼 (𝑤 ′′)v(𝑤 ′′)
)
+
(∑
|𝑤′′ |=𝑖−1

𝛿 (𝑞0,𝑤
′′)=𝑞′

D𝛼 (𝑤 ′′)
)
u(𝑞′, 𝜎)

]
=

∑
𝑞′,𝜎

𝛿 (𝑞′,𝜎)=𝑞

𝛼𝑖 (𝜎)
[
M(𝑞′, 𝜎)E𝑖−1 (𝑞′) + P𝑖−1 (𝑞′)u(𝑞′, 𝜎)

]
□

A.2 Space Lower Bound for Exactly Computing Product
Theorem A.1. On input a stream of rational numbers 𝑞1, ..., 𝑞𝑛 such that each 𝑞𝑖 can be represented in binary using 𝑂 (log(𝑛))
bits and a threshold value 𝜏 , any deterministic single-pass streaming algorithm to decide if Π𝑛𝑖=1

𝑞𝑖 < 𝜏 requires Ω(𝑛) space.

Proof. Let 𝑝1, ..., 𝑝𝑛 denote the first 𝑛 prime numbers. Let 𝑡𝑛 be the number of bits required to represent all the values in

{𝑝1, ..., 𝑝𝑛} ∪ {𝑝−1

1
, ..., 𝑝−1

𝑛 } and let 𝜏 = 1. From the prime number thoerem we know that 𝑡𝑛 = 𝑂 (log(𝑛)). Consider streams of

length 2𝑛. Given any two sequences for the first half with values from {𝑝−1

1
, ..., 𝑝−1

𝑛 } such that the product of the two sequences

are different, there is a sequence for the second half with values from {𝑝1, ..., 𝑝𝑛} such that the resulting stream has product 1

in one case and less that 1 in the other case. Hence, any streaming algorithm that correctly answers the threshold question

needs Ω(𝑛) space because, for large enough 𝑛, there are (2𝑛−1

𝑛) ≥ 2
𝑛−1

different possible products for the first half and we need

atleast log(2𝑛−1) space to distinguish them. □

	Abstract
	1 Introduction
	2 The Computational Model
	2.1 Probabilistic Strings
	2.2 The Streaming Model

	3 Regular Languages
	3.1 A Streaming Algorithm to Estimate Product
	3.2 Finite Automata

	4 Quantitative Properties
	4.1 Additive Cost Register Automata
	4.2 Adding Non-linear Updates
	4.3 Counter Independent Automata
	4.4 Proof of Lemma 4.8
	4.5 Proof of Proposition 4.9
	4.6 Eliminating the first two Assumptions

	5 Conclusions
	References
	A Appendix
	A.1 Proof of Lemma 4.1
	A.2 Space Lower Bound for Exactly Computing Product

