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ABSTRACT
Security vulnerabilities in modern software are prevalent and harm-
ful.While automated vulnerability detection tools havemade promis-
ing progress, their scalability and applicability remain challenging.
Recently, Large LanguageModels (LLMs), such as GPT-4 and CodeL-
lama, have demonstrated remarkable performance on code-related
tasks. However, it is unknown whether such LLMs can do complex
reasoning over code. In this work, we explore whether pre-trained
LLMs can detect security vulnerabilities and address the limitations
of existing tools. We evaluate the effectiveness of pre-trained LLMs,
in terms of performance, explainability, and robustness, on a set
of five diverse security benchmarks spanning two languages, Java
and C/C++, and covering both synthetic and real-world projects.

Overall, all LLMs show modest effectiveness in end-to-end rea-
soning about vulnerabilities, obtaining an average of 60% accuracy
across all datasets. However, we observe that LLMs show promising
abilities at performing parts of the analysis correctly, such as iden-
tifying vulnerability-related specifications (e.g., sources and sinks)
and leveraging natural language information to understand code
behavior (e.g., to check if code is sanitized). Further, LLMs are rela-
tively much better at detecting simpler vulnerabilities that typically
only need local reasoning (e.g., Integer Overflows and NULL pointer
dereference). We find that advanced prompting strategies that in-
volve step-by-step analysis significantly improve performance of
LLMs on real-world datasets (improving F1 score by up to 0.25 on
average). Finally, we share our insights and recommendations for
future work on leveraging LLMs for vulnerability detection.

1 INTRODUCTION
Security vulnerabilities afflict software despite decades of advances
in programming languages, program analysis tools, and software
engineering practices. Even well-tested and critical software such
as OpenSSL, a widely used library for applications that provide
secure communications, contains trivial buffer overflow vulnera-
bilities, e.g., [13] and [14]. A recent study by Microsoft showed
that more than 70% of the vulnerabilities are still caused by well-
understood memory safety issues [36]. The size and complexity
of modern software systems are growing quickly, encompassing
numerous programs, libraries, and modules that interact with each
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other. Hence, we need major technical advances to effectively detect
security vulnerabilities in such complex software.

Traditional techniques for automated vulnerability detection,
such as fuzzers [35], and static analyzers such as CodeQL [1] and
Semgrep [41] have made promising strides. For example, in the
last two years, researchers found over 300 security vulnerabilities
through custom CodeQL queries [29, 42]. However, these tech-
niques face challenges in scalability and applicability. Fuzzing does
not scale to large applications, and fuzzing parts of applications
requires manually crafting fuzz drivers. Moreover, it is hard to use
on large critical programs with complex inputs, such as network
servers, GUI-based programs, embedded firmware, boot loaders,
and system services. On the other hand, static analysis relies heav-
ily on manual API specifications, and skillfully crafted heuristics
to balance precision and scalability. In light of these challenges,
GitHub pays a bounty of over 7K USD for each CodeQL query that
can find new critical security bugs [22].

Large Language Models (LLMs), including pre-trained models
such as GPT-4 and CodeLlama, have made remarkable advances in
code-related tasks in a relatively short period. Such tasks include
code completion [8], automated program repair [25, 48, 49], test
generation [16, 28], code evolution [51], and fault localization [50].
These results clearly show the promise of LLMs, opening up a new
direction for exploring advanced techniques. Hence, an intriguing
question is whether the state-of-the-art pre-trained LLMs can also
be used for detecting security vulnerabilities in code.

To develop LLM-based solutions, an important first step is to
systematically evaluate the ability of LLMs in detecting known
vulnerabilities. This is especially important in light of the rapidly
evolving landscape of LLMs in three aspects: scale, diversity, and
applicability. First, scaling these models to ever larger numbers of
parameters has led to significant improvements over previous gen-
erations in their capabilities—a phenomenon termed as emergent
behavior [46]. For instance, GPT-4, which is presumably orders of
magnitude larger than its 175-billion predecessor GPT-3.5, signifi-
cantly outperforms GPT-3.5 on a wide range of code-understanding
tasks [5]. Second, the diversity of LLMs has grown rapidly and
now includes not only proprietary general-purpose ones such as
GPT-4 but also open-sourced LLMs such as CodeLlama [39] and
StarCoder [31] that are specialized for code. Finally, the reason-
ing capabilities of LLMs (and hence their applicability) may vary
significantly across different programming languages. All these
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factors open up a large exploration space for applying LLMs to the
challenging task of vulnerability detection.
Our Work. We conduct the first comprehensive study of using
LLMs for detecting security vulnerabilities. We study five state-of-
the-art LLMs, including proprietary models such as GPT-3.5 and
GPT-4, and open-source models like CodeLlama. We evaluate these
models on five popular security vulnerability datasets.

We design a set of three prompting strategies for LLMs to elicit
increasingly sophisticated forms of reasoning and explanations.
Our simplest prompting strategies include the Basic prompt, which
simply asks an LLM to check for any vulnerabilities in the given
code and theCWE specific prompt, which asks the LLM to check for a
specific class of vulnerabilities or CWEs (such as Buffer Overflows).

A significant limitation of static vulnerability detection tools is
the requirement of building the target project to enable them to find
bugs. Further, they also require concrete specifications of APIs (e.g.,
sources, sanitizers, and sinks). In contrast, LLMs have an internal
model of APIs already seen during the pre-training phase and hence
they do not require compiled or complete codebases to run. Inspired
by this insight, we additionally design a new prompting strategy,
called Dataflow analysis-based prompt, that simulates a source-sink-
sanitizer based dataflow analysis on the target code snippet before
predicting if it is vulnerable. The Dataflow analysis-based prompt,
similar to a classical dataflow-based static analyzer asks the LLM to
first infer the sources, sinks, and sanitizers in the code snippet and
check for any unsanitized data flows between the source and sink.
This style of prompting is similar to chain-of-thought reasoning
and simulates step-by-step reasoning by LLMs.

A key challenge in evaluating LLMs is data leakage: LLMs may
perform well on a dataset because such samples were already
present in their pre-training data. Hence, we implement three
semantics-preserving adversarial attacks for code and evaluate
whether they significantly impact the performance of LLMs.
Research Questions.We study the following research questions:

• RQ1: How do different pre-trained LLMs perform in detecting
security vulnerabilities across different languages and datasets?
(Section §3.1)

• RQ2: How do different prompting strategies affect the perfor-
mance of LLMs? (Section 3.2)

• RQ3: How does the performance of LLMs vary across different
vulnerability classes? (Section 3.3)

• RQ4: Can adversarial attacks impact the performance of LLMs
in detecting vulnerabilities? (Section §3.4)

• RQ5: How do LLMs compare to state-of-the-art static analysis
tools? (Section 3.5)

• RQ6: How do LLMs compare to state-of-the-art deep-learning-
based tools? (Section 3.6)

Results and Findings.We choose five state-of-the-art LLMs: GPT-
4, GPT-3.5, CodeLlama-34B, CodeLlama-13B, and CodeLlama-7B
and evaluate their effectiveness in detecting security vulnerabilities
across five vulnerability datasets: OWASP [38], Juliet Java [27],
Juliet C/C++ [26], CVEFixes Java [2], and CVEFixes C/C++ [2].
These datasets cover 5000 vulnerable and non-vulnerable code
samples, across 25 CWEs. Our findings are summarized as follows:

(1) LLMs across all sizes havemodest vulnerability detection ability,
with an average accuracy of only about 60% across all datasets.

(2) Using prompts that focus on detecting specific CWEs improves
the performance of LLMs. The dataflow analysis-based prompt
further improves results for larger LLMs by allowing step-by-
step reasoning. The improvement is significant for real-world
datasets (an increase of up to 0.25 F1 score). However, we ob-
serve that LLMs often infer the relevant source, sink, and sani-
tizers correctly but fail in end-to-end logical reasoning.

(3) LLMs are relatively better at detecting vulnerabilities that re-
quire local reasoning without complex code structures (such
as Integer Overflow and NULL Pointer Dereference). However,
they struggle to detect more complex vulnerabilities in real-
world programs.

(4) Larger LLMs like GPT-4 show mild degradation in performance
when subject to adversarial attacks on code (average drop 8.6%).
In contrast, smaller LLMs, like CodeLlama-7B, show a signifi-
cant drop in performance (average drop 39%) in the presence
of perturbations.

(5) LLMs lag behind state-of-the-art static analysis tools like Cod-
eQL in average accuracy (by 15%) and precision (by 26%) across
datasets. However, LLMs like GPT-4 show some promising par-
tial abilities, e.g., by identifying source/sink specifications or
doing context-based reasoning using natural language infor-
mation, which can potentially be useful for static analysis.

(6) We obtainmixed results comparing LLMs to prior deep-learning-
based tools: while the deep-learning-based tools only slightly
outperform LLMs on synthetic datasets (by 0.07 in F1 score), all
approaches struggle equally on real-world datasets often pro-
ducing close to 50% accuracy only (same as a random baseline).

Contributions. To summarize, we make the following contribu-
tions in this paper:

• Empirical Study: We conduct the first large comprehensive
study on how state-of-the-art LLMs perform in detecting secu-
rity vulnerabilities across five datasets and two programming
languages (C/C++ and Java).

• Prompting Strategies:Wedesign three prompting strategies for
LLMs, inspired by the recent advances in natural language pro-
cessing and traditional program analysis techniques, that elicit
different reasoning styles from LLMs and also provide human-
readable explanations for their predictions.

• Robustness of LLMs: We study how the performance of LLMs
is impacted by semantics-preserving adversarial attacks on code.

• Comparison with other vulnerability detection tools: We
contrast the performance of LLMs against popular static analysis
and deep-learning-based vulnerability detection tools.

• Insights: We perform a rigorous manual analysis of LLMs’ pre-
dictions and highlight vulnerability patterns that impact the
performance of these models.

2 APPROACH
2.1 Datasets
For our study, we select five diverse vulnerability datasets from two
languages: C++ and Java. For each language, we also select both
synthetic and real-world benchmarks. Table 1 presents the details
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of each dataset, such as the dataset size, programming language,
number of vulnerable and non-vulnerable samples, and the number
of unique CWEs. We describe each dataset next.

Table 1: Details of Selected Datasets

Dataset Language Size Vul/Non-Vul CWEs

OWASP[38] Java 2740 1415/1325 11
SARD Juliet (C/C++) [26] C/C++ 81,280 40,640/40,640 118
SARD Juliet (Java) [27] Java 35,940 17,970/17,970 112
CVEFixes [2] C/C++ 19,576 8223/11,347 131
CVEFixes [2] Java 3926 1461/2465 68

2.1.1 OWASP (Synthetic). The Open Web Application Security
Project (OWASP) benchmark [38] is a Java test suite designed to
evaluate the effectiveness of vulnerability detection tools. Each
test represents a synthetically designed code snippet containing a
security vulnerability. OWASP contains 2740 test cases representing
11 unique classes of security vulnerabilities (also known as Common
Weakness Enumeration or CWE).

2.1.2 Juliet (Synthetic). Juliet [4] is a widely-used vulnerability
dataset developed by NIST. Juliet comprises thousands of syntheti-
cally generated test cases representing various known vulnerability
patterns. It contains 81,280 C/C++ programs covering 118 unique
CWEs, and 35,940 Java programs covering 112 unique CWEs. For
our paper, we use the latest version, Juliet 1.3 [3, 26, 27].

2.1.3 CVEFixes (Real-World). Bhandari et al. [2] curated a dataset,
known as CVEFixes, from 5365 Common Vulnerabilities and Ex-
posures (CVE) records from the National Vulnerability Database
(NVD). From each CVE, they automatically extracted the vulnera-
ble and patched versions of each method in open-source projects,
along with extensive meta-data such as the corresponding CWEs,
project information, and commit data. CVEFixes consists of meth-
ods extracted from 5495 vulnerability-fixing commits. These meth-
ods span multiple programming languages such as C/C++, Java,
Python, and JavaScript. For our work, we extracted all C/C++ and
Java methods from CVEFixes. We collected 19,576 C/C++ and 3926
Java methods (both vulnerable and non-vulnerable), covering 131
and 68 different CWEs, respectively.

While many real-world datasets have been proposed in the litera-
ture, we needed a dataset for our study that 1) contains vulnerability
metadata such as CVE and CWE IDs, 2) is two-sided, i.e., contains
both vulnerable and non-vulnerable code samples, and 3) covers
multiple languages such as Java and C/C++. Table 2 shows a com-
parison of existing real-world vulnerability datasets. We selected
CVEFixes because it is the only dataset that fits our criteria.

Table 2: Comparison of Real-World Datasets

Dataset Languages CVE Metadata Two-Sided Multi-Lang

BigVul [17] C/C++ ✓ ✗ ✗
Reveal [7] C/C++ ✗ ✗ ✗
DiverseVul [9] C/C++ ✗ ✓ ✗
DeepVD [45] C/C++ ✗ ✗ ✗

CVEFixes [2] C/C++, Java, ... ✓ ✓ ✓

2.2 Metrics
To evaluate the effectiveness of each tool, we use the standard met-
rics used for classification problems. In this work, a true positive
represents a case when a tool detects a true vulnerability. In con-
trast, a false positive is when the tool detects a vulnerability that
is not exploitable. True and false negatives are defined analogously.
We describe each metric in the context of vulnerability detection.
• Accuracy: Accuracy measures how often the tool makes a cor-

rect prediction, i.e., whether a code snippet is vulnerable or not.
It is computed as: True Positives + True Negatives

#Samples .
• Precision: Precision represents what proportion of cases that a

tool detects as a vulnerability is a correct detection. It is computed
as: True Positives

True Positives + False Positives .
• Recall: Recall represents what proportion of vulnerabilities the

tool can detect. It is computed as: True Positives
True Positives + False Negatives .

• F1 score: The F1 score is a harmonic mean of precision and
recall. It is computed as:
2 ∗ Precision * Recall

Precision + Recall .

2.3 Large Language Models
We choose the most popular state-of-the-art pre-trained Large Lan-
guage Models (LLMs) for our evaluation. We choose OpenAI mod-
els: GPT-4 (gpt-4) and GPT-3.5 (gpt-3.5-turbo). GPT-3.5 allows
up to 4096 input tokens while GPT-4 (which presumably is much
larger) allows up to 8192 tokens in the input prompt. Since these
models are closed-source, we also evaluate CodeLlama models [39],
which were recently open-sourced by Meta. We select three ver-
sions of these models: CodeLlama-7B (CL-7B), CodeLlama-13B (CL-
13B), and CodeLlama-34B (CL-34B), containing 7 billion, 13 billion,
and 34 billion parameters, respectively. We use the Hugging Face
APIs [24] to access CodeLlama models. We use the “Instruct” ver-
sion of CodeLlama models—these models are fine-tuned to follow
user instructions and hence can better adapt to specific reasoning
tasks. Table 3 presents LLM details.

Table 3: Details of LLMs

Model Class Model Version Size Context Window

GPT-4 gpt-4-0613 N/A 8k
GPT-3.5 gpt-3.5-turbo-0613 N/A 4k
CodeLlama-34B CodeLlama-34B-Instruct 34B 16k
CodeLlama-13B CodeLlama-13B-Instruct 13B 16k
CodeLlama-7B CodeLlama-7B-Instruct 7B 16k

2.4 Prompting Strategies for LLMs
We explore various prompting strategies that can assist LLMs in
predicting if a given code snippet is vulnerable. The LLMs discussed
in this study support chat interactions with two major types of
prompts: the system prompt and the user prompt. The system prompt
can be used to set the context for the entire conversation while
user prompts can be used to provide specific details throughout the
chat session. We include a system prompt at the start of each input
to describe the task and expected structure of the response. Since
persona assignment has been shown to improve the performance of
GPT-4 on specialized tasks [40], we add the line “You are a security
researcher, expert in detecting security vulnerabilities” at the start of
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every system prompt to assign a persona of a Security Researcher
to the model. The system prompt for all experiments ends with the
statement “Provide response only in the following format:” followed
by an expected structure of the response from the model. The
system prompt is followed by a user prompt that varies across the
various prompting strategies. In all our experiments, we incorporate
the target code snippet into the user prompt without any changes.

We construct different prompting strategies to study the reason-
ing abilities of LLMs:

2.4.1 Basic prompt. We design a very simple prompt (shown in
Listing 4 in the appendix) with the goal of understanding if the
model can take a target code snippet as input and detect if it is
vulnerable and determine the correct CWE as well. The prompt
begins with the message “Is the following code snippet prone to any
security vulnerability?” followed by the code snippet.

Table 4: Dataset Processing and Selection

OWASP Juliet Juliet CVEFixes CVEFixes Total
C/C++ Java C/C++ Java

Original 2740 128,198 56,162 19,576 3926 210,602
Filtering 2740 81,280 35,940 19,576 3926 144,002
Top 25 CWE 1478 11,766 8,506 12,062 1810 23,560
Random Selection 1000 1000 1000 1000 1000 5000

2.4.2 CWE specific prompt. The CWE specific prompt is presented
in Listing 5 in the appendix. This prompt is similar to the Basic
prompt except that it asks the model to predict if the given code
snippet is vulnerable to a specific target CWE. Hence, the user
prompt starts with “Is the following code snippet prone to <CWE>?”
followed by the code snippet. The <CWE> placeholder here contains
both the ID of the CWE and the name. For instance, for CWE-22, the
user prompt would start with “Is the following code snippet prone to
CWE-22 (Improper Limitation of a Pathname to a Restricted Directory
(Path Traversal))?” followed by the target code snippet.

2.4.3 Dataflow analysis-based prompt. In addition to the straight-
forward one-step analysis in the previous two prompts, we also
study whether providing specific step-by-step analysis instructions
can help the LLMs do better reasoning over code and make better
predictions. Dataflow analysis is used by several static analysis
tools to infer if there exists an unsanitized path from a source to a
target node. Further, prior literature has shown step-by-step instruc-
tions can often elicit better reasoning from LLMs [47]. Motivated
by these observations, we designed the CWE-DF prompt (shown
in Listing 6 in appendix) that prompts the model to simulate a
source-sink-sanitizer-based dataflow analysis on the target code
snippet before predicting if it is vulnerable. Naturally, compared to
the other prompts, this prompt generates many more tokens and is
hence more costly. We provide the full prompts in Appendix A.2.

2.4.4 Other prompting strategies. We also tried other prompting
strategies such as Few-shot prompting and Chain-of-thought
prompting. In the few-shot prompting setup, we include two ex-
amples of the task (one with a vulnerability and one without) in
the CWE specific prompt before providing the target code snippet.
Few-shot prompting reported poorer results than the base CWE

specific prompt while requiring more tokens. Our analysis of the
few-shot prompts suggests that providing more examples might
not be a useful strategy for vulnerability detection. It might be more
useful to use prompts that instead elicit reasoning or explanations
of some kind before detecting if the given snippet is vulnerable.
With Chain-of-thought prompting, we explicitly ask the model
to provide a reasoning chain before the final answer by adding a
“Let’s think step-by-step” statement at the end of the CWE specific
prompt. This setup did not yield better results than the Dataflow
analysis-based prompt. Moreover, the reasoning chains obtained by
Chain-of-thought prompting (both zero-shot and few-shot) were
not as elaborate as those from the Dataflow analysis-based prompt
thus limiting the ease of debugging. We provide the details of this
experiment in Appendix A.3.

2.5 Dataset Processing and Selection
We perform a data processing and cleaning step for each dataset
before evaluating them with LLMs. We remove or anonymize infor-
mation such as commits, benchmark IDs, or vulnerability names
that may provide obvious hints about the vulnerability. We skip
benchmarks that are spread across multiple files, due to limitations
of prompt size. Table 4 presents the details of our selection stages.

Due to the prohibitively large cost of running pre-trained LLMs,
we select a subset of samples from the original datasets. We select
samples corresponding to vulnerability types (or CWEs) listed in
MITRE’s Top 25 Most Dangerous Software Weaknesses [37]. Due
to prompt size limitations, we filter out code snippets larger than
2048 tokens. Finally, because the datasets are quite large, we further
randomly select 500 vulnerable and 500 non-vulnerable samples per
dataset. Finally, we end up with 5000 samples across five datasets.
We provide more details for each dataset in Appendix A.1.

2.6 Experimental Setup
Experiments with GPT-3.5 and GPT-4. We use the OpenAI pub-
lic API to perform the experiments with GPT-3.5 and GPT-4. We use
the ChatCompletions API endpoint to query the models with the
prompts discussed in Section 2.4. We set the sampling temperature
to 0 for obtaining deterministic predictions, the maximum number
of tokens to 1024, and use the default values for all other parameters.
In all our experiments, we use the top-1 prediction from the models.
Experiments with CodeLlama. We run all CodeLlama experi-
ments on two sets of machines: one with Intel Xeon machine, with
40 CPUs, four GeForce RTX 2080 Ti GPUs, and 750GB RAM, and
another Intel Xeon machine with 48 CPUs, 8 A100s, and 1.5T RAM.
Similar to GPT-4, we set the temperature to 0, the maximum tokens
to 1024, and use top-1 prediction for evaluation.

3 RESULTS
3.1 RQ1: Effectiveness of LLMs
We evaluate the performance of pre-trained LLMs on five open-
source datasets discussed in Section 2.1. presents the best accuracy
and F1 scores (across prompts) of GPT-4, GPT-3.5, and CodeLlama
models (CL-7B, CL-13B, CL-34B) on all datasets. The more detailed
metrics for all prompts are presented in Appendix A.4.
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Figure 1: Effectiveness of LLMs in Predicting Security Vulnerabilities (Java and C++). We report the highest accuracy and F1
scores per model per dataset (across all prompting strategies).

Modest Vulnerability Detection Performance Across LLMs.
The average of the highest accuracies across all datasets is 60.6%
with the maximum being 77% for CL-7B (with Basic prompt) on
the Juliet Java dataset. In terms of F1 score, GPT-4 (with CWE-
DF) performs the best on the synthetic datasets: OWASP (F1: 0.69),
Juliet Java (F1: 0.76), and Juliet C/C++ (F1: 0.70). We observe that
CodeLlama models, despite being much smaller than GPT-4, are
competitive on most datasets, even with the Basic prompt. CL-34B
reports the highest F1 scores (F1: 0.67) on the real-world datasets,
CVEFixes Java and CVEFixes C/C++, with the CWE-DF prompt.
Performance does not improve with scale.While GPT-4 per-
forms strictly better than GPT-3.5 on 3 of the 5 datasets, the CodeL-
lama models roughly exhibit similar performance. Surprisingly,
CL-7B performs better than the larger LLMs on the Juliet
Java and Juliet C/C++ datasets even with the Basic prompt.
Listing 1 presents a representative example where only CL-7B cor-
rectly predicts that an integer overflow vulnerability (CWE-190)
cannot occur in the given context. Since the data variable can only
contain value 2, adding 1 to it in Line 11 cannot cause an integer
overflow. CL-7B recognizes this and predicts that the snippet is not
vulnerable. CL-13B and GPT-4 (CWE-DF) ignore the hard-coded
values and predict that the snippet is vulnerable, indicating that
smaller LLMs may sometimes perform better than larger models.
Trends within model classes. The models here can be divided
into two broad classes: the GPTx models (GPT-4 and GPT-3.5) and
the CodeLlama models (CL-7B, CL-13B, CL-34B). The CodeLlama
models display a higher divide between the accuracy and F1 scores
than the GPTx models with F1 scores much higher than the accu-
racies (which are close to 50%). This is because the CodeLlama
models tend to almost always predict that the given code
snippet is vulnerable (as is evident with a high f1 score but lower
accuracy on most datasets).

Finding 1: LLMs across all sizes have modest vulnerability
detection ability, with an average accuracy of only about
60% across all datasets.

Implication 1: Beyond prompting, future techniques need
to specialize general-purpose or code LLMs on high-quality
vulnerability datasets to improve their performance.

private void func() throws Throwable {
int data;
switch (5) {
case 6:

data = 0; break; // Hardcoded values in data
default:

data = 2; break; // Hardcoded values in data
}
switch (7) {
case 7: // POTENTIAL FLAW: Integer Overflow

int result = (int)(data + 1); // But no overflow due to

hardcoded values in data↩→
IO.writeLine("result: " + result); break;

default:
IO.writeLine("fixed string"); break;

Codellama-7B’s response: The code snippet does not
contain any obvious security vulnerabilities. ✓

Codellama-13B’s response: The integer overflow occurs
when the value of the ‘data’ variable exceeds the maximum
value that can be stored in an integer, causing the value to
wrap around to a negative number... potentially allow an
attacker to execute arbitrary code. ✗

Listing 1: CL-7B correctly predicts that this snippet is not
vulnerable to Integer Overflow but GPT-4 and CL-13B do not.

3.2 RQ2: Comparison of Prompting Strategies
Figure 2 presents the accuracy and F1 scores (averaged across all
LLMs) of the three prompting strategies across all datasets. Overall,
the three prompts perform similarly in terms of accuracy. CWE-DF
performs better than CWE and Basic prompt in terms of F1 score
on the real-world datasets (CVEFixes C/C++ and CVEFixes Java).
We next highlight qualitative differences between various prompts:
TheBasic prompt often detects incorrect vulnerability classes.
Table 5 presents the percentage of samples predicted as vulnera-
ble with the Basic prompt where the predicted CWE is correct,
averaged over all datasets with the same programming language.
We can observe that all models predict an incorrect vulnerability
in > 60% and > 53% of all Java and C/C++ samples predicted as
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vulnerable respectively. This suggests that the Basic prompt detects
incorrect CWEs in roughly half of the cases.

Table 5: Correct CWEs detected with the Basic prompt (%)

Language (Avg.) GPT-4 GPT-3.5 CL-34B CL-13B CL-7B

Java 0.41 0.34 0.37 0.38 0.39
C/C++ 0.29 0.31 0.33 0.35 0.47

Specifying the CWE in the prompt reduces false alarms. In
16 out of the 25 model-dataset combinations, the CWE specific
prompt improves or retains both the accuracy and F1 score over the
Basic prompt. GPT-4 with the CWE specific prompt on Juliet Java
reports a 13% higher accuracy and a 0.1 higher F1 score than those
with the Basic prompt. We manually inspect 10 vulnerable and 10
non-vulnerable samples from this dataset where the CWE specific
prompt is correct and the Basic prompt is not.We find that not
including the CWE in the Basic prompt results in predictions
discussing other incorrect CWEs. The Basic prompt incorrectly
predicts that the 10 non-vulnerable samples are vulnerable to other
CWEs of which we only find 3 to be plausible but unlikely due to
the context. For example, it predicts that a value read from an input
stream can be vulnerable if not validated (CWE-20) but this value is
not used in a vulnerable context. Of the 10 vulnerable samples, Basic
prompt predicts a plausible CWE for one sample while incorrectly
predicting that the remaining 9 samples are not vulnerable. On the
other hand, the CWE specific prompt also provides useful high-level
explanations for why the snippet is vulnerable/not vulnerable in
18 / 20 samples. The 2 incorrect explanations are artifacts of faulty
reasoning or hallucination: for example, an Integer Overflow due
to addition to INT_MAX in the function is incorrectly attributed to
subtracting from INT_MIN in the explanation.
Dataflow analysis identifies CWE-relevant textual cues and
provides more elaborate explanations. The Dataflow analysis-
based prompt (CWE-DF) prompt performs better than CWE specific
prompt both in terms of accuracy and F1 score in 12 out of 25 model-
dataset combinations and reports a higher F1 score in 23 out of 25

0.0
0.2
0.4
0.6
0.8
1.0 Accuracy

Basic CWE-Specific CWE-DF

0.0
0.2
0.4
0.6
0.8
1.0

OWASP Juliet
Java

CVEFixes
Java

Juliet
C/C++

CVEFixes
C/C++

F1 score

Figure 2: Performance of different prompting strategies

// Code snippet prone to CWE-78 (OS Command Injection)
// Unverified data from socket is used as an argument to _execvp
void func(){

char dataBuffer[100] = "dir ";
char *data = dataBuffer; size_t dataLen = strlen(data);
int recvResult; SOCKET connectSocket = INVALID_SOCKET;
do {// setup socket and receive user input

conn = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
recvResult = recv (conn, (char *)(data + dataLen),

sizeof(char) * (100 - dataLen - 1), 0)};↩→
// missing validation of recvResult
data[dataLen + recvResult / sizeof(char)] = '\0';

} while (0)

char *args[] = {"%WINDIR%\\system32\\cmd.exe", "/c", data ,

NULL};↩→
_execvp ("cmd.exe", args);

}

GPT-4’s response: The data received from the socket con-
nection is directly used in the _execvp function without
proper sanitization. This could allow an attacker to inject
malicious commands. ✓

Listing 2: GPT-4 (CWE-DF) detects that this snippet is prone
to OS Command Injection due to unsanitized paths from a
source to sink . CodeQL does not detect this vulnerability.

cases. The most significant improvement with the CWE-DF prompt
over the CWE specific prompt is for the CVEFixes Java dataset and
GPT-3.5 with 7% higher accuracy and 0.4 higher F1 score. We man-
ually inspect 10 vulnerable and 10 non-vulnerable samples from
this dataset where only the CWE-DF prompt is correct.We find
that the CWE-DF prompt leverages textual cues for sanitiza-
tion (e.g., csrftokenhandler() suggests protection from CSRF)
while the CWE specific prompt does not. The CWE-DF prompt
also assumes that any external parameter or call source is tainted
by design and predicts that the sample is vulnerable more often (as
is evident from higher F1). Further, the analysis from CWE-DF
prompt is more detailed and useful in localization than the
explanations from CWE specific prompt.

CWE specific prompt’s explanations for 6 /10 vulnerable sam-
ples and all the 10 non-vulnerable samples were incorrect due to
ignorance of CWE-specific elements and missed textual cues of
sanitization or test code. For example, the CWE specific prompt
considers a snippet vulnerable even when the request is wrapped
inside an XssHttpRequestWrapper for sanitization. In contrast, the
CWE-DF prompt provides correct explanations for 18 / 20 samples.
Moreover, it predicts the correct sources and sinks in 18 / 20 samples,
sanitizers in 16 / 20 samples, and unsanitized flows in all samples.
Listing 2 presents a response from GPT-4 using CWE-DF prompt
that correctly identifies the unsanitized flows between sources and
sinks. We present more CWE-DF examples in Appendix A.7.
LLMs often identify correct sources, sinks, and sanitizers
but reason about them incorrectly. We manually inspect 10
vulnerable and 10 non-vulnerable samples for the Juliet C/C++
dataset where the predictions from CWE-DF are incorrect. In 17 /
20 samples, the explanation is incorrect due to erroneous reasoning
about the snippet / false assumptions about the CWE. For exam-
ple, an explanation incorrectly states that a char overflow is not
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(a) OWASP (b) Juliet Java (c) CVEFixes Java

Figure 3: Accuracy Across CWEs on Java datasets.

vulnerable to CWE-190 (Integer Overflow or wraparound) since
the wraparound is valid in C. Surprisingly, the sources/sinks are
incorrect only in 2 samples and the sanitizers are incorrect only
in 3 samples. The unsanitized flows are, however, incorrect in 12
samples suggesting that the prompt is capable of identifying
the sources/sinks/sanitizers accurately in most cases but fails
to reason about the unsanitized flows and the target vulnera-
bility. Listing 3 presents an example where the vulnerability is not
detected but the sources and sinks are correctly identified.

Finding 2: Specifying the CWE in the prompt reduces
false positives based on other incorrect CWEs. Dataflow-
based predictions provide mention accurate sources, sinks,
and sanitizers even when the deductive logical reasoning is
incorrect.

Implication 2: While step-by-step analysis improves per-
formance, future approaches should combine LLMs with
symbolic tools that can handle the logical reasoning aspects
of analysis.

3.3 RQ3: Performance of LLMs across CWEs
We next evaluate how the LLMs perform on different classes of
security vulnerabilities (CWEs). For each dataset andmodel, we con-
sider the best-performing prompt for the analysis and only report
CWEs with at least 10 samples. Because the CWE-wise distribution
of vulnerable and non-vulnerable samples can be imbalanced, we
compute balanced accuracy for each CWE (for ease of presenta-
tion, we refer to it as accuracy henceforth in this section). Figure 3
presents the CWE-wise distribution of accuracies on the OWASP,
Juliet Java, and CVEFixes Java datasets. Figure 4 reports the accura-
cies on the Juliet C/C++ and CVEFixes C/C++ datasets respectively.
For each model, we consider the prompt with the best accuracy on
the dataset and break ties using the F1 score.
LLMs perform well on vulnerabilities that do not require
additional context.We find that there are certain CWEs where
multiple LLMs perform better on: Out-of-bounds Read / Write
(CWE-125, CWE-787), Null pointer dereference (CWE-476)
and Integer Overflow (CWE-190). The higher performance on
these vulnerabilities can be attributed to the fact that these are fairly

self-contained and little additional context is needed to detect them.
Concretely, GPT-3.5 consistently performs well on NULL Pointer
Dereference across all datasets with accuracies of 80.8%, 87.9% and
60.5% on the Juliet C/C++, Juliet Java and CVEFixes C/C++ datasets
respectively. GPT-4 also performs consistently better on NULL
Pointer Dereference and Integer Overflow on the synthetic datasets
with accuracies of 62.1% and 68.4% on Juliet C/C++ and 78.5% and
73% on Juliet Java respectively. CL-7B reports high accuracies on
Integer Overflow on the synthetic datasets with accuracies of 81%
on Juliet Java and 70% on Juliet C/C++ respectively. GPT-4 and
CL-34B perform extremely well on Out-of-bounds Read (78.6% and
64.3%) and Out-of-bounds Write (78.1% and 71.9%) on the CVEFixes
Java dataset.

(a) Juliet C/C++ (b) CVEFixes C/C++

Figure 4: Accuracy Across CWEs on C/C++ datasets.

Poor performance on real-world C/C++ is due to missing
global context.We see that the performance of all LLMs on vulner-
abilities in CVEFixes C/C++ is worse than that on the same CWEs
in CVEFixes Java and Juliet C/C++. For instance, while GPT-4 and
CL-34B perform extremely well on the Out-of-bounds Read / Write
vulnerabilities in CVEFixes Java as discussed above, they report
accuracies < 53% for these CWEs on the CVEFixes C/C++ dataset.
We attribute this disparity to the nature of these vulnerabilities in
the two languages: Out-of-bounds Reads / Writes in CVEFixes
C/C++ require reasoning about pointers and structs which
requires more context about the structs and their members.
In CVEFixes Java, on the other hand, these vulnerabilities arise
primarily due to illegal array indexing. This issue does not emerge
in Juliet C/C++ because all the information about the pointers is
presented in the snippet. We present examples in Appendix A.8.
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Some LLMs are better at detecting certainCWEs.GPT-4 reports
high accuracies on CWE-78 (OS Command Injection) in 3/5 datasets
(CVEFixes C/C++ with 70.8%, CVEFixes Java with 61.7%, and Juliet
Javawith 63.8%) but the othermodels do not. Among the CodeLlama
models, CL-13B performs well on CWE-362 (Race Condition) in
CVEFixes C/C++with 63.1% and CVEFixes Javawith 66.7%. CWE-89
(SQL Injection) is another vulnerability where only CL-7B reports
high accuracies on 2/3 datasets (Juliet Java with 74% and CVEFixes
Java with 64%).

Finding 3: LLMs perform better on vulnerabilities that only
need reasoning about local entities (Out-of-bounds Read /
Write, Integer Overflow, NULL pointer dereference). This
locality can vary across languages: Array indexing in Java
can be locally reasoned about while struct pointer accesses
in C/C++ need additional context.

Implication 3: Techniques for language-specific and
vulnerability-specific adaption of LLMs should be developed
to improve their detection abilities.

3.4 RQ4: Impact of Adversarial Attacks
Experiment setup. We implement three semantics-preserving
attacks, proposed by Gao et al. [21]: dead-code injection, variable
renaming, and branch insertion (illustrated in Table 11 in appendix).
We only select test samples where the original prediction of LLMs
(with the CWE prompt) was correct. We select 100 test samples per
dataset for this experiment and measure the reduction in accuracy
after the attack. For this experiment, we select two models, GPT-4
and CL-7B, and four datasets. Figure 5 presents our results.
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Figure 5: Accuracy degradation of CodeLlama-7B and GPT-
4 under three kinds of adversarial attacks (DC: Deadcode
insertion, VR: Variable Rename, BI: Branch Insertion). Lower
values indicate more prone to attack.

Results.We find GPT-4 suffers mild degradation in accuracy (aver-
age 8.6%) across all datasets and attacks. For GPT-4, the degradation
is more significant for real-world datasets (up to 23%) compared to
synthetic ones (up to only 2%). In contrast, for CodeLlama-7B, the
accuracy significantly reduces by almost 40-50% in many cases and
by 39% on average, especially for C++.

Among the three attacks, branch insertion (27% avg. reduction)
and variable renaming (23% avg. reduction) have the highest impact
on LLM performance. On further analysis of incorrect predictions,
we observe that under these attacks, GPT-4 either fails to infer any
sources, sinks, or sanitizers (even if they exist) or the reasoning
chain breaks (which worked previously). Interestingly, under these
attacks, CodeLlama-7B fails to follow the instructions in the system
prompt and does not perform proper analysis using the dataflow
analysis steps, causing it to output an incorrect response.

Finding 4: More powerful LLMs like GPT-4 remain robust
to adversarial attacks and only suffer mild degradation in
performance. Whereas smaller LLMs like CodeLlama-7B
show a significant drop in performance in the presence of
perturbations. Overall, the impact of attacks is more pro-
nounced for real-world datasets.

Implication 4: Developers of code LLMs should consider
adversarial training methods during fine-tuning to ensure
model robustness to such attacks.

3.5 RQ5: LLMs vs Static Analysis Tools
Experiment setup.We next explore how GPT-4 (CWE-DF) com-
pares against CodeQL. Since CodeQL requires building projects
before analysis and the real-world datasets contain large projects,
we limit our focus to the three synthetic datasets, namely OWASP
and Juliet Java and Juliet C/C++. In this study, we run the official
CodeQL queries designed for the top 25 CWEs. Table 6 presents
results from CodeQL and GPT-4 on the three datasets. CodeQL
performs better than GPT-4 (CWE-DF) in terms of accuracy
on all three datasets. GPT-4 reports a 0.09 higher F1 than CodeQL
on Juliet C/C++ while CodeQL reports a 0.03 and 0.18 higher F1 on
OWASP and Juliet Java respectively.

Table 6: GPT-4 vs CodeQL on synthetic datasets

Dataset/Model CodeQL GPT-4 (CWE-DF)

A P R F1 A P R F1

OWASP 0.63 0.58 0.96 0.72 0.55 0.53 1.00 0.69
Juliet Java 0.94 0.92 0.95 0.94 0.70 0.63 0.98 0.76
Juliet C/C++ 0.72 0.99 0.44 0.61 0.59 0.55 0.98 0.70

We manually analyze some examples where CodeQL is correct
and GPT-4 isn’t and vice versa. As noted in Section 3.2, we find
that even when GPT-4 (with CWE-DF) provides an incorrect
prediction, the identified sources / sinks and even unsan-
itized flows are often correct. Listing 3 presents an example
where CodeQL correctly predicts that the target snippet is vulner-
able to Integer Overflow while GPT-4 with CWE-DF does not. The
model correctly identifies the sources, sinks and even unsanitized
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// Code snippet prone to CWE-190 (Integer Overflow)
// data is incremented without verifying if data < INT_MAX

static const int STATIC_CONST_FIVE = 5;
void f7909()
{

int64_t data;
data = 0LL;
if(STATIC_CONST_FIVE==5)
{

data = (int64_t) RAND64() ;

}
if(STATIC_CONST_FIVE==5)
{

{
++data;
int64_t result = data;

printLongLongLine (result);

}
}

}

GPT-4’s response:
Unsanitized Data Flows ✓

The data from RAND64() is directly used in
printLongLongLine() without any sanitization or
checks for integer overflow.)

Vulnerability analysis verdict ✗

vulnerability: NO (CWE-190)

Explanation ✗

The code does not perform any arithmetic operations that
could lead to an integer overflow. The only operation per-
formed on the data variable is incrementing it by one
(++data), which is unlikely to cause an integer overflow
given that data is a 64-bit integer.

Listing 3: CodeQL correctly predicts Integer Overflow while
GPT-4 doesn’t. GPT-4, however, correctly identifies the
sources and sinks and the unsanitized paths.

dataflows in this case but fails to faithfully reason over them when
predicting the vulnerability.

On the other hand, Listing 2 provides an example where GPT-4
correctly predicts that the snippet is prone to OS Command Injec-
tion while CodeQL does not. This happens because CodeQL only
looks for very specific cases of command injection: We find
that CodeQL only detects OS Command Injection for system com-
mands that take a string of arguments (execl) but not for those that
take a list of arguments (_execvp, used in this example). GPT-4, on
the other hand, identifies the correct sources, sinks, and unsanitized
flows and accurately reasons that the snippet is vulnerable. More
examples are presented in the Appendix A.6.

Finding 5: CodeQL performs better than GPT-4 on vulner-
ability detection across all CWEs. GPT-4 can, however, often
accurately identify analysis-relevant sources and sinks that
are missed by CodeQL’s strict queries.

Implication 5: Future techniques should combine LLMs’
ability to infer relevant sources and sinks in code and its
context understanding abilities to improve static analysis
tools like CodeQL to obtain the best of both worlds.

3.6 RQ6: LLMs vs Deep-Learning-Based Tools
We compare LLMs against two prior deep learning-based approaches:
1) DeepDFA [43], which trains Graph Neural Networks using em-
beddings of control flow graphs and associated data flow facts, and
2) LineVul [20], which is a transformed-based model trained using
token-based representation of code.
Experiment setup.We used the DeepDFA and LineVul versions
from DeepDFA’s latest artifact version [15]. For CVEFixes C/C++
and Juliet C/C++, we use the same test set as our main evalua-
tion §3.1. We split the remaining dataset into training (80%) and val-
idation (20%) sets. We also compare the results with the BigVul [17]
dataset, used in the prior work. Because BigVul is a much larger
real-world dataset, it can potentially improve the performance of
the tools. We explore two evaluation settings: 1) train and test on
the same dataset and 2) train on one and test on a different dataset
to evaluate the generalizability of these models. Table 7 presents
the results. Each cell reports the average results across three runs.
DL-based approaches have limited effectiveness on real-world
datasets.We observe that both DeepDFA and LineVul obtain a max-
imum F1 score of 0.62 on CVEFixes C/C++, which is quite similar
to the scores of GPT-4. For DeepDFA, while training on larger
BigVul and Juliet C/C++ datasets improves its F1 scores, the ac-
curacy scores remain close to 50%. On the other hand, LineVul is
able to learn better even when using CVEFixes C/C++, which is
relatively smaller. Interestingly, when trained on BigVul, LineVul
obtains a poor F1 score of 0.02 on CVEFixes C/C++, which might
indicate an over-fitting problem. We observe a similar pattern when
LineVul is tested on Juliet C/C++ using CVEFixes C/C++ or BigVul
training datasets. For Juliet C/C++, both tools obtain better scores
compared to GPT-4. LineVul obtains a perfect score indicating that
Juliet C/C++ has limited code patterns that are likely easier to learn.
However, as we explain later, LineVul does not generalize well.
Generalizability across datasets.We observe that, for LineVul,
the F1 scores drop drastically when trained on BigVul and tested on
CVEFixes C/C++ or Juliet C/C++. Compared to LineVul, DeepDFA
generalizes better, obtaining higher accuracy and F1 scores on Juliet
C/C++ when trained using other datasets.
Trade-offs. DeepDFA involves significant inference overhead, due
to the CFG extraction and dataflow analysis steps. LLMs, however,
can use the textual representation of code and can operate on in-
complete/partial programs. The use of data-flow and control-flow
information in DeepDFA is evidently useful. We made similar obser-
vations with LLMs when using the CWE-DF prompt. On the other
hand, LineVul, like LLMs, can leverage natural language informa-
tion but has a generalization problem. Finally, both DeepDFA and
LineVul provide binary labels and line numbers that are difficult to
interpret. LLMs can additionally provide explanations, which are
useful for further debugging (as shown in prior sections).



Avishree Khare∗ , Saikat Dutta∗ , Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik

Finding 6: Deep Learning-based tools, similar to LLMs,
have poor effectiveness on vulnerability detection, espe-
cially when dealing with real-world datasets. Further, prior
transformer-based approaches suffer from poor generaliza-
tion across datasets.

Implication 6: Future techniques should explore a deeper
combination of pre-trained LLMs with dataflow-style anal-
ysis to build more effective, interpretable, and general vul-
nerability detection tools.

Table 7: GPT-4 vs DeepDFA vs LineVul on CVEFixes C/C++
and Juliet C/C++

Model Train/Prompt Test A P R F1

DeepDFA BigVul BigVul 0.98 0.53 0.92 0.67
LineVul BigVul BigVul 0.99 0.96 0.88 0.92

GPT-4 CWE-DF CVEFixes C/C++ 0.52 0.51 0.76 0.61

DeepDFA CVEFixes C/C++ CVEFixes C/C++ 0.51 0.55 0.17 0.23
DeepDFA Juliet C/C++ CVEFixes C/C++ 0.53 0.53 0.65 0.58
DeepDFA BigVul CVEFixes C/C++ 0.52 0.52 0.76 0.62

LineVul CVEFixes C/C++ CVEFixes C/C++ 0.59 0.58 0.65 0.61
LineVul Juliet C/C++ CVEFixes C/C++ 0.50 0.50 0.91 0.64
LineVul BigVul CVEFixes C/C++ 0.50 0.63 0.01 0.02

GPT-4 CWE-DF Juliet C/C++ 0.59 0.55 0.98 0.70

DeepDFA Juliet C/C++ Juliet C/C++ 0.77 0.74 0.82 0.78
DeepDFA CVEFixes C/C++ Juliet C/C++ 0.64 0.72 0.46 0.55
DeepDFA BigVul Juliet C/C++ 0.74 0.70 0.82 0.77

LineVul Juliet C/C++ Juliet C/C++ 1.0 1.0 0.99 1.0
LineVul CVEFixes C/C++ Juliet C/C++ 0.51 0.62 0.14 0.22
LineVul BigVul Juliet C/C++ 0.43 0.42 0.39 0.41

4 RELATEDWORK
Static analysis tools for vulnerability detection. Static anal-
ysis tools search for pre-defined vulnerability patterns in code.
Tools such as FlawFinder [19] and CppCheck [12] use syntactic
and simple semantic analysis techniques to find vulnerabilities in
C++ code. More advanced tools like CodeQL [1], Infer [18], and
CodeChecker [11] employ semantic analysis techniques and can
detect vulnerabilities in multiple languages. Static analysis tools
rely on manually crafted rules and precise specifications of code be-
havior, which is difficult to obtain automatically. In contrast, while
LLMs cannot always reliably perform end-to-end reasoning over
code, we observe that LLMs can automatically identify such specifi-
cations by leveraging statistically learned rules from training data.
Further, due to their semantic understanding of natural language,
LLMs can also perform more contextual reasoning. These abilities
can potentially be leveraged to improve static analysis tools.
Deep Learning-based vulnerability detection. Several works
have focused on using Deep Learning techniques for vulnerabil-
ity detection. Earlier works such asDevign [52], Reveal [6], LineVD [23]
and IVDetect [32] leveraged Graph Neural Networks (GNNs) for
modeling dataflow graphs, control flow graphs, abstract syntax
trees and program dependency graphs. Other works explored alter-
nate model architectures: VulDeePecker [33] and SySeVR [34] used

LSTM-based models on slices and data dependencies while Draper
used Convolutional Neural Networks. Recent works demonstrate
that Transformer-based models fine-tuned on the task of vulnera-
bility detection can outperform specialized techniques (CodeBERT,
LineVul [20], UnixCoder). DeepDFA [43] and ContraFlow [10] learn
specialized embeddings that can further improve the performance
of Transformer-based vulnerability detection tools. To the best of
our knowledge, these techniques provide binary labels for vulnera-
bility detection and cannot classify the type of vulnerability. Thapa
et al. [44] explore whether Language Models fine-tuned on multi-
class classification can perform well where the classes correspond
to groups of similar types of vulnerabilities. In contrast, we study
some of the largest Language Models, such as GPT-4, and perform a
much granular CWE-level classification, generate human-readable
informal specifications and explore various prompting techniques
that allow using the LLMs out-of-the-box.
LLMs for automated software engineering. Several recent ap-
proaches have demonstrated that LLMs can be effectively lever-
aged to improve the state-of-the-art performance in various tra-
ditional software engineering tasks such as automated program
repair [25, 48, 49], test generation [16, 28], code evolution [51], and
fault localization [50]. However, unlike these approaches, we find
that LLMs have limited vulnerability detection abilities.

Recently, Li et al. [30] developed Llift, an approach that combines
LLMs with static analysis to detect Use Before Initialization (UBI)
bugs in Linux kernel. While they focus on a specific class of bugs,
their approach supports the observations we make in Section 3.5
on the complementary nature of static analysis and LLMs. To the
best of our knowledge, our work is the first comprehensive and
general study of vulnerability detection abilities of LLMs across a
broad range of vulnerabilities (25 CWEs) across two languages.

5 THREATS TO VALIDITY
External. The choice of LLMs and datasets may bias our evaluation
and insights. To address this threat, we choose multiple popular
synthetic and real-world datasets across two languages: Java and
C++. We also choose both state-of-the-art closed-source and open-
source LLMs. However, our insights may not generalize to other
languages or datasets not studied in this paper.
Internal. Owing to the non-deterministic nature of LLMs and
single experiment runs per benchmark, our observations may be bi-
ased. To mitigate this threat, we use a temperature of zero to ensure
determinism across all LLMs. While this works well for locally run
CodeLlama models, it is well-known that GPT-4 and GPT-3.5 might
still return non-deterministic results. However, due to the large
number of benchmarks we evaluate, the non-determinism should
balance out across the datasets. Further, given the poor effective-
ness of all LLMs across the board, we do not expect our results to
significantly change with re-runs.

Our evaluation code and scripts may have bugs, whichmight bias
our results. Our manual analysis of results may lead to erroneous
inferences. To address this threat, multiple co-authors reviewed the
code regularly and actively fixed issues. Further, multiple co-authors
of the paper independently analyzed the results and discussed them
together to mitigate any discrepancies.
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6 CONCLUSION
In this work, we performed a comprehensive analysis of LLMs
for security vulnerability detection. Our study reveals that both
closed-source LLMs, such as GPT-4, and open-source LLMs, like
CodeLlama, perform modestly at vulnerability detection for both
Java and C/C++. Their performance on vulnerability detection is
lower when dealing with real-world code. However, we find that
even in cases where the models produce incorrect predictions, they
identify relevant sources, sinks and sanitizers for dataflow analysis.
Hence, we believe that an interesting future direction is to develop
neuro-symbolic techniques that combine the intuitive reasoning
abilities of LLMs with symbolic tools such as logical reasoning en-
gines and static code analyzers for more effective and interpretable
solutions.
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A APPENDIX
A.1 Dataset Processing and Selection
We perform a data processing and cleaning step for each dataset
before evaluating them with LLMs.
OWASP. We remove or anonymize information in OWASP bench-
marks that may provide obvious hints about the vulnerability in a
file. For instance, we change package, variable names, and strings
such as “owasp”, “testcode”, and “/sqli-06/BenchmarkTest02732”
to other pre-selected un-identifying names such as “pcks”, “csdr”,
etc. We remove all comments in the file because they may explic-
itly highlight the vulnerable line of code or may have irrelevant
text (such as copyright info), which may leak information. These
changes, however, do not change the semantics of the code snippets.
Juliet Java and C/C++. Similar to OWASP, we remove all com-
ments and transform all identifiers that leak identifying information
in all test cases in the Juliet benchmark. For instance, we change
“class CWE80_XSS_CWE182_Servlet_connect_tcp_01” to “class My-
Class”. The Juliet benchmark provides the vulnerable (named as
“bad”) and non-vulnerable (named as “good*”) methods in the same
file. For easier evaluation, we perform a pre-processing step to
split each file into two, each containing either a vulnerable or non-
vulnerable method. Juliet also contains special benchmarks that
have dependencies across multiple (2-5) files. We skip these bench-
marks because they are typically too big to fit into the LLM prompt.
Hence, the number of test cases after the data processing step in
Juliet is reduced (as shown in Table 4).
CVEFixes. For each CVE, CVEFixes provides the methods that
were involved in the fix commit. It also includes the method code
in the parent commit, i.e., the method version before the fix. We
collect all methods in the fix commit and the parent commit and
label them as vulnerable and non-vulnerable, respectively. Similar
to other datasets, we also remove all comments in the method code.
While CVEFixes contains methods across multiple programming
languages, we only collect C/C++ and Java methods for our study.

A.2 Prompting Strategies
The Basic prompt is presented in Listing 4, CWE specific prompt in
Listing 5 and Dataflow analysis-based prompt in Listing 6.

System: You are a security researcher, expert in detecting security
vulnerabilities.
Provide response only in following format: vulnerability: <YES or
NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE NAME>
| explanation: <explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not
include anything else in response.

User: Is the following code snippet prone to any security
vulnerability?
<CODE_SNIPPET>
Response:

Listing 4: Basic LLM Prompt

A.3 Other Prompting Strategies
In addition to the prompting strategies presented in our main eval-
uation, we considered other popular prompting strategies such
as Few-shot prompting and Chain-of-thought prompting in a

System: [Same as above]
User: Is the following code snippet prone to <CWE>?
<CODE_SNIPPET>
Response:

Listing 5: CWE-specific LLM Prompt

System: You are a security researcher, expert in detecting security
vulnerabilities. Carefully analyze the given code snippet and track
the data flows from various sources to sinks. Assume that any call
to an unknown external API is unsanitized.

Please provide a response only in the following itemized OUTPUT
FORMAT. Use N/A in other fields if there are no vulnerabilities. DO
NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.
<OUTPUT FORMAT>
Data flow analysis of the given code snippet:
1. Sources:
<numbered list of input sources>
2. Sinks:
<numbered list of output sinks>
3. Sanitizers:
<numbered list of sanitizers, if any>
4. Unsanitized Data Flows:
<numbered list of data flows that are not sanitized in the format
(source, sink, why this flow could be vulnerable)>
5. Final Vulnerability analysis verdict: vulnerability: <YES or NO>
| vulnerability type: <CWE_ID> | vulnerability name: <NAME_OF_CWE>
| explanation: <explanation for prediction>
</OUTPUT FORMAT>
User: Is the following code snippet prone to <CWE>?
<CODE_SNIPPET>
Response:

Listing 6: Dataflow analysis-based LLM Prompt

limited experimental setting. For the few-shot prompt (CWE-Few-
shot), we included two examples of the task (onewith a vulnerability
and one without) in the CWE specific prompt before providing the
target code snippet. For the chain-of-thought prompt (CWE-CoT),
we explicitly ask the model to provide a reasoning chain before the
final answer by adding a “Let’s think step-by-step” statement at the
end of the CWE specific prompt.

Table 8 and Table 9 present the results from GPT-4 with various
prompting strategies on a random subset of 100 samples of the
Juliet Java and CVEFixes C/C++ datasets respectively. The CWE-
DF prompt reports the highest accuracy of 69% and the highest
F1 score of 0.75 on the Juliet Java dataset. The CWE-DF prompt
reports a 0.05 higher F1 score than the CWE-CoT prompt and a 0.03
higher F1 score than the CWE-Few-shot prompt. This difference is
much more prominent on the CVEFixes C/C++ dataset where the
CWE-DF prompt reports a 0.34 higher F1 score than the CWE-CoT
prompt and a 0.31 higher F1 score than the CWE-Few-shot prompt.
Moreover, the CWE-Few-shot prompt reported a 0.2 lower F1 score
than the CWE specific prompt on the CVEFixes C/C++ dataset
while requiring more tokens. Our analysis of the few-shot prompts
suggests that providing more examples may not be a useful strategy
for vulnerability detection. Because the potential set of vulnerable
code patterns is quite large, the provided examples hardly make
a difference to LLMs’ reasoning abilities. Hence, it may be more
useful to use prompts that instead elicit reasoning or explanations
of some kind before detecting if the given snippet is vulnerable.
The CWE-CoT prompt, however, does not help with reasoning
always, as it either performed at par or worse than the Dataflow
analysis-based prompt.
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Table 8: All prompting strategies on 100 samples from Juliet
Java.

Model Prompt Metrics

A P R F1

GPT-4 CWE 0.65 0.58 0.96 0.72
GPT-4 CWE-Few-shot 0.65 0.58 0.94 0.72
GPT-4 CWE-CoT 0.69 0.64 0.79 0.70
GPT-4 CWE-DF 0.69 0.61 0.96 0.75

Table 9: All prompting strategies on 100 samples from CVE-
Fixes C/C++.

Model Prompt Metrics

A P R F1

GPT-4 CWE 0.55 0.54 0.58 0.56
GPT-4 CWE-Few-shot 0.49 0.38 0.34 0.36
GPT-4 CWE-CoT 0.52 0.37 0.30 0.33
GPT-4 CWE-DF 0.56 0.56 0.83 0.67

Learning from these experiments, we selected the CWE specific
prompt, Dataflow analysis-based prompt, in addition to the Basic
prompt, for our main evaluation with LLMs.

A.4 Detailed metrics across all LLMs and
Datasets

Table 10 presents the metrics for all LLMs and Datasets across all
prompts.

A.5 Adversarial Attack Examples

Table 11: Illustration of three different semantics-preserving
adversarial attacks (in gray) on Java programs.

Attack Example

Dead-code
Injection

int obj = new Object(...);

if (obj == null) { /* deadcode */ }

Variable
Renaming

String var3 = (String)

names.nextElement ();

String [] values =

request.getParameterValues( var3 );

Branch
Insertion boolean var11 = true;

if (var11) { configManager.init (); }

Table 11 presents the three adversarial attacks that we imple-
mented: dead-code injection, variable renaming, and branch in-
sertion. Each attack contains multiple code patterns, which are
randomly chosen when perturbing a given code snippet. We imple-
ment these attacks for Java and C/C++. For a given code snippet,
we only apply an attack only once.

A.6 More Details on CodeQL vs. GPT-4
Table 12 presents the CWE-wise distribution of CodeQL results.
CodeQL shows relatively better performance on Juliet Java (with
an F1 score over 0.75 across CWEs) than Juliet C/C++ (with two
CWEs reporting F1 scores under 0.4). On Juliet Java, CodeQL re-
ports the highest performance on CWE-78 with an F1 score of 0.92.

Interestingly, CWE-78 reports the worst results on the other two
datasets (F1 score of 0.67 with OWASP and 0.03 with Juliet C/C++).

// Code snippet prone to CWE-476 (NULL Pointer Dereference)
// Both the conditions are evaluated due to the bitwise & operator

if( globalReturnsTrue() )

{

twoIntsStruct *twoIntsStructPointer = NULL;

if ( (twoIntsStructPointer != NULL)

&

(twoIntsStructPointer->intOne == 5) )

{
printLine("intOne == 5");

}
}

GPT-4’s response: The pointer twoIntsStructPointer is
initialized as NULL and then checked if it’s not NULL before
dereferencing. However, the pointer is not assigned any
value other than NULL, so it’s not actually a risk of NULL
pointer dereference. ✗

Listing 7: CodeQL correctly predicts Null Pointer Dereferenc-
ing while GPT-4 doesn’t. GPT-4, however, correctly identifies
the sources and sinks .

In Listing 7, the model incorrectly reasons about the sanitization
by overlooking the & which would cause both the expressions to
be evaluated. The identified sources and sinks are correct, however.

A.7 Qualitative analysis of GPT-4 responses
We first present examples where the dataflow analysis from the
CWE-DF prompt is useful. Consider the code snippet in Listing 8.
In this snippet, the variable dir is indirectly being used to create a
directory via the dirToCreate variable. GPT-4 correctly identifies
that this path is not sanitized and could be used to create a directory
in otherwise restricted locations. This could lead to CWE-22 (path
traversal) as is rightly predicted by GPT-4. In Listing 9, the method
write takes an array b and integers offset and length as inputs.
The expression offset + length > b.length can lead to an Integer
Overflow (CWE-190) if offset + length exceeds the maximum
integer value and this is correctly identified by GPT-4. Finally, in
Listing 10, there are multiple array accesses that could lead to
CWE-125 (Out-of-bounds read). GPT-4 correctly identifies that the
expression ciphertextOffset + length + index could exceed the
size of the ciphertext array, leading to this vulnerability.

// TARGET CWE: CWE-190 (Integer Overflow or Wraparound)

// CODE SNIPPET
public void write(byte[] b, int offset, int length) throws

IOException {
if (b == null) {
throw new NullPointerException();

}

if (offset < 0 || offset + length > b.length) {
throw new ArrayIndexOutOfBoundsException();
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Table 10: Effectiveness of LLMs in Predicting Security Vulnerabilities (Java and C++). The highest accuracy and F1 scores (as
well as ones within 0.1 range of the highest values) for each dataset are highlighted in blue.

Model Prompt OWASP Juliet Java CVEFixes Java Juliet C/C++ CVEFixes C/C++

A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

GPT-4 Basic 0.52 0.51 1.00 0.68 0.56 0.54 0.85 0.66 0.50 0.50 0.34 0.41 0.54 0.52 0.92 0.67 0.51 0.50 0.57 0.54
GPT-4 CWE 0.54 0.52 1.00 0.69 0.69 0.63 0.97 0.76 0.55 0.56 0.44 0.50 0.58 0.54 0.95 0.69 0.52 0.52 0.52 0.52
GPT-4 CWE-DF 0.55 0.53 1.00 0.69 0.70 0.63 0.98 0.76 0.53 0.53 0.59 0.56 0.59 0.55 0.98 0.70 0.52 0.51 0.76 0.61

GPT-3.5 Basic 0.53 0.52 0.72 0.60 0.58 0.57 0.71 0.63 0.46 0.35 0.09 0.15 0.49 0.49 0.64 0.56 0.52 0.55 0.19 0.29
GPT-3.5 CWE 0.55 0.54 0.62 0.58 0.52 0.52 0.55 0.54 0.47 0.41 0.12 0.19 0.49 0.49 0.70 0.58 0.51 0.54 0.19 0.28
GPT-3.5 CWE-DF 0.51 0.51 0.93 0.66 0.40 0.44 0.73 0.55 0.54 0.53 0.66 0.59 0.40 0.44 0.77 0.56 0.52 0.52 0.75 0.61

CL-34B Basic 0.51 0.51 1.00 0.67 0.47 0.48 0.85 0.62 0.50 0.50 0.28 0.36 0.50 0.50 0.93 0.65 0.51 0.51 0.19 0.28
CL-34B CWE 0.57 0.54 0.94 0.69 0.49 0.49 0.94 0.65 0.50 0.51 0.16 0.25 0.53 0.52 0.98 0.68 0.51 0.54 0.08 0.14
CL-34B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67

CL-13B Basic 0.52 0.51 0.98 0.67 0.47 0.48 0.72 0.58 0.50 0.50 0.13 0.21 0.46 0.48 0.79 0.59 0.51 0.52 0.22 0.31
CL-13B CWE 0.52 0.51 0.98 0.67 0.50 0.50 0.89 0.64 0.48 0.47 0.29 0.36 0.53 0.51 0.98 0.67 0.52 0.52 0.56 0.54
CL-13B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 0.96 0.66

CL-7B Basic 0.56 0.54 0.81 0.65 0.77 0.79 0.72 0.75 0.47 0.46 0.42 0.44 0.62 0.58 0.86 0.69 0.47 0.35 0.07 0.11
CL-7B CWE 0.50 0.50 1.00 0.67 0.52 0.51 0.99 0.67 0.51 0.51 0.84 0.63 0.51 0.50 0.99 0.67 0.50 0.50 0.84 0.63
CL-7B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.51 0.50 0.98 0.66

Table 12: CodeQL vs GPT-4 (CWE-DF) CWE-wise comparison

Dataset CWE CodeQL GPT-4 (CWE-DF)

A P R F1 A P R F1
OWASP 22 0.52 0.50 1.00 0.67 0.48 0.48 1.00 0.64
OWASP 78 0.56 0.53 0.77 0.63 0.48 0.48 1.00 0.65
OWASP 89 0.57 0.54 1.00 0.70 0.52 0.52 1.00 0.68
OWASP 79 0.79 0.71 1.00 0.83 0.65 0.59 1.00 0.74

Juliet Java 78 0.94 0.86 1.00 0.92 0.57 0.47 1.00 0.64
Juliet Java 89 0.88 0.85 1.00 0.92 0.69 0.68 1.00 0.81
Juliet Java 476 0.76 0.76 0.76 0.76 0.79 0.75 0.88 0.81
Juliet Java 190 0.97 1.00 0.92 0.96 0.71 0.62 0.97 0.75

Juliet C/C++ 78 0.52 1.00 0.04 0.08 0.50 0.50 1.00 0.67
Juliet C/C++ 476 0.80 0.95 0.75 0.84 0.71 0.75 0.86 0.80
Juliet C/C++ 416 0.63 1.00 0.26 0.41 0.52 0.51 0.97 0.67
Juliet C/C++ 190 0.93 0.99 0.87 0.93 0.68 0.60 0.98 0.74

}

write(fd, b, offset, length);
}

// RESPONSE WITH DATAFLOW ANALYSIS INSPIRED PROMPT
Here is a data flow analysis of the given code snippet:
A. Sources:
1. The byte array 'b'
2. The integer 'offset'
3. The integer 'length'

B. Sinks:
1. The 'write' function

C. Sanitizers:
1. The condition 'if (offset < 0 || offset + length > b.length)'

D. Unsanitized Data Flows:
1. (offset, write, The offset value is directly used in the write

function without any sanitization)
2. (length, write, The length value is directly used in the write

function without any sanitization)

E. Vulnerability analysis verdict: $$ vulnerability: YES |
vulnerability type: CWE-190 | vulnerability name: Integer
Overflow or Wraparound | explanation: The code does not
properly handle the case where 'offset + length' could
overflow. If ’offset’ and ’length’ are both very large,
their sum could wrap around to a negative value, passing the
bounds check and leading to an ArrayIndexOutOfBoundsException
at runtime. $$'

Listing 9: GPT-4 with CWE-DF prompt on a real-world
Integer Overflow vulnerability

// TARGET CWE: CWE-125 (Out-of-bounds Read)

// CODE SNIPPET
public int encryptWithAd(byte[] ad, byte[] plaintext, int

plaintextOffset,
byte[] ciphertext, int ciphertextOffset, int length)
throws ShortBufferException {

int space;
if (ciphertextOffset > ciphertext.length)

space = 0;
else

space = ciphertext.length - ciphertextOffset;
if (!haskey) {

if (length > space)
throw new ShortBufferException();

if (plaintext != ciphertext || plaintextOffset !=
ciphertextOffset)

System.arraycopy(plaintext, plaintextOffset,
ciphertext, ciphertextOffset, length);

return length;
}
if (space < 16 || length > (space - 16))

throw new ShortBufferException();
setup(ad);
encryptCTR(plaintext, plaintextOffset, ciphertext,

ciphertextOffset, length);
ghash.update(ciphertext, ciphertextOffset, length);
ghash.pad(ad != null ? ad.length : 0, length);
ghash.finish(ciphertext, ciphertextOffset + length, 16);
for (int index = 0; index < 16; ++index)

ciphertext[ciphertextOffset + length + index] ^=
hashKey[index];

return length + 16;
}

// RESPONSE WITH DATAFLOW ANALYSIS INSPIRED PROMPT
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// CVE-2021-39180

// CODE SNIPPET

public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) throws IOException {

Path relativeDir = source.relativize(dir);
final Path dirToCreate = Paths.get(destDir.toString(),
relativeDir.toString());

if(!dirToCreate.toFile().exists()) {
Files.createDirectory(dirToCreate);

}
return FileVisitResult.CONTINUE;

}

// RESPONSE WITH DATAFLOW ANALYSIS INSPIRED PROMPT
Here is a data flow analysis of the given code snippet:
A. Sources:
1. The `dir` parameter in the `preVisitDirectory` method.
2. The `source` variable.
3. The `destDir` variable.

B. Sinks:
1. The `Files.createDirectory` method.

C. Sanitizers:
No sanitizers are present in the code snippet.

D. Unsanitized Data Flows:
1. (dir, Files.createDirectory, The `dir` parameter is used to

create a new directory without any sanitization or validation.
If an attacker can control the `dir` parameter, they could

potentially create directories in unintended locations.)
2. (source, Files.createDirectory, The `source` variable is used to

create a relative path without any sanitization or
validation. If an attacker can control the `source` variable,
they could potentially manipulate the path creation process

.)
3. (destDir, Files.createDirectory, The `destDir` variable is used

to create a new directory without any sanitization or
validation. If an attacker can control the `destDir` variable,
they could potentially create directories in unintended

locations.)

E. Vulnerability analysis verdict: $$ vulnerability: YES |
vulnerability type: CWE-22 | vulnerability name: Improper
Limitation of a Pathname to a Restricted Directory ('Path
Traversal') | explanation:
The code does not validate or sanitize the ‘dir‘, ‘source‘,

and ‘destDir‘ variables before using them to create a new directory.
This could allow an attacker to manipulate the path and

create directories in unintended locations, leading to a path
traversal vulnerability. $$

Listing 8: Correct response by GPT-4 on a Path Traversal
vulnerability

Here is a data flow analysis of the given code snippet:
A. Sources:
1. The `plaintext` array
2. The `ciphertext` array
3. The `ad` array
4. The `plaintextOffset` integer
5. The `ciphertextOffset` integer
6. The `length` integer

B. Sinks:
1. The `System.arraycopy` method
2. The `encryptCTR` method
3. The `ghash.update` method
4. The `ghash.pad` method
5. The `ghash.finish` method
6. The `ciphertext` array

C. Sanitizers:
1. The `if (ciphertextOffset > ciphertext.length)` check
2. The `if (length > space)` check
3. The `if (space < 16 || length > (space - 16))` check

D. Unsanitized Data Flows:
1. (plaintext, System.arraycopy, if plaintext is larger than the

destination array, it could lead to an out-of-bounds read)
2. (ciphertext, ghash.finish, if ciphertextOffset + length + 16 is

larger than the size of ciphertext, it could lead to an out-
of-bounds read)

E. Vulnerability analysis verdict: vulnerability: YES |
vulnerability type: CWE-125 | vulnerability name: Out-of-
bounds Read | explanation: The code does not properly check
the boundaries of the ‘ciphertext‘ array before reading from
it, which could lead to an out-of-bounds read if `
ciphertextOffset + length + 16` is larger than the size of
the `ciphertext` array.

Listing 10: GPT-4 with CWE-DF prompt on a real-world Out
of Bounds vulnerability

A.8 CWE-125 (Out-of-bounds Read in Java vs.
C++)

Listing 10 presents an example of Out-of-bounds read vulnerability
in CVEFixes Java which GPT-4 predicts correctly. Codellama-34B
also correctly predicts that this snippet is vulnerable. Listing 11
presents an example from CVEFixes C/C++ where Out-of-bounds
read vulnerability is not possible but this is not evident from context.
Codellama-34B’s explanation seems plausible given that little is
known about the pointers in question.
// CODE SNIPPET NOT VULNERABLE TO CWE-125 (Out-of-bounds Read)
// The pointers cannot be reasoned about with this snippet alone

snmp_ber_decode_length(snmp_packet_t *snmp_packet, uint8_t *length)
{
if(snmp_packet->used == 0) {
return 0;

}

*length = *snmp_packet->in++;
snmp_packet->used--;

return 1;
}

// CODELLAMA-34B WITH THE DATAFLOW ANALYSIS BASED PROMPT

Here is a data flow analysis of the given code snippet:

A. Sources:

1. snmp_packet->in
2. snmp_packet->used

B. Sinks:

1. *length
2. snmp_packet->used

C. Sanitizers:

1. None

D. Unsanitized Data Flows:

1. (snmp_packet->in, *length, This flow could be vulnerable to Out-
of-bounds Read (CWE-125) if the value of snmp_packet->in is
not properly validated and could be pointing to an invalid
memory location.)
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2. (snmp_packet->used, snmp_packet->used--, This flow could be
vulnerable to Out-of-bounds Read (CWE-125) if the value of
snmp_packet->used is not properly validated and could be
pointing to an invalid memory location.)

E. Vulnerability analysis verdict: $$ vulnerability: YES |
vulnerability type: CWE-125 | vulnerability name: Out-of-
bounds Read | explanation: The code snippet does not properly
validate the input values, which could lead to an Out-of-

bounds Read vulnerability. $$

Listing 11: Codellama-34B with CWE-DF prompt on a real-
world Out of Bounds vulnerability (incorrect)
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