
Deterministic Generators and Games for Ltl
Fragments

RAJEEV ALUR

University of Pennsylvania

and

SALVATORE LA TORRE

University of Pennsylvania and Università degli Studi di Salerno

Deciding infinite two-player games on finite graphs with the winning condition specified by a linear
temporal logic (Ltl) formula, is known to be 2Exptime-complete. In this paper, we identify
Ltl fragments of lower complexity. Solving Ltl games typically involves a doubly exponential
translation from Ltl formulas to deterministic ω-automata. First, we show that the longest
distance (length of the longest simple path) of the generator is also an important parameter,
by giving an O(d log n)-space procedure to solve a Büchi game on a graph with n vertices and
longest distance d. Then, for the Ltl fragment of the boolean combinations of formulas obtained
only by eventualities and conjunctions, we provide a translation to deterministic generators of
exponential size and linear longest distance, show both of these bounds to be optimal, and prove
the corresponding games to be Pspace-complete. Introducing next modalities in this fragment,
we give a translation to deterministic generators still of exponential size but also with exponential
longest distance, show both of these bounds to be optimal, and prove the corresponding games
to be Exptime-complete. For the fragment resulting by further adding disjunctions, we provide a
translation to deterministic generators of doubly exponential size and exponential longest distance,
show both of these bounds to be optimal, and prove the corresponding games to be Expspace. We
also show tightness of the double exponential bound on the size as well as the longest distance for
deterministic generators of Ltl formulas without next and until modalities. Finally, we identify a
class of deterministic Büchi automata corresponding to a fragment of Ltl with restricted use of
always and until modalities, for which deciding games is Pspace-complete.

Categories and Subject Descriptors: F.4.1 [Mathematical logic and Formal Languages]:
Mathematical Logic—Temporal logic; F.3.1 [Logics and Meanings of Programs]: Specify-
ing,Verifying and Reasoning about Programs—Logics of programs.

General Terms: Theory, Verification.

Additional Key Words and Phrases: Games, Temporal Logic, Automata.

A preliminary version of this paper appeared in LICS’01: Proceedings of the 16th Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press, pp. 291 - 300.
This research was partially supported by NSF Career award CCR97-34115, NSF award CCR99-
70925, NSF award ITR/SY 0121431, SRC award 99-TJ-688, and Alfred P. Sloan Faculty Fel-
lowship. The second author was also supported in part by the M.U.R.S.T. in the framework of
project TOSCA.
Authors’ address: R. Alur and S. La Torre: Dept. of Computer and Information Science, Uni-
versity of Pennsylvania, 200 South 33rd St., Philadelphia, PA 19104, email: alur@cis.upenn.edu,
latorre@seas.upenn.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2002 ACM 1529-3785/2002/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002, Pages 1–24.

2 · Rajeev Alur and Salvatore La Torre

1. INTRODUCTION

Linear temporal logic (Ltl) is a popular choice for specifying correctness require-
ments of reactive systems [Pnu77; MP91]. An Ltl formula is built from state
predicates, boolean connectives, and temporal modalities such as next, eventually,
always, and until, and is interpreted over infinite sequences of states modeling com-
putations of reactive programs. The most studied decision problem concerning Ltl
is model checking: given a finite-state abstraction G of a reactive system and an
Ltl formula ϕ, do all infinite computations of G satisfy ϕ? The first step of the
standard solution to model checking involves translating a given Ltl formula to a
(nondeterministic) Büchi automaton that accepts all of its satisfying models [LP85;
VW94]. Such a translation is central to solving the satisfiability problem for Ltl
also. The translation can be exponential in the worst case, and in fact, both model
checking and satisfiability are Pspace-complete [SC85].

The standard interpretation of Ltl over infinite computations is the natural one
for closed systems, where a closed system is a system whose behavior is completely
determined by the state of the system. However, the compositional modeling and
design of reactive systems requires each component to be viewed as an open system,
where an open system is a system that interacts with its environment and whose
behavior depends on the state of the system as well as the behavior of the envi-
ronment. In the setting of open systems, the key decision problem is to compute
the winning strategies in infinite two-player games. In the satisfiability game, we
are given an Ltl formula ϕ and a partitioning of atomic propositions into inputs
and outputs, and we wish to determine if there is a strategy to produce outputs
so that no matter which inputs are supplied, the resulting computation satisfies
ϕ. This problem has been formulated in different contexts such as synthesis of
reactive modules [PR89], realizability of liveness specifications [ALW89], and recep-
tiveness [Dil89]. In the model-checking game, we are given an Ltl specification ϕ,
and a game graph G whose states are partitioned into system states and environ-
ment states. We wish to determine if the protagonist has a strategy to ensure that
the resulting computation satisfies ϕ in the infinite game in which the protagonist
chooses the successor in all system states and the adversary chooses the succes-
sor in all environment states. This problem appears in contexts such as module
checking and its variants [KV96; KV97], and the definition of alternating temporal
logic [AHK97]. Such game-based model checking for restricted formulas such as
“always p” has already been implemented in the software Mocha [AHM+98], and
shown to be useful in construction of the most-general environments for automating
assume-guarantee reasoning [AdAHM99].

We focus on the game version of model checking: given a game graph G and an
Ltl formula ϕ, what is the complexity of deciding whether a given player has a win-
ning strategy from a given initial state? The game version of satisfaction is a special
case, and similar bounds apply. It is known that the complexity of this problem is
doubly exponential in the size of the Ltl formula, and the problem is 2Exptime-
complete [PR89; Ros92]. Note that the complexity is much lower for formulas of
specific form: generalized Büchi games (formulas of the form ∧i23pi) are solvable
in polynomial time, and Streett games (formulas of the form ∧i(23pi → 23qi))
are coNP-complete (the dual, Rabin games are NP-complete) [Rab72; EJ88]. It is
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 3

worth mentioning that, in the standard model checking, while full Ltl is Pspace-
complete, the fragment which allows only eventually and always operators (but
no next or until) has a small model property and is NP-complete [SC85] (see also
[DS98] for complexity results on simpler fragments of Ltl). This motivated us to
consider the problem addressed in this paper: are there fragments of Ltl for which
games have complexity lower than 2Exptime?

The standard approach to solving games for Ltl is by reduction to a game on
the product of the game graph and a deterministic automaton that accepts all
the models of the given formula. The winning condition in this reduced game
corresponds to the type of the acceptance condition (e.g. Büchi or Rabin) for
the deterministic generator 1. To obtain a deterministic generator, the standard
approach is to first build a nondeterministic generator and then determinize it. Each
of these steps costs an exponential, and it is known that there are Ltl formulas
whose deterministic generators need to be doubly exponential [KV98].

In this paper, we initiate a comprehensive study of deterministic generators and
game complexities of various Ltl fragments. We use the notation Ltl(op1, . . . , opk)
to denote the fragment of Ltl given by top-level boolean combination of formulas
which use only the boolean connectives and the temporal operators in the list
op1, . . . , opk. Our first result is a construction of a singly exponential deterministic
Büchi automaton for the fragment Ltl(3,∧). This construction is different from
the standard tableau-based construction, and builds the automaton for a formula
in a modular way from the automata for its subformulas. This immediately gives
a single exponential bound for Ltl(3,∧) games by using the standard algorithm
for Büchi games. However, the deterministic generators have the property that
the longest simple path is at most linear in the size of the formula. We show that
this property can be exploited to reduce space requirement. In fact, we show a
general result: in a game graph with n vertices and longest distance d (that is,
length of the longest simple path), a Büchi game can be solved in space O(d log n)
(the conventional algorithm uses O(n) space). This leads us to the result that
Ltl(3,∧) games can be solved in polynomial space, and we show a matching
lower bound. Note that the fragment Ltl(3,∧) contains boolean combinations
of invariant (“always p”) and termination (“eventually q”) properties, and thus
includes many of the commonly used specifications.

Combining next modalities with the eventualities raises the complexity. For any
formula in Ltl(3, f,∧), we show how to construct a deterministic Büchi genera-
tor with exponentially many states as well as exponential longest distance. The
construction is optimal since there exists an Ltl(3, f,∧) formula for which all de-
terministic generators must have exponential longest distance. This construction
leads to an exponential-time algorithm for solving games in Ltl(3, f,∧), and we
show a matching lower bound.

Adding disjunctions to Ltl(3, f,∧) raises complexity. Given an Ltl(3, f,∧,∨)

1In the automata-theoretic formulation of the problem [PR89], the game graph can be viewed as
a tree automaton that generates all the strategies of one of the players. From the formula ϕ, we
can construct a tree automaton that accepts precisely those trees all of whose paths satisfy ϕ,

take product with the game tree automaton, and test for emptiness. This approach has the same

computational essence, and requires determinization.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

4 · Rajeev Alur and Salvatore La Torre

formula, we show how to construct a corresponding deterministic Büchi automaton
with doubly exponential states and singly exponential longest distance. The con-
struction is optimal since we show that there is an Ltl(3,∧,∨) formula whose deter-
ministic generator must be doubly exponential with singly exponential longest dis-
tance. Our construction leads to an algorithm for solving games in Ltl(3, f,∧,∨)
that uses exponential space. A matching lower bound has been recently proved
in [MT02]. It is worth noticing that if the next modality is not allowed in this
fragment, we do not get better lower bounds on both the size and the longest dis-
tance of corresponding deterministic Büchi automata. On the other hand, games in
the positive fragment of Ltl(3,∧,∨) (that is, the fragment of Ltl(3,∧,∨) where
negation is allowed only at the level of the atomic propositions) can be solved using
polynomial space [MT02]. A matching lower bound or a better upper bound for
games in the full Ltl(3,∧,∨) remains an open problem.

The nesting of eventually and always modalities causes a further increase of the
complexity. We prove that there exists a formula in Ltl(2,3) whose deterministic
generator must be doubly exponential with doubly exponential longest distance,
that matches the upper bound for the full Ltl. This is in sharp contrast to the fact
that the longest distance of nondeterministic generators for Ltl(2,3) formulas is
only linear, and becomes exponential only by addition of next or until modalities.
Our construction leads to an algorithm for solving Ltl(2,3) games in doubly
exponential time. A matching lower bound or a better upper bound for these
games remains an open problem.

The automata that we construct for Ltl(3,∧) and Ltl(3,∧,∨) formulas have a
special form: the underlying graph is acyclic modulo the self-loops. We define the
class of partially-ordered deterministic Büchi automata (PODB) as the class of de-
terministic Büchi automata with such a structure. The class PODB is closed under
all boolean operations, strictly more expressive than Ltl(3,∧,∨), and incompa-
rable to Ltl(3, f,∧). We show that PODBs are as much expressive as the Ltl
fragment obtained by imposing the following two restrictions: in always formulas
2ϕ, ϕ must be a state predicate, and in until formulas ϕ U ψ, ϕ must be a state
predicate and ¬ϕ must be a conjunct of ψ. Deciding games for this fragment is
Pspace-complete.

The rest of this paper is organized as follows. In Section 2 we give the notation
and recall some known results we will use throughout this paper. In Section 3 we
introduce a class of deterministic automata that we call PODB, and we show that
some interesting fragments of Ltl admit deterministic generators in this class of
automata. In Section 4, we study the problem of constructing the deterministic
generators for larger fragments of Ltl. In Section 5 we give a new algorithm to
solve Büchi games that we use along with the deterministic generators to solve the
games in the Ltl fragments we consider. We also prove matching lower bounds for
some of them. Finally, we give a few conclusions in Section 6.

2. DEFINITIONS

2.1 Linear Temporal Logic

We first recall the syntax and the semantics of linear temporal logic. We will define
temporal logics by assuming that the atomic formulas are state predicates, that is,
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 5

boolean combinations of atomic propositions. Given a set of atomic propositions,
a linear temporal logic (Ltl) formula is composed of state predicates, the boolean
connectives conjunction (∧) and disjunction (∨), the temporal operators next (f),
eventually (3), always (2), and until (U). Formulas are built up in the usual way
from these operators and connectives, according to the following grammar

ϕ := p |ϕ ∧ ϕ |ϕ ∨ ϕ | fϕ | 3ϕ | 2 ϕ |ϕ U ϕ,

where p is a state predicate. An ω-word over a given alphabet Σ is a mapping from
N into Σ, that is, an infinite sequence of symbols over Σ. Let w = w0w1w2 . . . be
an ω-word, with wi we denote the subsequence of w starting at position i, that is,
the mapping defined by wi

n = wi+n. Ltl formulas are interpreted on an ω-word
w over the alphabet Σ = 2P and the satisfaction relation w |= ϕ is defined in the
standard way:

—if ϕ is a state predicate, then w |= ϕ if and only if the assignment of atomic
propositions specified by w0 satisfies ϕ;

—w |= ϕ ∧ ψ if and only if w |= ϕ and w |= ψ;

—w |= ϕ ∨ ψ if and only if w |= ϕ or w |= ψ;

—w |= fϕ if and only if w1 |= ϕ;

—w |= 3ϕ if and only if ∃i : wi |= ϕ;

—w |= 2 ϕ if and only if ∀i : wi |= ϕ;

—w |= ϕ U ψ if and only if ∃i : wi |= ϕ and wj |= ψ for all j such that 0 ≤ j < i.

Obviously, the eventually modality is a restricted form of until (i.e., 3ϕ ≡ True U
ϕ holds), and the always modality expresses the logical negation of the eventually
modality (i.e., 3ϕ ≡ ¬(2¬ϕ) holds).

2.2 Fragments of Ltl

In the rest of the paper we consider some fragments of Ltl. We denote by
Ltl+(op1, . . . , opk) the logic of formulas built from the state predicates by using
only the boolean connectives and the temporal operators in the list op1, . . . , opk.
Furthermore, we denote by Ltl(op1, . . . , opk) the logic of formulas obtained as
boolean combinations of Ltl+(op1, . . . , opk) formulas. As an example of this nota-
tion consider the Ltl fragment Ltl(3,∧). The logic Ltl+(3,∧) is defined by the
grammar

ϕ := p |ϕ ∧ ϕ | 3ϕ,

where p is a state predicate, and the fragment Ltl(3,∧) is defined by the grammar

ϕ := ψ | ¬ ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ,

where ψ is a formula of Ltl+(3,∧). Thus, Ltl(3,∧) is the fragment of Ltl
containing the boolean combinations of formulas built from state predicates using
only eventualities and conjunctions. Notice that negations and disjunctions are
allowed only at the top-level and at the atomic level, and by definition, Ltl(3,∧)
is equivalent to Ltl(2,∨). A sample formula of this fragment is 2 p ∨3(q ∧3 r).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

6 · Rajeev Alur and Salvatore La Torre

2.3 Finite automata on ω-words

Automata on ω-words have been extensively studied in relation to temporal logic
[Eme90]. In this section, we will recall the definition of Büchi automata and the
results relating them to Ltl as generators of models.

A nondeterministic transition graph is a 4-tuple (Σ, S, S0,∆), where Σ is an
alphabet, S is a finite set of states, S0 ⊆ S is a set of initial states, and ∆ is
a subset of S × Σ × S. A transition graph is deterministic if |S0| = 1 and ∆
defines a total function δ from S × Σ into S. In the following, when we consider
deterministic transition graphs, we will define directly this function δ instead of the
transition relation ∆. The behavior of a transition graph on a word is captured
by the concept of a run. Let A = (Σ, S, S0,∆) be a transition graph and w be an
ω-word, a run of A on w is a mapping r : N −→ S such that r(0) ∈ S0 and for all
i ∈ N, (r(i), wi, r(i + 1)) ∈ ∆. Given a run r on a word w, we denote with Inf (r)
the set of states appearing infinitely often in r. A clear property of deterministic
transition graphs is that they have exactly one run for each word.

Given a transition graph we define an automaton by specifying the acceptance
conditions. A nondeterministic (resp. deterministic) Büchi automaton is a 5-tuple
A = (Σ, S, S0,∆, F), where (Σ, S, S0,∆) is a nondeterministic (resp. deterministic)
transition graph and F ⊆ S is the set of the accepting states. An ω-word w is
accepted by a Büchi automaton A iff there exists a run r of A on w such that
Inf (r) ∩ F 6= ∅. The language accepted by A, denoted by L(A), is defined to be
the set {w |w is accepted by A}.

For our results, besides the size, another characterizing measure of an automaton
A is the length of the longest simple directed path connecting two states in the
transition graph. We will refer to this measure as the longest distance of A.

For every Ltl formula ϕ, it is possible to construct an automaton on ω-words
accepting all models of it. We will denote such an automaton as Aϕ and we will
refer to it as a generator of models for ϕ. A deterministic generator for an Ltl
formula ϕ of doubly exponential size can be obtained in the following way: from
the formula ϕ, by the tableau construction, it is possible to construct a nonde-
terministic Büchi generator of size 2O(|ϕ|) [LP85; VW94]; we recall that a Büchi
automaton of size n can be determinized and the resulting deterministic Rabin au-
tomaton has 2O(n log n) states and n pairs [Saf88]; thus we determinize the Büchi
generator for ϕ so obtaining a deterministic Rabin generator of doubly exponential
size with exponentially many pairs. Notice that in general, for a given formula ϕ,
a deterministic Büchi generator may not exist but, when this exists, it has been
proved that the translation from Ltl formulas to deterministic Büchi automata
is doubly exponential [KV98], and thus, the above construction is asymptotically
optimal.

2.4 Game graphs

In this section we will introduce the notation concerning Büchi and Ltl games.
A game graph is a tuple G = (V, V0, V1, γ) where V is a finite or countable set of
vertices, V0 and V1 define a partition of V , and γ : V → 2V is a function giving for
each vertex u ∈ V the set of its successors in G. For i = 0, 1, the vertices in Vi

are those from which only Playeri can move and the allowed moves are given by
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 7

the function γ. A play of a game graph G is constructed as a sequence of vertices
selected by the two players. Formally, a play starting at x0 is a sequence x0x1 . . . xh

in V ∗ such that xj ∈ γ(xj−1), for j = 1, . . . , h.
In this paper, we give an asymmetric definition of games, and we focus on

Player0, the protagonist, while Player1 will be the adversary (or antagonist). A
strategy from a vertex u is a total function f mapping a play starting from u and
ending in V0 into V , i.e., it gives the moves of Player0 in any play ending in V0. A
play x0 . . . xn is constructed according to f if for any xj ∈ V0, j ∈ {0, . . . , n − 1},
f(x0 . . . xj) = xj+1. When a strategy depends only on the last vertex of a play,
it is called a memoryless strategy . A strategy f from u defines an ω-tree (strategy
tree), where each node corresponds to one of the plays constructed according to
f : the root corresponds to u and, if a node v corresponds to a play x1 . . . xh then
each of its children corresponds to a legal continuation of the play x0 . . . xh, i.e., to
a play x0 . . . xhxh+1 such that xh+1 ∈ γ(xh), if xh ∈ V1, and f(x0 . . . xh) = xh+1,
otherwise. A node of a strategy tree, corresponding to a play x1 . . . xh, is labeled
with the last vertex of the play, that is, xh.

A Büchi game is a pair (G,F) where G is a game graph and F is a subset of
G vertices. Given a Büchi game (G,F), a winning strategy from u is a strategy f
such that, on every path of the strategy tree corresponding to f , there is a vertex
from F that repeats infinitely often (Büchi winning condition).

To define Ltl games, we introduce the concept of labeled game graph. A Σ-
labeled game graph is a game graph G along with a function µ labeling each vertex
of G with a subset of Σ. An Ltl game is a pair (G,ϕ) where G is a P -labeled game
graph and ϕ is an Ltl formula over the set of atomic propositions P . For strategy
trees in Ltl games, a node corresponding to a play x1 . . . xh is labeled with µ(xh).
Given an Ltl game (G,ϕ), a winning strategy from u is a strategy f such that ϕ
is satisfied on all paths of the strategy tree corresponding to it.

Given a game (G,W), we consider the decision problem: “Is there a strategy
for Playeri satisfying the winning condition W?” We remark that while Büchi
games admit memoryless winning strategies and can be solved in quadratic time,
Ltl games in general do not have a memoryless winning strategy and are decidable
in time polynomial in |G| and doubly exponential in |ϕ| [PR89].

3. PARTIALLY-ORDERED DETERMINISTIC GENERATORS

We begin this section by introducing a proper subclass of deterministic Büchi au-
tomata whose transitive closure of the transition function defines a partial order
over the states. To emphasize this property, we call an automaton in this class a
partially-ordered deterministic Büchi automaton (PODB). Then, we will show that,
for formulas in some fragments of Ltl, it is possible to construct a deterministic
generator which is a PODB.

A PODB is a deterministic Büchi automaton whose transition graph is a directed
acyclic graph except for the self-loops. Obviously, the longest distance of a PODB
is the longest distance between the initial state and a sink state, where an initial
and a sink state are respectively a minimal and a maximal state with respect to the
partial order induced by the transition function of the PODB. PODBs are closed
under boolean operations.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

8 · Rajeev Alur and Salvatore La Torre

ii p

p
k

p
1

p
1

p
k

s’0
A

p

pp

p (p)ii
s0

Fig. 1. Graphical representation of the automaton A3(p,A).

Proposition 3.1. For i = 1, 2, let Ai be PODBs of size ni and longest distance
di. There exists a PODB A1 ∩A2 (resp. A1 ∪A2) accepting the language L(A1) ∩
L(A2) (respectively, L(A1) ∪ L(A2)), whose size is O(n1 · n2) and longest distance
is not greater than d1 + d2. Moreover, for i = 1, 2, there exists a PODB Ai of size
ni and longest distance di accepting Σω \ L(Ai).

Proof. For i = 1, 2, let Fi be the set of accepting states of Ai. Consider first the
closure of PODBs under the union. The automaton A accepting L(A1) ∪ L(A2) is
obtained by the usual cross-product construction for deterministic Büchi automata.
To prove that A is a PODB, we observe that if there exists a cycle of A which is
not a self-loop then immediately from the construction of A we get that either for
i = 1 or i = 2, there exists a cycle of Ai which is not a self-loop. To complete the
proof for the union, we need to show that the longest distance of A is not greater
than d1+d2. For this purpose, consider a simple path π = (a1, b1) . . . (am, bm) of A.
Since π is simple, ai 6= ai+1 or bi 6= bi+1 must hold for every i = 1, . . . , m−1. Being
A1 and A2 both PODBs, the number of times “ai is not equal to ai+1” cannot be
larger than d1 and the number of times “bi is not equal to bi+1” cannot be larger
than d2. Thus the longest distance of A is not greater than d1 + d2.

For the intersection we can use similar arguments. We just observe that differ-
ently from the usual construction for deterministic Büchi automata, the automaton
accepting L(A1)∩L(A2) is given by the cross-product of A1 and A2 along with the
set of accepting states F1 × F2. This simple construction works for PODBs since
for this class of automata along any infinite run only one state can repeat infinitely
often and thus the conditions “a state repeats infinitely often” and “a state even-
tually repeats forever” are equivalent. For the same reason, the complementation
of a PODB is obtained by simply complementing the set of accepting states, as in
the case of deterministic automata on finite words.

The above results on intersection and union are naturally extended to k-tuples
of automata A1, . . . , Ak and we will denote the corresponding automata with A1 ∩
. . . ∩Ak and A1 ∪ . . . ∪Ak, respectively.

Let ϕ be a formula and L be the set of models of ϕ. Suppose that ΣL ⊆ L holds.
If a deterministic generator for ϕ is known, we can easily construct a deterministic
generator for 3(p ∧ ϕ), where p is a state predicate. In fact, since ΣL ⊆ L,
to accept all the models of 3(p ∧ ϕ), it is sufficient to start a generator for ϕ

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 9

as soon as p becomes true. Such a construction is clearly deterministic and is
formally described as follows. Let A = (Σ, S, s0, δ, F) be a (deterministic) Büchi
automaton and s′0 6∈ S, we define the (deterministic) Büchi automaton A3(p,A) as
(Σ, S ∪ {s′0}, s′0, δ′, F) where:

(1) δ′(s, a) = δ(s, a) for s ∈ S,
(2) δ′(s′0, a) = δ(s0, a) for a satisfying p, and
(3) δ′(s′0, a) = s′0, otherwise.

The above construction is illustrated in Figure 1.

Proposition 3.2. Let A = (Σ, S, s0, δ, F) be a (deterministic) Büchi automaton
of size n and longest distance d such that ΣL(A) ⊆ L(A), and p be a predicate over
Σ. The (deterministic) automaton A3(p,A) has size O(n), longest distance d + 1
and accepts the language Σ∗ [p]L(A), where [p] = {a ∈ Σ | a satisfies p}. Moreover,
if A is a PODB then A3(p,A) is also a PODB.

Proof. It is easy to verify that A3(p,A) has size O(n) and longest distance d+1,
and that the above construction preserves the determinism and the PODB property
of A (see Figure 1).

To complete the proof we need to show that L(A3(p,A)) = Σ∗ [p]L(A). Let
v ∈ Σ∗ [p]L(A). Since ΣL(A) ⊆ L(A), we can assume that v = w1aw2 where
w1 ∈ (Σ \ [p])∗, a ∈ [p], and w2 ∈ L(A) (i.e., a is the first occurrence in v of a
symbol from [p]). By rule 3, A3(p,A) reads w1 staying in the starting state s′0, then
by rule 2 enters a state of A on a, and behaves as A on w2. Since w2 ∈ L(A), we
get that v ∈ L(A3(p,A)). The proof of the inclusion L(A3(p,A)) ⊆ Σ∗ [p]L(A) is
analogous.

3.1 Generators for Ltl(3,∧)

The fragment Ltl(3,∧) contains boolean combinations of formulas built from state
predicates using eventualities and conjunctions. Negations and disjunctions are
allowed only at the top-level and at the atomic level, thus Ltl(3,∧) is equivalent
to Ltl(2,∨). A sample formula of this fragment is 2 p∨3(q∧3 r). This fragment
includes combinations of typical invariants and termination properties.

Let us consider the formula ϕ = 3 p1 ∧ . . . ∧3 pn, where pi ∈ P for i = 1, . . . , n.
Obviously, ϕ is in Ltl(3,∧) and it asserts that each one of p1, . . . , pn has to be
true at least once. Then, a deterministic generator Aϕ for ϕ has to keep track
only of the set of atomic propositions which have been already fulfilled. The size
of Aϕ is O(2n) and its longest distance is the cardinality of the maximal totally
ordered set of states with respect to the subset relation, that is, n. We proceed
to show that all the Ltl(3,∧) formulas have a deterministic generator which is
a PODB of exponential size and linear longest distance, but first, we introduce a
characterization of the formulas in the considered fragment. We observe that each
formula ϕ in Ltl+(3,∧) is defined inductively by the following rules:

—ϕ is a state predicate over P or,
—for k ≥ 0, ϕ is p ∧ 3ϕ1 ∧ . . . ∧ 3ϕk where p is a state predicate over P and

ϕ1, . . . , ϕk are formulas in Ltl+(3,∧).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

10 · Rajeev Alur and Salvatore La Torre

p

p p

:A pp :

p

A

Fig. 2. PODBs for p and 3 p.

Theorem 3.3. There exists a deterministic Büchi automaton A accepting all
the models of a formula ϕ in Ltl(3,∧) such that A is a PODB of size exponential
in |ϕ| and longest distance linear in |ϕ|.

Proof. We inductively define a deterministic Büchi automaton A accepting all
the models of a given formula 3ϕ in Ltl+(3,∧) such that A is a PODB of ex-
ponential size and linear longest distance in |ϕ|, and then by Proposition 3.1 this
result is extended to any formula in Ltl(3,∧). For a state predicate p, we define Ap

and A3 p as in Figure 2. It is easy to verify that Ap (respectively A3 p) is a PODB
accepting all the models of p (respectively 3 p). Clearly, Σ∗L(A3 p) ⊆ L(A3 p)
also holds. Now, let ψ be the formula 3(p ∧3ψ1 ∧ . . . ∧3ψk) and, for a formula
γ ∈ {ψ1, . . . , ψk}, A3 γ be a PODB accepting all the models of 3 γ. By inductive hy-
pothesis we have that A3 γ has O(2|3 γ|) size and O(|3 γ|) longest distance. Thus,
by Proposition 3.1, A′ = A3 ψ1 ∩ . . . ∩ A3 ψk

is a PODB of O(2|3 ψ1|+...+|3 ψk|)
size and O(|3 ψ1| + . . . + |3 ψk|) longest distance, accepting all the models of
3ψ1 ∧ . . . ∧ 3ψk. Clearly, since Σ∗ L(A3 ψi

) ⊆ L(A3 ψi
) trivially holds for every

i = 1, . . . , k, we have that Σ∗L(A′) ⊆ L(A′) also holds. Thus, from Proposition 3.2,
we get that Aψ = A3(p,A′) is a PODB accepting all models of ψ such that the size
of Aψ is exponential in |ψ| and the longest distance of Aψ is linear in |ψ|.

The previous result is optimal in the sense that, as stated by the following the-
orem, we may not have a smaller generator for some formula in Ltl(3,∧) even if
we allow nondeterminism.

Theorem 3.4. There exists a formula ϕ in Ltl(3,∧) such that all generators
of ϕ have 2Ω(|ϕ|) size and Ω(|ϕ|) longest distance.

Proof. Consider a formula ϕ = 3 p1 ∧ . . . ∧3 pn, where P = {p1, . . . , pn} and
n ≥ 2. Clearly, |ϕ| = O(n) holds. First we prove that a generator for ϕ has at
least 2n states. Let Aϕ = (2P , S, s0,∆, F) be a generator for ϕ. For any c ∈ 2P , we
denote by c the complement of c with respect to P , by wc the ω-word c∅ . . . ∅ . . .,
and by sc a state of Aϕ such that (s0, c, sc) ∈ ∆ and there exists an accepting run
of Aϕ on cwc starting with the transition (s0, c, sc). Consider a, b ∈ 2P such that
a 6= b. We have that bwa is not a model of ϕ, if a 6⊆ b, and awb is not a model of
ϕ, if b 6⊆ a. Being Aϕ a generator of models for ϕ, we get that Aϕ does not accept
wa starting from sb, in the first case, and wb starting from sa, in the second case.
Thus for a 6= b we get that sa 6= sb and hence we have proved that Aϕ has at least
2n states.

For the second assertion, consider the ω-word w = {p1}{p2} . . . {pn}ω. Clearly,
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 11

w is a model of ϕ. Suppose that Aϕ is a generator of ϕ with longest distance less
than n and let r be an accepting run on w. Thus there exist 0 ≤ i < j < n such
that r(i) = r(j). Then, r(0) . . . r(i − 1)r(j)r(j + 1) . . . is an accepting run of Aϕ

on w′ = {p1} . . . {pi−1}{pj}{pj+1} . . . {pn}ω, but w′ is not a model of ϕ, and this
contradicts the hypothesis that Aϕ is a generator for ϕ.

3.2 Generators for Ltl(3,∧,∨)

The fragment Ltl(3,∧,∨) contains boolean combinations of formulas built from
state predicates using eventualities, disjunctions, and conjunctions.

Let us consider the formula ϕ = 3
∧n

i=1(pi ∨ 3 qi), where pi, qi ∈ P , for i =
1, . . . , n. Obviously ϕ is an Ltl(3,∧,∨) formula. This formula asserts that all the
clauses (pi ∨ 3 qi) have to be fulfilled at the same position in the model. Since
the fulfillment of a clause at a position implies either pi ∨ qi at that position or
qi at a later position, a nondeterministic generator for ϕ is the one that nonde-
terministically guesses the first position at which all the clauses are satisfied and,
then, check for their fulfillment. Such a generator has exponential size and linear
longest distance. To obtain a deterministic generator for ϕ we can determinize this
strategy. A way to do this is to store in each state the family of sets of qi’s whose
fulfillment at later positions can guarantee the fulfillment of ϕ. Then, the corre-
sponding deterministic automaton has 22n

states (that is, not more than the set of
parts of {q1, . . . , qn}). Clearly, the fulfillment of all propositions in a set A implies
the fulfillment of all propositions in any subset of A. Thus we do not need to store
in the next state a set of qi’s which contains one of the sets stored in the current
state and if a qi is fulfilled it can be deleted by any stored set. As a consequence
the longest distance of this automaton is at most 2n. It is possible to prove that
this result indeed holds for all Ltl(3,∧,∨) formulas, as stated by the following
theorem.

Theorem 3.5. There exists a deterministic Büchi automaton A accepting all
the models of a formula ϕ in Ltl(3,∧,∨) such that A is a PODB of size doubly
exponential in |ϕ| and longest distance exponential in |ϕ|.

Proof. We observe that an Ltl(3,∧,∨) formula ϕ can be translated into an
equivalent Ltl(3,∧) formula ϕ′ such that |ϕ′| = O(2|ϕ|). This can be done by
pushing outside all the “or” connectives in ϕ using the following equivalences: ψ1∧
(ψ2∨ψ3) ≡ (ψ1∧ψ2)∨(ψ1∧ψ3), (ψ1∨ψ2)∧ψ3 ≡ (ψ1∧ψ3)∨(ψ2∧ψ3), 3(ψ1∨ψ2) ≡
3ψ1∨3ψ2, and 3(3ψ) ≡ 3ψ. By Theorem 3.3 there exists a PODB A accepting
all the models of ϕ′ such that its size is O(2|ϕ

′|) and its longest distance is O(|ϕ′|).
Thus by ϕ ≡ ϕ′ and |ϕ′| = O(2|ϕ|), the statement of the theorem is proved.

The following theorem shows that for some Ltl(3,∧,∨) formula, we may not
be able to have a deterministic generator smaller than that given by the above
construction.

Theorem 3.6. There exists a formula ϕ in Ltl(3,∧,∨) such that all the deter-
ministic generators of ϕ have 22Ω(|ϕ|)

size and 2Ω(|ϕ|) longest distance.

Proof. Consider a formula ϕ = 3
∧n

i=1(pi ∨ 3 qi), where pi, qi ∈ P for i =
1, . . . , n and n ≥ 2. Obviously, |ϕ| = O(n). Denote by Pp the set {p1, . . . , pn} and

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

12 · Rajeev Alur and Salvatore La Torre

by Pq the set {q1, . . . , qn}. Let Aϕ = (2P , S, s0, δ, F) be a deterministic generator
for ϕ. First we prove that Aϕ has 22Ω(n)

states, then we show that it has a simple
path of length 2Ω(n).

Given a subset b of Pp, define q(b) as the set {qi | pi 6∈ b}. Define Σk as the set of
Pp subsets of cardinality k, that is, Σk = {a ⊆ Pp | |a| = k}. The cardinality of Σk

is
(
n
k

)
. If we choose k = dn

2 e, then |Σk| = 2Ω(n). Observe that for any w,w′ ∈ Σ∗
k

such that w = σ0σ1 . . . σm, w′ = σ′0σ
′
1 . . . σ′m′ and ∪m

i=1{σi} 6= ∪m′
i=1{σ′i}, it must

hold that δ(s0, w) 6= δ(s0, w
′). In fact, without loss of generality we can assume

that there is a σ ∈ ∪m
i=1{σi} such that σ 6∈ ∪m′

i=1{σ′i}. Thus, for any w′′ ∈ (2P)ω,
the word wq(σ)w′′ is a model of ϕ and w′q(σ)∅ . . . ∅ . . . is not. Since Aϕ accepts all,
and only, the models of ϕ, and there is an accepting run for any word wq(σ)w′′, if
δ(s0, w) = δ(s0, w

′) then Aϕ accepts also w′q(σ)∅ . . . ∅ . . ., and this contradicts the
hypothesis Aϕ being a generator of models for ϕ. Since the number of subsets of
Σk is 2|Σk|, Aϕ must have at least 2|Σk| states. Thus, for k = dn

2 e, this means 22Ω(n)

states.
For the second assertion, consider a word w′ = b1b2 . . . bm(k), where {b1, . . . , bm(k)}

is the set Σk defined above. It holds that wi = w′q(bi)w is a model of ϕ for all
w ∈ (2P)ω and i = 1, . . . , m(k). Denote by ri the run of Aϕ on wi. Since Aϕ

is deterministic, for any i, j ∈ {1, . . . , m(k)}, we get that ri(h) = rj(h) for all
h = 0, . . . , m(k). Now suppose that Aϕ has longest distance less than m(k). There
exist h and l such that 0 ≤ h < l < n and ri(h) = rj(l) for all i, j ∈ {1, . . . , m(k)}.
As a consequence, the run obtained from rh by replacing the cycle rh(h) . . . rh(l) by
rh(l), is an accepting run of Aϕ on w′′ = b1 . . . bh−1bl . . . bm(k)q(bh)∅ . . . ∅, but w′′ is
clearly not a model of ϕ and this contradicts the above hypothesis on the longest
distance of Aϕ. Moreover, since m(dn

2 e) = 2Ω(n), we are done.

3.3 Characterization of PODB in Ltl

In this section we introduce an Ltl fragment, denoted by LtlPODB , which is
equivalent to PODBs, in the sense that given a formula ϕ in LtlPODB there is a
PODB which is a generator of models for ϕ and, vice-versa, given a PODB A there
is formula ϕ in LtlPODB such that L(A) is the set of all the models of ϕ. We
prove that the translations from LtlPODB formulas into PODBs and vice-versa
may be exponential. We also show that LtlPODB is strictly more expressive than
Ltl(3,∧,∨).

The syntax of LtlPODB is given by the following grammar:

ϕ := p | 2 p |ϕ ∧ ϕ |ϕ ∨ ϕ | fϕ | p U ′ ϕ.

The formula p U ′ ϕ asserts that p has to be true until ϕ becomes true and at the
same position p becomes false. The semantics of this temporal operator U ′ is then
given by the equivalence

p U ′ ϕ ≡ p U (¬p ∧ ϕ).

The logic LtlPODB is closed under logical negation.

Proposition 3.7. For any LtlPODB formula ϕ there exists an LtlPODB for-
mula ϕ′ such that ϕ′ ≡ ¬ϕ and |ϕ′| = O(|ϕ|).
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 13

p
1

p
2

p
3

p
4

p
5

p
5

p
3

p
4()

p
1

p
2()

Fig. 3. Graphical representation of the PODB A.

Proof. The following equivalences hold:

¬ fp ≡ f¬p

¬2 p ≡ ¬(¬p U ′ p)
¬(p U ′ ϕ) ≡ 2 p ∨ (¬p U ′ ¬ϕ)

Consider the PODB A in Figure 3. A corresponds to the LtlPODB formula

p1 U ′ (p2 ∧ f(2 p3 ∨ (p3 U ′ (p4 ∧ fp5))))).

The following theorem holds.

Theorem 3.8. There exists a deterministic Büchi automaton A accepting all
the models of a formula ϕ in LtlPODB such that A is a PODB of size exponential
in |ϕ| and longest distance linear in |ϕ|.

Proof. We prove this result by induction on the structure of a formula in
LtlPODB . The base cases p and 2 p are trivial. By Proposition 3.1 the induction
directly holds for formulas of type ϕ ∧ ϕ′ and ϕ ∨ ϕ′. Suppose now by induction
that for a formula ϕ, Aϕ is a PODB of size exponential in |ϕ| and longest distance
linear in |ϕ| generating all the models of ϕ. A PODB for fϕ can be obtained by
adding a new state s to Aϕ along with transitions on any input to the initial state
of Aϕ, and choosing s as the new initial state. This new PODB obviously has size
exponential in |ϕ| and longest distance linear in |ϕ|. Since (p U ′ ϕ) is equivalent
to 3(¬p ∧3ϕ), a PODB for (p U ′ ϕ) is A3(¬p,Aϕ), and clearly satisfies the stated
property on the size and longest distance.

By the equivalence 3 p ≡ (¬p U ′ p), the formula ϕ = 3 p1 ∧ . . . ∧ 3 pn, where
pi ∈ P for i = 1, . . . , n, is equivalent to an LtlPODB formula of size linear in |ϕ|.
We recall that a generator for this formula needs at least 2n states and its longest
distance is at least n (see proof of Theorem 3.4). Therefore, the result stated in
Theorem 3.8 is optimal in the sense that there exists an LtlPODB formula for
which we cannot find a smaller generator.

The proof of the claimed equivalence between PODBs and LtlPODB formulas is
completed by the following theorem.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

14 · Rajeev Alur and Salvatore La Torre

Theorem 3.9. Given a PODB A there exists an LtlPODB formula ϕ such that
A is a generator of ϕ models and |ϕ| = O(2|A|).

Proof. We prove this result by induction on the number of states of a PODB.
The base case is a PODB having only one state. Since it is deterministic it has
also a self-loop. If the only state is also an accepting one, then the corresponding
formula is True, and it is False, otherwise. Suppose now that any PODB B with
at most n states can be translated into an LtlPODB formula of size O(2|B|), and
let A be a PODB with n + 1 states. Denote by s0 the starting state of A. For
i = 1, . . . , k, let (s0, pi, si) be all the transitions from s0 for si 6= s0 and (s0, p0, s0)
be the self-loop on s0 in case there is one. Since A is deterministic, pi ∧ pj does
not hold for any i 6= j. Moreover, denote by Ai the automaton obtained from A
by removing all the states which are not reachable from si and considering si as
the starting state. Since A is a PODB s0 is not a state of Ai, therefore Ai has at
most n states and |Ai| < |A| − k (we remove at least k transitions from A). By
inductive hypothesis, Ai is a generator for an LtlPODB formula ϕi of size O(2|Ai|).
There are three different cases depending on whether s0 has a self-loop or not, and
in the positive case whether it is also an accepting state or not. If s0 does not have
a self-loop, then the formula corresponding to A is ϕ =

∨k
i=1(pi ∧ fϕi). Suppose

now that s0 has a self-loop and is not final. Thus A is equivalent to the formula
ϕ = p0 U ′ (

∨k
i=1(pi∧ fϕi)), where p0 is the state predicate of the self-loop on s0. In

the last case, the formula corresponding to A is ϕ = 2 p0∨(p0 U ′ (
∨k

i=1(pi∧ fϕi))).
In all the three cases, the size of ϕ is O(k 2|A|−k) and thus O(2|A|).

We conclude this section by comparing the expressiveness of the Ltl fragments
LtlPODB and Ltl(3,∧,∨). In the next lemma we show that Ltl(3,∧) formulas
can be translated to LtlPODB formulas with at most a linear blow-up of the size.

Lemma 3.10. Given a formula ϕ in Ltl(3,∧), there exists an equivalent for-
mula ϕ′ in LtlPODB such that |ϕ′| = O(|ϕ|).

Proof. We show the lemma by induction on the structure of Ltl(3,∧) formu-
las. State predicates are already LtlPODB formulas, and the equivalence 3 p ≡
(¬p U ′ p) trivially holds. Suppose by induction that given the Ltl+(3,∧) formulas
3ψ1, . . . ,3 ψn there exist LtlPODB formulas ψ′

1, . . . , ψ
′
n such that ψ′

i is equivalent
to 3ψi and ψ′

i has size O(|3 ψi|). Consider the formula 3(p ∧3ψ1 ∧ . . . ∧3ψn)
where p is a state predicate. Clearly, ψ′ = ψ′

1∧. . .∧ψ′
n is an LtlPODB formula which

is equivalent to ψ = 3ψ1 ∧ . . .∧3ψn and whose size is O(|3 ψ1|+ . . . + |3 ψn|) =
O(|ψ|). Moreover, we observe that the equivalence 3(p ∧ ψ) ≡ (¬p U ′ ψ′) trivially
holds. By Proposition 3.7, and since top-level conjunction and disjunction are al-
lowed by the syntax of LtlPODB , we can conclude that each Ltl(3,∧) formula ϕ
can be translated into into an equivalent LtlPODB formula of O(|ϕ|) size.

Theorem 3.11. LtlPODB is strictly more expressive than Ltl(3,∧,∨).

Proof. By pushing out all the disjunctions, each Ltl(3,∧,∨) formula ϕ can be
transformed into an equivalent Ltl(3,∧) formula ϕ′. Thus by Lemma 3.10 every
Ltl(3,∧,∨) formula can be translated into an equivalent LtlPODB formula. To
conclude the proof, we observe that it is known that the next modality cannot be
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 15

expressed using only until modalities and boolean connectives [Eme90], and thusfp cannot be expressed in Ltl(3,∧,∨).

Using the construction sketched in the above proof, it is possible to translate
a formula ϕ of Ltl(3,∧,∨) into an equivalent formula ϕ′ of LtlPODB such that
|ϕ′| is exponential in |ϕ|. This translation is also optimal, since a sub-exponential
translation along with the result from Theorem 3.8 would contradict the lower
bound from Theorem 3.6.

4. DETERMINISTIC GENERATORS FOR OTHER LTL FRAGMENTS

In this section we consider some proper fragments of Ltl which contains formulas
that do not have a generator which is also a PODB. We first give the results on
the deterministic generators for these fragments, then compare their expressiveness
with LtlPODB . We use the notation fn as a shorthand for n nested next modalities,
and therefore, consider size of fn ϕ to be |ϕ|+ n.

4.1 Generators for Ltl(3, f,∧)

Let us consider the formula ϕ = 3(p ∧ fn q), where p, q ∈ P . This formula asserts
that in an ω-word satisfying ϕ, there exists a position i ∈ N where p is fulfilled and
q is fulfilled at position i+n. Thus, to decide if p∧ fn q is satisfied at position i we
need to see the next n positions. A way “to delay” decisions of n steps is to keep
record of the last n inputs. Therefore, we can have a deterministic generator for
ϕ by augmenting a deterministic generator for (p ∧ fn q) with a record containing
the last n inputs. Clearly, the total construction requires O(2n) states and longest
distance. If a formula ϕ has several distinct subformulas of type fn p, it is sufficient
to store in the states of a deterministic generator for ϕ only a record of the last N
inputs, where N is the nesting depth of the next modalities of ϕ. For more complex
formulas, we can construct a deterministic generator that stores the last inputs and
the subformulas that still need to be satisfied in order to accept the input word.
Consider for example a formula ϕ = 3(p1 ∧ fk1 q1 ∧ fk2 q2 ∧3(p2 ∧ fk3 q3)) such
that k1 ≥ kj for j = 2, 3. A deterministic generator for ϕ, Aϕ, needs only to
store the last k1 inputs to check the fulfillment of subformulas fkj qj for j = 1, 2, 3.
Suppose that w, |w| ≤ k1, is the sequence currently stored in the Aϕ state and a is
the input symbol. If p1 ∧ fk1 q1 ∧ fk2 q2 is fulfilled on wa, Aϕ also checks whether
p2 ∧ fk3 q3 is fulfilled on wa. If this is the case, then Aϕ accepts the current word
independently from its suffix, otherwise Aϕ enters a state where the fulfillment of
3(p2 ∧ fk3 q3) still needs to be checked. Clearly, |Aϕ| is O

(
2|ϕ| k1

)
. Since the total

size of the formulas stored in a state of Aϕ decreases along a run, we have that the
longest distance of Aϕ is O(|ϕ| 2k1).

In the following theorem, we extend this construction to all Ltl(3, f,∧) formulas
and prove an upper bound on the size and the longest distance of deterministic
generators for formulas in this Ltl fragment.

Theorem 4.1. There exists a deterministic Büchi automaton A accepting all
the models of a formula ϕ in Ltl(3, f,∧) such that A has O

(
2k |P |+|ϕ|2

)
size and

O
(|ϕ|2 2k |P |) longest distance, where k is the nesting depth of next modalities in

ϕ.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

16 · Rajeev Alur and Salvatore La Torre

Proof. We observe that given a formula ψ, the next operators in ψ can dis-
tribute over the boolean connectives and the eventually operators so that we can
obtain an equivalent formula ψ′ having only state predicates in the scope of a finite
sequence of next operators, and such that ψ′ = O(|ψ|2). Clearly, the nesting depth
of next modalities is the same in ψ and ψ′. To complete the proof we only need to
show that we can construct a deterministic generator for ψ′ of O

(
2k |P |+|ψ′|

)
size

and O
(|ψ′| 2k |P |) longest distance, where k is the nesting depth of next modalities

in ψ′. To prove this claim we sketch the construction of a deterministic genera-
tor for formulas 3ϕ from Ltl+(3, f,∧) and then we observe how to extend it to
boolean combinations of these formulas. We leave the details of the constructions
to the reader.

We start giving some notation. Given a 3-formula 3ϕ from Ltl+(3, f,∧), we
have that 3ϕ = 3(p∧ fk1 q1 ∧ . . .∧ fkh qh ∧3ϕ1 ∧ . . .∧3ϕl), where h ≥ 0, l ≥ 0,
and p, q1, . . . , qh are state predicates. Since we can rewrite each subformula 3ψ of
3ϕ with no nested eventually modalities as 3(ψ ∧ 3True), we can assume that
every 3-subformula of 3ϕ has either a nested 3-subformula or is 3True. We
inductively define the conjuncts of a subformula as follows. For a formula 3ϕ =
3(p∧ fk1 q1∧. . .∧ fkh qh∧3ϕ1∧. . .∧3ϕl), the formula c = (p∧ fk1 q1∧. . .∧ fkh qh)
is defined as the conjunct of 3ϕi, i = 1, . . . , l, with respect to 3ϕ. If 3ϕ′ is a
3-subformula of 3ϕi, i = 1, . . . , l, and c′ is its conjunct with respect to 3ϕi, then
c ∧ c′ is defined as the conjunct of 3ϕ′′ with respect to 3ϕ′. Given a sequence w
and a set of formulas Ψ, the set of maximal formulas from Ψ satisfied on w is the
set of formulas ψ ∈ Ψ such that: ψ is satisfied on w, and for every formula ψ′ ∈ Ψ
such that ψ is a subformula of ψ′, ψ′ is not satisfied on w.

Let 3ϕ be a formula from Ltl+(3, f,∧), we construct a deterministic Büchi
generator A3 ϕ for 3ϕ as follows. The states of A3 ϕ are pairs given by a set of 3-
subformulas of 3ϕ and a sequence containing the last k input symbols (last k digits
record). The starting state of A3 ϕ is ({3 ϕ}, ε) where ε is the empty word. The
automaton A3 ϕ from a state (Ψ, ax) and on an input b moves to a state (Ψ′, x′b)
where:

—x′ = x, if |ax| = k, and x′ = ax, otherwise;
—Ψ′ contains all the 3-subformulas ϕ′ of 3ϕ such that ϕ′ is a subformula of

ϕ′′ ∈ Ψ and its conjunct with respect to ϕ′′ is maximal among the conjuncts
with respect to ϕ′′ that are satisfied on axb.

Clearly, if no conjuncts are satisfied on axb then Ψ = Ψ′. The acceptance condition
is given by the set {(Ψ, w) |Ψ = {3True}}.

It is easy to verify that the size of Aϕ is O(2k |P |+|ϕ|). Since the size of the set
of 3 subformulas of ϕ decreases monotonically along a run, the longest distance of
Aϕ is O(|ϕ| 2k |P |). To complete the proof we observe that the construction for ¬ϕ
is dual. Moreover, positive boolean combinations of formulas of type 3ϕ or ¬3ϕ
from Ltl+(3, f,∧) can be handled by a modified cross product construction, where
we use as last digits record the largest one among those of the composing automata.
Clearly, this construction achieves the claimed upper bounds on the size and the
longest distance of the deterministic generator for an Ltl(3, f,∧) formula.

The previous result is optimal in the sense that we may not have a smaller
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 17

generator for some formula in Ltl(3, f,∧), as stated by the following theorem.

Theorem 4.2. There exists a formula ϕ in Ltl(3, f,∧) such that all generators
of ϕ have 2Ω(|ϕ|) size and 2Ω(|ϕ|) longest distance.

Proof. Since Ltl(3,∧) is a fragment of Ltl(3, f,∧), we only need to prove
that there exists a formula ϕ such that all generators for ϕ have a simple path of
length at least 2n. Consider the formula ϕ = 2(p → fn q), where p, q ∈ P and
n ≥ 2. Clearly, |ϕ| = O(n). Assume that Aϕ = (2P , S, s0,∆, F) is a generator for
ϕ. Consider words w = a1 . . . an and w′ = a′1 . . . a′n such that w,w′ ∈ (

2P
)∗, and

for some i, p 6∈ ai and p ∈ a′i. Let y ∈ (
2P

)ω be such that y = b1 . . . bh . . ., q 6∈ bi,
and xwy is a model of ϕ for some x ∈ (

2P
)∗. We have that xw′y is not a model

of ϕ since (p → fn q) is not fulfilled on xw′y starting at a′i. Thus a generator Aϕ

cannot enter the same state after reading xw and xw′, since it must accept xwy
and reject xw′y. Clearly we can prove this for any pair of words w,w′ of length n
that differs with respect to the truth of p at least in a position. Since there exists 2n

words w1, . . . , w2n which are pairwise distinguishable with respect to truth values
of p, there are at least 2n pairwise disjoint sets of states S1, . . . , S2n such that Aϕ,
by reading a prefix of a model for ϕ ending in wi, reaches the states in Si. To
conclude this proof we just need to prove that there exists a word on which Aϕ

reaches in turn a state from each Si and if a state in Si has been reached, it does
not visit another state in Si until a state from each of the sets Sj has been reached.
By the above arguments this is equivalent to prove that there is an exponentially
long word w in {0, 1}∗ such that any two of its subwords of length n differ at least
in a position. Since such a word exists (for example, it can be determined starting
from w = 0n and iteratively repeating the following step: append 1 to w, if the
suffix of w1 of length n is different from any subword of length n of w, and append
0, otherwise), we are done.

4.2 Generators for Ltl(3, f,∧,∨)

The fragment Ltl(3, f,∧,∨) contains boolean combinations of formulas built from
state predicates using eventualities, next modalities, disjunctions, and conjunctions.
This fragment includes combinations of safety and guarantee properties, and be-
longs to the class of syntactic obligation properties [MP91].

In Section 3.2 we have considered the Ltl fragment Ltl(3,∧,∨) and proved
that each formula in this fragment has a deterministic generator of doubly ex-
ponential size and exponential longest distance. Indeed this result holds also for
Ltl(f,3,∧,∨) which strictly subsumes Ltl(3,∧,∨), as stated by the following
theorem.

Theorem 4.3. There exists a deterministic Büchi automaton A accepting all the
models of a formula ϕ in Ltl(3, f,∧,∨) such that A has size doubly exponential
in |ϕ| and longest distance exponential in |ϕ|.

Proof. We first observe that as for Ltl(3,∧,∨) formulas, we can translate an
Ltl(3, f,∧,∨) formula ϕ into an equivalent Ltl(3, f,∧) formula ϕ′ with at most
an exponential blow-up of the size. By Theorem 4.1 there exists a deterministic
Büchi automaton A accepting all the models of ϕ′ such that A has O

(
2k |P |+|ϕ′|2

)

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

18 · Rajeev Alur and Salvatore La Torre

size and O
(|ϕ′|2 2k |P |) longest distance, where k is the nesting depth of next modal-

ities in |ϕ′|. Since k = O(|ϕ|) and |ϕ′| = O(2|ϕ|), we have that A is a generator for
ϕ of size doubly exponential in |ϕ| and longest distance exponential in |ϕ|.

Since Ltl(3,∧,∨) is a proper fragment of Ltl(3, f,∧,∨), by Theorem 3.6 we
may not have a smaller deterministic generator for some formula in Ltl(3, f,∧,∨).

4.3 Generators for Ltl(2,3)

In Section 2.3 we recalled the results concerning the construction of a deterministic
generator for a given formula in Ltl. In this section we prove that a matching
lower bound to that construction even in absence of next and until modalities.

Theorem 4.4. There exists a formula ϕ in Ltl(2,3) such that all the deter-
ministic generators of ϕ have 22Ω(|ϕ|)

longest distance.

Proof. Consider the formula 2(3
∧n

i=1(ai ∨3 bi) → 3
∧n

i=1(ci ∨3 di)), where
ai, bi, ci, di ∈ P for i = 1, . . . , n and n ≥ 2. Assume that Aϕ = (2P , S, s0, δ, F) is a
deterministic generator for ϕ. Denote by Px the set {x1, . . . , xn}, for x ∈ {a, b, c, d},
by pj a subset of Pa, and by qj a subset of Pc. By arguments similar to those used
to prove Theorem 3.6, it is possible to show that: 1) a deterministic generator for ϕ
needs to keep track of the pj ’s that have been fulfilled and for each pj the list of qh’s
which have been fulfilled starting at the position where pj was true the last time;
2) we may need to store exponentially many pj ’s and exponentially many qj ’s, to
check the fulfillment of 3

∧n
i=1(ai ∨3 bi) and 3

∧n
i=1(ci ∨3 di), respectively. Thus

for k = 2Ω(n), let p1, . . . , pk and q1, . . . , qk be such sets, and denote by Pp the set
{p1, . . . , pk}, and by Pq the set {q1, . . . , qk}. We observe that exactly one among
all pj ’s (respectively, qj ’s) can be true at each position. Every time a pj is true
at a position i, A replaces the list for pj with the only qh which is true at that
position. Every time a qj is true, A adds it to all lists. To conclude the proof it is
sufficient to show that there exists a word w in (Pp ∪ Pq)∗ of length 2k such that
the only run r of A on w satisfies r(i) 6= r(j) for any i 6= j. To see this, we map
each state s of A into a binary k-tuple (x1, . . . , xk) such that xi = 1 if and only
if qi is in the list for pi of s. Clearly, if two states s and s′ are mapped into two
different tuples then s 6= s′. Moreover, by the above observations, if neither qi or pi

is true at the current position, then the i-th bit of the tuple associated to the next
A state is the i-th bit of the current state, while if qi true then the i-th bit becomes
1, otherwise if pi is true the i-th bit becomes 0. As either a pi or a qj is true at
each position, the tuples of two consecutive states in a run may differ in at most
a bit. We observe that it is possible to list all the tuples of k bits in such a way
that each tuple appears exactly once and any two consecutive tuples differ exactly
on a bit. A way to generate such a sequence is the following. Let σ be a sequence
of k tuples, we denote by σR the reverse sequence, and by aσ the sequence of k + 1
tuples obtained from σ by expanding each k tuple t to a k +1 tuple having a as the
leftmost bit and t as the remaining bits. We determine a sequence of k + 1 tuples
by a given sequence of k tuples σ, by appending 1σ to 0σR. If we start this process
from the sequence 01 (k = 1), it is easy to verify by induction that for any k ≥ 1
the obtained sequence of k tuples lists all the k tuples over {0, 1} and satisfies the
above property. Thus we have proved that the longest distance of any deterministic
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 19

generator for ϕ is at least 2k = 22Ω(n)
.

4.4 Expressiveness

In the following theorem we compare the expressiveness of the logics considered in
this section with LtlPODB .

Theorem 4.5. The expressiveness of LtlPODB is not comparable to the expres-
siveness of either Ltl(2,3) or Ltl(3, f,∧).

Proof. Consider again the Ltl(3, f,∧) formula ϕ = 3(p∧ fn q), where p, q ∈ P
and n ≥ 2. We claim that any deterministic generator for ϕ has a cycle which is
not a self-loop, and thus by Theorem 3.8, there is no LtlPODB formula which is
equivalent to ϕ. We recall that a model of ϕ is any ω-word such that there exists a
position i with the property that p is true at i and q is true at i+k. Any generator
for ϕ must have cycles since a position at which the above property is satisfied
can be any i ∈ N. Thus we only need to show that a cycle of any deterministic
generator for ϕ is not a self-loop. To prove this, consider for i = 0, . . . , n − 1 the
sequences xi = p (¬p)i and yi = (¬p)n−i−1 q. For h ∈ N and i = 0, . . . , n−1 denote
by wh,i the word xh

n−1xi. Clearly, wh,iyj∅ . . . ∅ . . . is a model of ϕ if and only if
i = j. This implies that, for any h, h′ ∈ N, the state entered by A after reading
wh,i must be different from that entered after reading wh′,j if i 6= j. Thus A does
not enter self-loops reading xω

n−1, and the above claim is proved.
To prove that LtlPODB is not as expressive as Ltl(2,3), consider the Ltl(2,3)

formula ϕ′ = 2(
∧n

i=1 3 pi), where the set of atomic propositions is P = {p1, . . . , pn}.
Let Pi = P \{pi}, and A′ be a deterministic generator for ϕ′. It is possible to prove,
using arguments analogous to those used for the above claim, that the run of A′

on the word xω, where x = P1 . . . Pn, is a sequence of states where two consecutive
states cannot be the same. Thus, since A′ has a finite number of states, A′ must
have a cycle and that there is no PODB generating models of ϕ′.

To conclude the proof we claim that for a formula (p U ′ q) there is not a formula
in either Ltl(3, f,∧) or Ltl(2,3) which is equivalent to it [Eme90].

Since Ltl(3, f,∧) and Ltl(3, f,∧,∨) are equivalently expressive, the above
result extends to Ltl(3, f,∧,∨).

5. BÜCHI GAMES

In this section we present a new decision algorithm for Büchi games, which mainly
performs a depth-first traversal of a portion of the game tree and is space-efficient
when the longest distance is O

(
n

log n

)
. Standard techniques to solve Büchi games

involve fix-point computation [Tho95], and require space O(n) no matter what
the longest distance is. An interesting aspect of our algorithm is that it can be
applied to all the games in which the winning condition can be translated into a
deterministic Büchi automaton, as for the formulas in the fragments of Ltl we
have studied in Sections 3.1, 3.2, 4.1 and 4.2. In the second part of this section,
we combine this algorithm with the results on Ltl generators from the previous
sections and study the complexity of the obtained solutions.

We consider games as defined in Section 2.4. Let (G,F) be a Büchi game. Given
a play x0 . . . xn of (G,F) we say that it ends in a loop if xi 6= xj for any i 6= j,

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

20 · Rajeev Alur and Salvatore La Torre

0 ≤ i, j < n, and there exists an 0 ≤ i < n such that xi = xn. Moreover, given a
play x0 . . . xn which ends in a loop, and let i be such that 0 ≤ i < n and xi = xn,
we say that x0 . . . xn is winning if xh ∈ F for some h ∈ [i, n]. We define a game
(G,F)fin as the game where Player0 wins from a vertex u if there exists a strategy
f in (G,F) starting from u such that any play, constructed according to f and
which ends in a loop, is also a winning play.

The following lemma holds.

Lemma 5.1. There exists a winning strategy from a vertex u in a Büchi game
(G,F) if and only if there exists a winning strategy from u in (G,F)fin.

Proof. Consider first the forward direction. We recall that Büchi games admit
a memoryless solution, and clearly any memoryless winning strategy f in (G,F)
is also a winning strategy in (G,F)fin. To see this it is sufficient to observe that
all plays, constructed according to f and ending in a loop, must be also winning,
otherwise there must be a path of the ω-tree corresponding to f on which all states
of F does not repeat infinitely often, and thus f is not a winning strategy. Consider
now the converse direction. Assume that there exists a winning strategy f from u
in (G,F)fin, let L be the set of winning plays from u constructed according to f ,
and define a graph G′ such that the set of vertices pre(L) is the set of all proper
prefixes of L, and there is an edge from w to w′ if and only if: for x ∈ V either
w′ = wx or wx ∈ L and w′ = w′′x is a prefix of w. We define a new strategy f ′ that
corresponds to the unwinding of this graph in an obvious way (we omit the tedious
details of a formal definition). Since f ′ coincides with f on all the plays ending in
a loop, we get that f ′ is also a winning strategy from u in (G,F)fin. To complete
the proof we claim that f ′ is indeed also a winning strategy from u in the Büchi
game (G,F). To see this assume by contradiction that there is a path of the tree
corresponding to f ′ where none of the states in F repeats infinitely often. Observe
that any of such paths is obtained by unwinding cycles of G corresponding to cycles
of G′. Thus there must be a cycle of G′ which corresponds to a cycle of G without
a state in F , this is a contradiction since f ′ is a winning strategy of (G,F)fin and
is defined by G′.

Directly from the definition of a winning strategy in a game (G,F)fin, we have
the following lemma.

Lemma 5.2. Any winning strategy f in a game (G,F)fin is such that the length
of a play in Πf is O(d), where d is the longest distance of G.

By the above lemmas, there is a decision algorithm for Büchi games which ex-
plores a tree whose height is the longest distance of the game graph.

Theorem 5.3. Given a game graph G with m vertices and longest distance d,
the Büchi game (G,F) is decidable in space O(d log m).

Consider a Σ-labeled game graph G with labeling function µ and a predicate W
over words of set of atomic propositions contained in Σ. If the winning condition
W can be translated into a deterministic Büchi automaton, it is possible to use
the algorithm derived by Lemmas 5.1 and 5.2 to decide it. In particular, let A be
a deterministic Büchi automaton equivalent to the winning condition W , in the
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 21

x 1

x 1

v 1

x n

x n

v n

Fig. 4. Reduction from QBF satisfiability: the game graph.

sense that the language accepted by A is the language of the ω-words satisfying W .
Define G×A as the game graph given by:

—the set of vertices V ×Q, where Q is the set of A states;
—the partition of V ×Q reflecting the partition of V ;
—the successor relation defined as: a vertex (v′, q′) is a successor of a vertex (v, q)

if and only if v′ is a successor of v in G and there is a transition of A from q to
q′ on µ(v).

Let F and s0 be respectively the set of final states and the initial state of A, there
is a winning strategy in the Büchi game (G×A, V ×F) starting at a vertex (u, s0)
if and only if there is a winning strategy in (G,W) starting at u.

As a consequence of the results from Section 4 and the above construction, The-
orem 5.3 applies to games with winning condition expressed by formulas in the Ltl
fragments which we have considered so far. The following theorems hold.

Theorem 5.4. Deciding Ltl(3,∧) games is Pspace-complete.

Proof. Membership in Pspace is a consequence of Theorems 3.3 and 5.3. To
prove Pspace-hardness, we can reduce the satisfiability of quantified boolean for-
mulas in conjunctive normal form to deciding the existence of a winning strategy
in an Ltl(3,∧) game. Consider a quantified boolean formula, over the variables
x1, . . . , xn, ϕ = A1x1. . . . Anxn.

∧m
i=1 ci. Let ϕ′ =

∧m
i=1 3 di be the Ltl(3,∧) for-

mula over the atomic propositions {d1, . . . , dm} such that di corresponds to the
clause ci. The game graph G (see Figure 4) has a vertex for each literal, a vertex
for each quantifier and an extra vertex. We denote by the corresponding literal any
vertex in the first set, and by vi the vertex corresponding to Ai for i = 1, . . . , n. The
extra vertex has, except for a self-loop, no exiting transitions. In our reduction, the
vertices corresponding to literals along with the extra vertex can be either Player0

or Player1 vertices since from them there is only one possible move. Vertex vi is a
Player0 vertex, if Ai is the existential quantifier, and a Player1 vertex, otherwise.
For a literal l, we label the corresponding vertex by any di such that l is a literal of
the corresponding clause ci. In all the other vertices all the atomic propositions are
false. Thus a path in the game tree corresponds in a natural way to an assignment
of the variables in ϕ and a strategy in the game (G,ϕ′) corresponds to a selection
of paths fulfilling the requirements of quantifiers A1, . . . , An. Hence, we have that
ϕ is satisfiable if and only if there is a winning strategy in the game (G,ϕ′).

Theorem 5.5. Deciding LtlPODB games is Pspace-complete.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

22 · Rajeev Alur and Salvatore La Torre

Proof. Membership in Pspace is a consequence of Theorems 3.8 and 5.3. To
prove Pspace-hardness, we observe that by Lemma 3.10 every Ltl(3,∧) formula
ϕ can be translated into an equivalent LtlPODB formula of O(|ϕ|) size. Thus we
can reduce in linear time Ltl(3,∧) games to LtlPODB games, and hence Pspace-
hardness follows from Theorem 5.4.

Theorem 5.6. Deciding Ltl(3, f,∧) games is Exptime-complete.

Proof. By Theorem 4.1, Ltl(3, f,∧) has exponentially sized deterministic gen-
erators, and hence, membership in Exptime follows. For the lower bound, we
reduce the halting problem for alternating linear bounded automata. We briefly
sketch the construction. Consider a Turing machine M that uses n tape positions
over a tape alphabet Γ, and let Q be the set of control states that are partitioned
into Q0 and Q1 corresponding to the two players. The transitions of the machine are
of the form 〈q, σ, q′, σ′, L/R〉 meaning that if control state is q and current symbol
is σ, then the machine can overwrite the current cell with σ′, update control state
to q′, and move left (L) or right (R). If multiple transitions are applicable, then
depending on whether the current control state belongs to Q0 or Q1, one of the two
players gets to choose the transition. The problem of deciding whether Player0 has
a strategy to reach a specified control state, say qh, is Exptime-complete. Given
such a machine M , we build a game graph GM as follows. For every tape symbol
σ and position i, GM has a vertex vσ,i belonging to V1. For every control state q,
tape symbol σ and position i, GM has a vertex vq,σ,i belonging to V0 if q is in Q0

and to V1 otherwise. For every control state q, and symbol σ, GM has a vertex
vq,σ,L and a vertex vq,σ,R, both belonging to V1. For i < n, there is an edge from
vσ,i to every vσ′,i+1. There is an edge from vσ,n to every vq,σ′,i. For every transi-
tion 〈q, σ, q′, σ′, L/R〉 of M , there is an edge from every vq,σ,i to vq′,σ′,L/R. Finally,
every vq,σ,L/R has an edge to every vσ′,1. The intuition is that Player1 chooses a
sequence of vertices vσ1,1, . . . vσn,n, denoting the tape content, followed by a vertex
vq,σ,i, meaning that current control is in state q with head reading symbol σ in po-
sition i. The next vertex of the form vq′,σ′,L/R indicates the choice of the transition
(and hence, new control state and new symbol in position i, and movement of the
head), and is determined by one of the players depending on whether q belongs to
Q0 or Q1. Player0 wins if either the control state qh is encountered or Player1

does not make the choices for encoding the configuration according to the intended
interpretation. Assume that there are enough propositions to identify each vertex
uniquely by a state predicate. Then, the winning condition for Player0 is a top-
level disjunction of several formulas that use only eventually and next modalities
along with conjunctions. For instance, a mistake in the encoding of the content of
i-th tape position is described by the formula

∨
3(vσ,i ∧ fn−i+1 vq,σ′,i′ 6=i ∧ fn+2 vσ′′ 6=σ,i) ∨3(vσ,i ∧ fn−i+1 vq,σ′ 6=σ,i)

∨3(vσ,i ∧ fn−i+1 vq,σ,i ∧ fn−i+2 vq′,σ′,L/R ∧ fn+2 vσ′′ 6=σ′,i)

Theorem 5.7. Deciding Ltl(3, f,∧,∨) games is Expspace.

Proof. Directly from Theorems 4.3 and 5.3.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

Deterministic Generators and Games for Ltl Fragments · 23

Nondet. Generators Det. Generators
Size Long. Distance Size Long. Distance

Ltl(3,∧) Θ(Exp) Θ(Linear) Θ(Exp) Θ(Linear)
Ltl(3, f,∧) Θ(Exp) Θ(Exp) Θ(Exp) Θ(Exp)
Ltl(3,∧,∨) Θ(Exp) Θ(Linear) Θ(2Exp) Θ(Exp)
Ltl(3, f,∧,∨) Θ(Exp) Θ(Exp) Θ(2Exp) Θ(Exp)
Ltl(2,3) Θ(Exp) Θ(Linear) Θ(2Exp) Θ(2Exp)
Ltl Θ(Exp) Θ(Exp) Θ(2Exp) Θ(2Exp)

Fig. 5. Complexity of generators for Ltl fragments.

Model-checking Games
Ltl(3,∧) NP-complete Pspace-complete
Ltl(3, f,∧) Pspace-complete Exptime-complete
Ltl(3,∧,∨) NP-complete Expspace
Ltl(3, f,∧,∨) Pspace-complete Expspace-complete
Ltl(2,3) NP-complete 2Exptime
Ltl Pspace-complete 2Exptime-complete

Fig. 6. Complexity of model-checking and games in Ltl fragments.

6. CONCLUSIONS

For the problem of solving infinite games with the winning condition specified by an
Ltl formula, we have studied the impact of different connectives on the complexity.
In the same way as model checking (or satisfiability) is related to translation from
Ltl to nondeterministic ω-automata, solving games is related to translation from
Ltl to deterministic ω-automata. We have established that the longest distance,
besides the size of the automaton produced by the translation, is an important
parameter. The results are summarized in the tables of Figures 5 and 6 for various
fragments. As the table indicates the sources of complexity for games are different
from the ones for model checking. The matching lower bounds for the games in the
Ltl fragments Ltl(3,∧,∨) and Ltl(2,3) are open problems, while the results on
the corresponding deterministic generators are tight with respect to both the size
and the longest distance. We observe that Ltl(2,3), and thus Ltl, formulas may
not have deterministic Büchi generators, but it is known that they have doubly
exponential deterministic Streett generators.

Besides the classification of complexity of games for various fragments, the con-
structions of this paper can be used to solve synthesis problems for certain kinds of
formulas more efficiently. In particular, the fragments Ltl(3,∧) and Ltl(3,∧,∨)
contains many commonly occuring specifications that are boolean combinations of
safety and guarantee properties, and for these, we have provided a direct construc-
tion of deterministic generators in a modular manner.

REFERENCES

R. Alur, L. de Alfaro, T. Henzinger, and F. Mang. Automating modular verification. In CON-
CUR’99: Concurrency Theory, Tenth International Conference, LNCS 1664, pages 82–97, 1999.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

24 · Rajeev Alur and Salvatore La Torre

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. of the
38th IEEE Symposium on Foundations of Computer Science, pages 100 – 109, 1997.

R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA: Modularity in
model checking. In Proc. of the 10th International Conference on Computer Aided Verification,

LNCS 1427, pages 521 – 525. Springer-Verlag, 1998.

M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive
systems. In Proc. of the 16th Intern. Colloquium on Automata, Languages and Programming,
ICALP’89, LNCS 372, pages 1–17, 1989.

D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent Circuits.
ACM Distinguished Dissertation Series. MIT Press, 1989.

S. Demri and Ph. Schnoebelen. The complexity of propositional linear temporal logics in simple
cases. In Proc. of the 15th Annual Symposium on Theoretical Aspects of Computer Science,
STACS’98, LNCS 1373, pages 61 – 72. Springer-Verlag, 1998.

E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs. In Proc.
of the 29th IEEE-CS Symposium on Foundations of Computer Science, pages 328 – 337, 1988.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, pages 995 – 1072. Elsevier Science Publishers, 1990.

O. Kupferman and M.Y. Vardi. Module checking. In Computer Aided Verification, Proc. Eighth
Int. Workshop, LNCS 1102, pages 75 – 86. Springer-Verlag, 1996.

O. Kupferman and M.Y. Vardi. Module checking revisited. In Proc. of the 9th Intern. Conference
on Computer Aided Verification, CAV’97, LNCS 1254, pages 36 –47, June 1997.

O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: From linear-time to
branching-time. In Proc. of the 13th IEEE Symposium on Logic in Computer Science, pages
81 – 92, June 1998.

O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy their linear
specification. In Proc. of the 12th ACM Symposium on Principles of Programming Languages,
pages 97 – 107, 1985.

Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Specification.
Springer-verlag, 1991.

J. Marcinkowski and T. Truderung. Optimal complexity bounds for positive LTL games. In
Proc. of the 16th Annual Conference of the European Association for Computer Science Logic,
CSL’02. Springer-verlag, 2002.

A. Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Symposium on Foundations
of Computer Science, pages 46 – 77, 1977.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of the 16th ACM
Symposium on Principles of Programming Languages, pages 179 – 190, 1989.

M.O. Rabin. Automata on infinite objects and Church’s problem. Trans. Amer. Math. Soc.,
1972.

R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Science,
1992.

S. Safra. On the complexity of ω-automata. In Proc. of the 29th IEEE Symposium on Foundations
of Computer Science, pages 319 – 327, 1988.

A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logics. The Journal
of the ACM, 32:733 – 749, 1985.

W. Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and Claude Puech,
editors, 12th Annual Symposium on Theoretical Aspects of Computer Science, STACS’95,
LNCS 900, pages 1 – 13. Springer-Verlag, 1995.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115:1 – 37, 1994.

Received: September 2001; revised: June 2002; accepted: June 2002.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2002.

