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Abstract. Quantitative regular expressions (QREs) have been recently
proposed as a high-level declarative language for specifying complex nu-
merical queries over data streams in a modular way. QREs have appeal-
ing theoretical properties, and each QRE can be compiled into an effi-
cient streaming algorithm for its evaluation. In this paper, we generalize
the notion of Brzozowski derivatives for classical regular expressions to
QREs. Such derivatives immediately lead to an algorithm for incremen-
tal evaluation of QREs. While this algorithm does not have better time
or space complexity than the previously known evaluation technique, it
has the benefit of being simpler to explain and easier to prove correct.

1 Introduction

There are numerous applications that require the real-time processing of data
generated at high rates such as: analyzing stock market data, monitoring pro-
duction and manufacturing using sensors, network traffic monitoring, and click-
stream analysis on the web. A core computational problem that is relevant to
all such applications is the incremental aggregation of a stream of data items
into numerical values that are useful for real-time decision making. Due to the
enormous volume of data, these applications have hard constraints regarding
space usage and the time required to process each newly arriving element.

There is a large body of prior research on stream processing which focuses
on algorithmic techniques, often involving approximation and randomization, for
computing efficiently specific numerical quantities such as the median [18], the
number of distinct elements [17], the frequency moments [2], and aggregates over
sliding windows [15]. There have also been several proposals for languages and
systems that integrate stream processing with the data processing capabilities
of traditional relational database systems [1,8,9].

The formalism of Quantitative Regular Expressions (QREs) was recently
introduced in [5] with the orthogonal goal of providing convenient high-level
programming abstractions for specifying complex queries over data streams in
a modular way. QREs extend regular expressions, a well-established formalism
for imparting hierarchical structure to sequences of symbols, with numerical op-
erations such as sum, difference, min, max, average, and median. A QRE thus
describes both the regular parsing of the stream prefix seen so far and the hier-
archical calculation of a quantitative aggregate that reflects the structure of the
parse tree. This combination gives rise to a powerful declarative language, which



can express conveniently many useful queries and is amenable to space- and
time-efficient evaluation in the streaming model of computation. An implemen-
tation of QREs extended with extra features for processing realistic workloads is
reported in [21]. The expressiveness of QREs coincides with the class of regular
functions, which can be characterized with the model of Cost Register Automata
(CRAs) [4] or, equivalently, with the MSO-definable graph transformations [14].

The main computational problem for QREs is their evaluation in the stream-
ing model of computation. An efficient algorithm has already been described in
[5] and implemented in [21], but it is not based on automata-theoretic techniques,
and the question remains of whether there exists a simple model of automata
for the streaming evaluation of QREs. In the simpler setting of classical regular
expressions, the translation into a Nondeterministic Finite Automaton (NFA)
gives rise to a very efficient streaming evaluation algorithm: the state of the
algorithm consists of the active states of the NFA, and upon the arrival of a
new symbol the state is updated by performing all possible transitions. Another
approach for the evaluation problem is based on a technique proposed by Br-
zozowski in 1964 [11], where he introduced the notion of derivation for regular
expressions extended with arbitrary Boolean operations. The derivative of an
expression e with respect to a symbol a, typically denoted as Da(e), is an ex-
pression given by a simple recursive definition on the structure of e. The crucial
property of these derivatives is that a string of the form aw (starting with the
symbol a) matches an expression e iff the suffix w matches the derivative Da(e).
This suggests a streaming evaluation algorithm for regular expressions: the state
is an expression, and upon arrival of a new symbol a the state is replaced by its
derivative with respect to a. A refinement of Brzozowski’s ideas was proposed
by Antimirov [7] under the name of partial derivatives. He described a represen-
tation of derivatives as sets of partial derivatives, which correponds closely to
the construction of a NFA from an expression.

Given the success of automata-based techniques for the evaluation of plain
regular expressions, it is worthwhile investigating whether similar ideas can be
used for QRE evaluation. The well-studied model of weighted automata over
semirings (see the monograph [16] for a broad survey) seems relevant, but un-
fortunately it is not expressive enough to handle the complex nesting of several
different quantitative operations found in QREs. In particular, by the Kleene-
Schützenberger theorem [22], weighted regular expressions can be easily trans-
lated into equivalent weighted automata and evaluated efficiently. On the other
hand, QREs can be translated into the model of deterministic CRAs [4], but this
translation incurs a doubly exponential blowup and is therefore not conducive to
efficient evaluation. A hierarchical automaton model for the streaming compu-
tation of an interesting class of quantitative queries is introduced in [6], but its
precise relationship to QREs and other automata formalisms remains to be clar-
ified. A conclusively appropriate notion of automaton for the efficient evaluation
of general quantitative queries has not been proposed yet, therefore a meaningful
investigation is the development of a notion of derivative. Indeed, in the present
paper, we extend the notion of Brzozowski derivatives to QREs, and we show



Table 1. Complexity results under syntactic and semantic restrictions

Query language Time-per-element & space complexity

Unrestricted, multiset semantics Exponential in stream/query

Unrestricted, unambiguous semantics Constant in stream, Exponential in query

Strongly typed Constant in stream, Polynomial in query

that there is a representation of QRE derivatives that gives rise to an efficient
evaluation algorithm. This result offers a simple and clean alternative proof of
why QREs can be efficiently evaluated, and it strongly suggests the possibility
of an automata-based formulation of the evaluation algorithm. We should note
here that derivatives have already been studied in the weighted setting [20], but
the case of QREs is substantially different. See also [10] for an investigation of
how Brzozowski derivatives can be extended to various algebraic structures.

Outline of paper. In Sect. 2 we present the syntax and meaning of QREs.
We consider two different natural semantics: (1) The multiset semantics allows
for several output values for a given stream prefix, each of which correponds
to a different parse tree. (2) The unambiguous semantics, on the other hand,
specifies the output to be undefined when the input stream can be parsed in
more than one way. Thus, the unambiguous semantics ensures a single output
value for each input sequence. In Sect. 3 we define derivatives of QREs by gen-
eralizing the classical notion of Brzozowski derivatives of regular expressions,
and we propose an incremental evaluation algorithm based on derivatives. We
also consider in Sect. 4 a representation of QRE derivatives that is analogous
to Antimirov’s partial derivatives [7]. In the presence of intersection the number
of distinct Antimirov derivatives (for plain regular expressions) is exponentially
bounded by the size of the expression. We show how to obtain a similar bound
for QRE evaluation using the unambiguous semantics. Finally, we consider in
Sect. 5 a syntatic restriction for QREs [5] that guarantees unambiguous parsing.
Our complexity results for the streaming evaluation problem are summarized in
Table 1. Although the proposed derivative-based algorithm has the same time
and space complexity as the previously known method [5], our approach here is
cleaner and the analysis of the algorithm much simpler. We conclude in Sect. 6
with a summary of our results and directions for future work.

2 Quantitative Regular Expressions

The formalism of Quantitative Regular Expressions offers a declarative language
for describing complex hierarchical computations on streams of data values. As
an illustrative example, consider the application of patient monitoring, where the
data stream is a time series of timestamped measurements produced by a sensor
attached to a patient. We want to analyze the data stream by first identifying re-
gions of interest which we call “episodes”. These are maximal intervals where the



measurements are above a fixed threshold value. Every episode is summarized
by recording the average measurement, the maximum measurement, and the du-
ration of the episode. The top-level query is an aggregation over the last 30 days
(e.g., by calculating the average) of the episode statistics. This query imparts a
hierarchical structure on the data stream by splitting it into episodes, bucketing
episodes into days, and considering the last 30 days every time the aggregate
statistics are computed. To describe this computation we need a language that
supports regular constructs such as iteration (to express, e.g., that an episode
is a sequence of measurements exceeding the threshold) and concatenation (to
express, e.g., that an episode is followed by a sequence of measurements below
the threshold), extended with quantitative operations for computing numerical
aggregates (e.g., the maximum measurement of the sequence of measurements
that constitute an episode).

In this section we present the syntax and semantics of Quantitative Regular
Expressions. A QRE is interpreted over a stream of data values, and specifies
for each finite prefix of the stream an output value. We consider two different
semantics: the multiset semantics which records several different output possibil-
ities, and the unambiguous semantics which only allows the output to be defined
when it is uniquely determined. Since we are interested in computing well-defined
functions on data streams, the multiset semantics is not satisfactory. We con-
sider it here, however, because it is a natural semantics from a mathematical
perspective, and it is useful for formulating and proving our results regarding
efficient evaluation. The unambiguous semantics is simply a projection of the
multiset semantics, and therefore several results w.r.t. to the multiset semantics
transfer essentially unchanged to the unambiguous semantics.

To define QREs, we first choose a typed signature which describes the basic
data types and operations for manipulating them. We fix a collection of basic
types, and we write A,B, . . . to range over them, as well as a collection of basic
operations on them, e.g. op : A1 × · · · × Ak → B. The identity function on
D is written idD : D → D. For every basic type D, assume that we have
fixed a collection of atomic predicates, so that the satisfiability of their Boolean
combinations is decidable. We write φ : D → B to indicate that φ is a predicate
on D, and trueD : D → B for the predicate that is always true. The unit type,
with unique inhabitant def, is U and !D : D → U is the unique function from
D to U. We also write π1 : A × B → A and π2 : A × B → B for the left and
right projection respectively. We assume that the collection of basic operations
contains all identities and projections, and is closed under pairing and function
composition. For example, if op : A × B → C and a ∈ A are basic operations,
then so is (op a) = λb.op(a, b) : B → C.

Every QRE is defined on a regular subset of stream prefixes, so we first
introduce a variant of regular expressions with unary predicates to describe the
domains of definition of QREs. For a basic type D, we define (Symbolic) Regular
Expressions (REs) over D with the grammar r ::= ⊥ | ε | φ | rtr | r·r | r∗ | rur,
where φ : D → B. The expression rn is abbreviation for r ·r · · · r with r repeated
n times. We write r : RE〈D〉 to indicate that r is a regular expression over D.



(bottom)
⊥ : QRE〈D,C〉

c ∈ C
(empty)

eps(c) : QRE〈D,C〉

satisfiable φ : D → B op : D → C
(single item)

atom(φ, op) : QRE〈D,C〉
f, g : QRE〈D,C〉

(choice)
f t g : QRE〈D,C〉

f : QRE〈D,A〉 g : QRE〈D,B〉 op : A×B → C
(split)

split(f, g, op) : QRE〈D,C〉

init : QRE〈D,B〉 body : QRE〈D,A〉 E(body) = ∅ op : B ×A→ B
(iteration)

iter(init, body, op) : QRE〈D,B〉

f : QRE〈D,A〉 op : A→ B
(application)

op(f) : QRE〈D,B〉

f : QRE〈D,A〉 g : QRE〈D,B〉 op : A×B → C
(combination)

op(f, g) : QRE〈D,C〉

E(⊥) = ∅ E(f t g) = E(f) ] E(g)

E(eps(c)) = {c} E(split(f, g, op)) = M(op)(E(f), E(g))

E(atom(φ, op)) = ∅ E(iter(f, g, op)) = E(f)

E(op(f)) = M(op)(E(f)) E(op(f, g)) = M(op)(E(f), E(g))

Fig. 1. Syntax of Quantitative Regular Expressions (QREs) without ε-cycles.

We define JrK : D∗ → N to be the weighted semantics of regular expressions
without ε-cycles (i.e., no ε-cycles in the corresponding ε-NFA [19]) that counts
the number of different parse trees.

J⊥Kw = 0

JεK ε = 1

JεKw = 0 (w 6= ε)

JφK d = 1 (d |= φ)

JφK d = 0 (d 6|= φ)

JφKw = 0 (w /∈ D)

Jr1 t r2Kw = (Jr1Kw) + (Jr2Kw)

Jr1 · r2Kw =
∑

w=uv(Jr1K u) · (Jr2K v)

Jr∗Kw =
∑

w=u1···un
(JrK u1) · · · (JrK un)

Jr1 u r2Kw = (Jr1Kw) · (Jr2Kw)

This semantics corresponds to standard operations for formal power series [16].

In Fig. 1 we define Quantitative Regular Expressions (QREs), which we also
call queries. The queries are typed, and we write f : QRE〈D,C〉 to indicate that
the query f has input type D and output type C. The original definition of QREs
in [5] was more general in that it involved an extra sort of typed parameters,
and the outputs were essentially algebraic terms built from the parameters and
the operations of the signature. The definition of [5] was motivated by expres-
siveness considerations, i.e. so that QREs capture exactly the class of regular
functions over the same signature [14,3,4]. We consider here a simpler language,
where the outputs are just values. This simplification makes QREs significantly
more usable for practical queries and obviates the need for a term simplification
procedure (see section 3.2 of [5]) that depends on the nature of the data types
and operations of the signature.



The language of Fig. 1 has eight core constructs: (1) ⊥ is undefined for ev-
ery input sequence; (2) eps(c) maps the empty stream to the output value c;
(3) atom(φ, op) maps an input stream consisting of a single item satisfying the
predicate φ to an output computed by applying the operation op; (4) f t g

nondeterministically chooses either f or g to apply; (5) split(f, g, op) splits
the input stream into two parts, applies the queries f and g to the left and
right parts respectively, and combines their results using the operation op;
(6) iter(init, body, op) splits the input into multiple parts uv1v2 . . . vn, applies
init to u (which gives b) and body to each vi (which gives ai), and combines the
sequence of values a1a2 . . . an using the initial value b and the binary aggregation
operation op in the style of the fold combinator used in functional programming;
(7) op(f) applies the query f and transforms its output using the operation op;
(8) op(f, g) applies both f, g and combines their results using the operation op.

The definition of queries is by mutual induction with the function E , which
sends a query of type QRE〈D,C〉 to a finite multiset over its output type
C. The E function is meant to give the output of a query on the empty se-
quence, and it is used for the assumption E(body) = ∅ for the iteration query
iter(init, body, op). It is necessary to define the syntax of queries simultane-
ously with E in order to eliminate queries with ε-cycles, that is, queries where
the body g of the iteration query iter(f, g, op) matches the empty sequence ε.
When the semantics is defined later, we will see that ε-cycles result in having
an infinity of output values. This complication of ε-cycles appears also in the
context of weighted automata and expressions [16]. The operation ] in Fig. 1
is multiset union. For a set X, we write M(X) to denote the set of all finite
multisets over X. For a unary operation op : A → B, we define the lifting
M(op) : M(A)→ M(B) by M(op)(X) = {op(a) | a ∈ X}. Similarly, for an oper-
ation op : A × B → C, we define the lifting M(op) : M(A) ×M(B) → M(C) by
M(op)(X,Y ) = {op(a, b) | a ∈ X and b ∈ Y }.

Multiset semantics. We give a denotational semantics of queries in terms of
functions of type D∗ → M(C). We call this the multiset semantics of queries.
The domain of f is the set of sequences for which the value of f is nonempty,
i.e. dom(f) = {w ∈ D∗ | f(w) 6= ∅}. The denotation of a query f : QRE〈D,C〉
is the function JfK : D∗ → M(C), where J·K is called the interpretation function
and is defined by induction on the structure of queries as shown in Fig. 2.
To reduce the notational clutter we sometimes write JfKw instead of JfK(w).
The semantics of iteration involves the multiset fold combinator mfold, which
is a generalization of the familiar fold combinator to multisets of values. The
definitions of mfold and fold are by recursion on the length of the sequence. For
example, fold(s, op, a1a2) = op(op(s, a1), a2)) and

mfold({b1, b2}, op, {a1} {a2, a3}) =

{op(op(b1, a1), a2), op(op(b1, a1), a3), op(op(b2, a1), a2), op(op(b2, a1), a3)}.

For an iteration query h = iter(f, g, op), the typing restriction E(g) = ∅ implies
that JgK ε = ∅ (formally proved later in Theorem 5). So, to calculate the value



J⊥Kw = ∅
Jeps(c)K ε = {c}

Jatom(φ, op)K d = {op(d)}, if d |= φ

Jatom(φ, op)K d = ∅, if d 6|= φ

Jf t gKw = JfKw ] JgKw
Jsplit(f, g, op)Kw =

⊎
w=uvM(op)(JfK u, JgK v)

Jop(f)Kw = M(op)(JfKw)

Jop(f, g)Kw = M(op)(JfKw, JgKw)

Jiter(f, g, op)Kw =
⊎

w=uv1···vnmfold(JfK u, op, JgK v1 · · · JgK vn)

fold : B × (B×A→ B)×A∗ → B

fold(s, op, ε) = s

fold(s, op, wa) = op(fold(s, op, w), a)

mfold : M(B)× (B×A→ B)×M(A)∗ → M(B)

mfold(S, op, ε) = S

mfold(S, op,WX) = M(op)(mfold(S, op,W ), X)

Fig. 2. Finite multiset semantics of Quantitative Regular Expressions without ε-cycles.

JhKw (see Fig. 2) we only need to consider the splittings w = uv1 . . . vn of w
where n ≥ 0 and vi 6= ε for every i = 1, . . . , n.

For every input sequence w, the value JfKw is a finite multiset whose size is
at most exponential in the size of w. More precisely, (size of JfKw) ≤ 2|f|·|w| for
every query f : QRE〈D,C〉 and every sequence w ∈ D∗.

The multiset semantics of queries induces an equivalence relation on them,
written as ≡. Two queries are equivalent if their denotations are equal. We can
then write equations such as split(f, eps(b), op) ≡ opb(f), where opb is the
unary operation given by opb(x) = op(x, b) for all x.

Example 1. The query f = atom(trueN, idN) : QRE〈N,N〉 matches a single
number and returns it. Using it as the body of an iteration, we write the query
g = iter(f, f,+) which processes a nonempty sequence of numbers and returns
their sum. Now, the query g′ = iter(f′, f′,+), where f′ = atom(trueN, λx.1),
processes a nonempty sequence and returns its length. If div : N × N → Q and
div(x, y) is the result of dividing x by y, the query h = div(g, g′) : QRE〈N,Q〉
calculates the average of a nonempty sequence of natural numbers.

Rates. The rate of a query is a symbolic regular expression that denotes its
domain. It is defined by induction:

rate(⊥) = ⊥ rate(f t g) = rate(f) t rate(g)

rate(eps(c)) = ε rate(split(f, g, op)) = rate(f) · rate(g)

rate(atom(φ, op)) = φ rate(iter(f, g, op)) = rate(f) · rate(g)∗

rate(op(f)) = rate(f) rate(op(f, g)) = rate(f) u rate(g)

Notice that the value of rate is always an expression without ε-cycles.

Unambiguous semantics. We defined previously the multiset semantics of
queries, which allows a query to have several (finitely many) outputs for a given
input sequence. Now, we take the viewpoint that a query should specify a unique
output value (or be undefined) for a given input sequence. This means that we



want to ignore output multisets of cardinality greater than one, which we do
by setting the output to be undefined. This is the unambiguous semantics for
queries. For a query f : QRE〈D,C〉, this is given formally as follows:

〈〈f〉〉w = θ(JfKw), where θ(X) = X if |X| = 1 and θ(X) = ∅ otherwise

So, 〈〈f〉〉 is a function D∗ → M(C) so that each output multiset is of cardinal-
ity at most one, which we call an unambiguous function. This means that 〈〈f〉〉
can be also represented as a partial function D∗ ⇀ C. We say that a query
f is unambiguous when the multiset meaning JfK is an unambiguous function.
This is equivalent to JfK = 〈〈f〉〉, which says that the multiset and unambiguous
semantics coincide. See the papers [12,13] for recent surveys of unambiguity in
traditional automata theory.

It is necessary that the J−K semantics records the multiplicity of each output
value, otherwise 〈〈−〉〉 cannot be defined as a projection or J−K. Indeed, we see
in the example below that we can write queries that return exactly one output
value of multiplicity greater than one.

Example 2. The query f = iter(eps(0), atom(trueN, idN),+) : QRE〈N,N〉,
which processes a sequence of natural numbers and returns their sum, is un-
ambiguous. The query g = iter(eps(def), atom(trueN, !N), !N×N) : QRE〈N,U〉,
which matches a sequence of natural numbers and returns nothing, is also un-
ambiguous. The query split(g, f, π2) : QRE〈N,N〉, which matches a sequence of
natural numbers and returns the sum of every suffix of the sequence, is ambigu-
ous because every sequence of length ` can be parsed in `+1 different ways. The
query that matches sequences of length at least two and returns the sum of the
last two elements is split(g, split(atom(trueN, idN), atom(trueN, idN),+), π2) :
QRE〈N,N〉 and is unambiguous. The query split(f, f,+) : QRE〈N,N〉 is am-
biguous but single-valued: for a sequence of length `, it returns the sum of its
elements with multiplicity equal to `+ 1.

The unambiguous semantics of queries induces an equivalence relation on
them, written as ∼∼∼. Two queries f and g are ∼∼∼-equivalent if their denotations
〈〈f〉〉 and 〈〈g〉〉 are equal. We observe that the equivalence relation ∼∼∼ is strictly
coarser than ≡, that is, f ≡ g implies f ∼∼∼ g and there exist queries that are

∼∼∼-equivalent but ≡-inequivalent.

Observation 3. A finite multiset Q of queries of the same type can also be
thought of as a query, namely the finite choice over the queries of Q. We now
want to find some sufficient conditions for reducing the cardinality of Q, while
preserving its meaning under the unambiguous semantics. This will turn out
to be useful later in Sect. 4, where an evaluation algorithm for QREs using
Antimirov derivatives is presented (Fig. 3 and Theorem 9).

Suppose Q contains the queries f1, f2, . . . , fk with k ≥ 2 that have the
same rate, that is r = rate(fi) for every i, and there is no other query in Q that
has this rate. The condition on the rates implies that all functions JfiK have the
same domain D1 = dom(JfiK), and moreover all functions 〈〈fi〉〉 have the same
domain D2 = dom(〈〈fi〉〉) ⊆ D1.



(1) Remove all of f1, . . . , fk (wrong): We claim that Q′ = Q \ {f1, . . . , fk}
is not necessarily equivalent to Q. Suppose that Q = {f1, . . . , fk, g}, the
queries of Q are all unambiguous, and the domains dom(JgK) = dom(〈〈g〉〉)
and D1 = D2 intersect. So, all queries of Q are defined on some sequence w.
Then, 〈〈Q〉〉 is not defined on w because the cardinality of JQKw is greater
than one, but 〈〈Q′〉〉 is defined on w and equal to 〈〈g〉〉w. So, Q 6∼∼∼ Q′.

(2) If k ≥ 3 then remove f3, . . . , fk and keep f1, f2 (correct): Define the multiset
Q′ = Q\{f3, . . . , fk}. We claim that Q ∼∼∼ Q′. Let w be an arbitrary sequence.
If w belongs to the domain of the functions JfiK, then both 〈〈Q〉〉 and 〈〈Q′〉〉
are undefined on w, because the cardinalities of JQKw and JQ′Kw are greater
than one. Suppose now that w does not belong to the domain of the functions
JfiK. Then, JQKw = JQ \ {fi | i}Kw = JQ′Kw and hence 〈〈Q〉〉w = 〈〈Q′〉〉w.

This means that we can always reduce Q so that it has at most two queries with
the same rate, while preserving its unambiguous semantics.

3 Brzozowski Derivative

We introduce in this section the Brzozowski derivative [11] of Quantitative Reg-
ular Expressions, which is a straightforward adaption of derivatives for classical
regular expressions. The main property of these derivatives is that their seman-
tic counterpart agrees with the syntactic counterpart. This agreement property
gives as a corollary the existence of an incremental algorithm for evaluating
QREs on streams of data items.

Example 4. The Brzozowski derivative DB
a(r) of a regular expression r w.r.t.

the letter a denotes the language that results from the language of r by removing
the starting a letter from those words that start with a. For example, r =
(a t b)∗bb denotes the language of all strings over Σ = {a, b} that end in bb,
DB

a(r) = (a t b)∗bb = r, DB

ab(r) = DB

b(DB
a(r)) = DB

b(r) = r t b and DB

abb(r) =
DB

b(DB

ab(r)) = DB

b(r t b) = r t bt ε. The string abb matches r because the empty
string ε matches the derivative DB

abb(r).
A query of type QRE〈N,N〉 that is similar in form to the regex r is k =

split(g, h,max), where g = iter(eps(0), fe t fo,+), fe = atom(evenN, idN),
fo = atom(oddN, idN), and h = split(fo, fo,+). The unambiguous query k

matches sequences that end with two odd numbers and returns the maximum
of x, y where y is the sum of the last two numbers and x is the sum of the rest
of the numbers. The extension of derivatives to QREs should give rise to the
following calculations:

DB

4(k) = split(iter((λx.0 + x)(eps(4)), fe t fo,+), h,max)

DB

43(k) = split(iter((λx.4 + x)(eps(3)), fe t fo,+), h,max) t
(λx.max(4, x))((λx.3 + x)(fo))

DB

435(k) = split(iter((λx.7 + x)(eps(5)), fe t fo,+), h,max) t
(λx.max(7, x))((λx.5 + x)(fo)) t
(λx.max(4, x))((λx.3 + x)(eps(5)))



DB

4351(k) = split(iter((λx.12 + x)(eps(1)), fe t fo,+), h,max) t
(λx.max(12, x))((λx.1 + x)(fo)) t
(λx.max(7, x))((λx.5 + x)(eps(1)))

From the above we notice that ε matches DB
435(k) with value max(4, 3 + 5) = 8,

and it also matches DB
4351(k) with value max(7, 5 + 1) = 7.

A simple streaming algorithm that implements the computation described
by h can be given by maintaining the following state: the sum of all elements so
far except for the last two, and the two most recent elements. The reader can
observe that the derivatives calculated earlier record this information, and it can
be found inside the queries that are constructed. For example, in the derivative
DB

4351(k) we see (last line) the sum 7 and the elements 5, 1. The structure of the
derivative also encodes how these three numbers should be combined to produce
the output max(7, 5 + 1) = 7. ut

For a function f : D∗ → M(C), we define the semantic derivative Du(f) :
D∗ → M(C) with respect to the sequence u ∈ D∗ of data items as

Du(f)w = f(uw) for all w ∈ D∗.

An immediate consequence is that Dv(Du(f)) = Duv(f) for all sequences u and
v in D∗. Moreover, f(u) = Du(f)(ε) for every sequence u ∈ D∗. For a query f of
type QRE〈D,C〉 and a data item d ∈ D, the (syntactic) Brzozowski derivative
DB

d(f) of f w.r.t. d is also a query of type QRE〈D,C〉.

DB

d(eps(c)) = DB

d(⊥) = ⊥
DB

d(atom(φ, op)) = ⊥, if d 6|= φ

DB

d(atom(φ, op)) = eps(op(d)), if d |= φ

DB

d(f t g) = DB

d(f) t DB

d(g)

DB

d(op(f)) = op(DB

d(f))

DB

d(op(f, g)) = op(DB

d(f),DB

d(g))

DB

d(split(f, g, op)) = split(DB

d(f), g, op) t
⊔

a∈E(f)(op a)(DB

d(g))

DB

d(iter(f, g, op)) = iter(DB

d(f), g, op) t
⊔

b∈E(f)iter((op b)(DB

d(g)), g, op)

The derivative DB
w(f) w.r.t. a sequence w ∈ D∗ is defined by induction on w:

DB
ε(f) = f and DB

dw(f) = DB
w(DB

d(f)). A crucial result is the correpondence
between semantic and syntactic derivatives:

Theorem 5 (Derivative Agreement). For every query f of type QRE〈D,C〉
and every data item d ∈ D, we have that E(f) = JfK ε and Dd(JfK) = JDB

d(f)K.

Theorem 5 suggests immediately an algorithm for evaluating queries. Given
a sequence w = d1d2 . . . dn and a query f, we notice that JfKw is equal to

Dw(JfK) ε = Ddn · · · Dd1(JfK) ε = JDB

dn
· · · DB

d1
(f)K ε = E(DB

dn
· · · DB

d1
(f)).

So, to compute the value of a query on a given input, we iteratively calculate
the derivative of the query w.r.t. each input item, and finally apply the E func-
tion. We suggest an optimization of this evaluation procedure by incorporating



query rewriting to eliminate subqueries that cannot contribute to the result. The
equations op(⊥) ≡ ⊥ and

⊥ t f ≡ f split(⊥, f, op) ≡ ⊥ op(⊥, f) ≡ ⊥ iter(⊥, f, op) ≡ ⊥
f t ⊥ ≡ f split(f,⊥, op) ≡ ⊥ op(f,⊥) ≡ ⊥ iter(f,⊥, op) ≡ f

are all valid, that is, they are true for every query f. If we orient these equations
from left to right, then we get a rewrite system for simplifying queries. We will
assume that our Brzozowski derivative-based evaluation procedure simplifies all
intermediate queries as much as possible (according to this rewrite system).

Example 6. Consider the always-true predicate trueN : N → B, the identity
function idN : N→ N, the constant zero function λx.0 : N→ N, and the binary
sum + : N× N→ N. Using these operations we write the queries

f = atom(trueN, idN) g = atom(trueN, λx.0) h = iter(eps(0), f t g,+)

of type QRE〈N,N〉. The top-level query is h, which maps an input sequence of
natural numbers into the multiset of all possible partial sums over those numbers.
First, notice that the derivatives of f and g w.r.t. the number d ∈ N are DB

d(f) =
eps(d) and DB

d(g) = eps(0) respectively. Moreover, E(eps(0)) = {0}. We will use
the derivative-based evaluation algorithm to find the value of the query h on the
input sequence abc ∈ N∗. This amounts to calculating E(DB

c(DB

b(DB
a(h)))), since

Theorem 5 implies that it equals JhK abc. The steps of this calculation are:

DB

a(h) = iter(eps(a) t eps(0), f t g,+)

E(DB

a(h)) = {a, 0}
DB

b(DB

a(h)) = iter((λx.a+ x)(eps(b) t eps(0)), f t g,+) t
iter((λx.0 + x)(eps(b) t eps(0)), f t g,+)

E(DB

b(DB

a(h))) = {a+ b, a, b, 0}
DB

c(DB

b(DB

a(h))) = iter((λx.(a+ b) + x)(eps(c) t eps(0)), f t g,+) t
iter((λx.a+ x)(eps(c) t eps(0)), f t g,+) t
iter((λx.b+ x)(eps(c) t eps(0)), f t g,+) t
iter((λx.0 + x)(eps(c) t eps(0)), f t g,+)

E(DB

c(DB

b(DB

a(h)))) = {a+ b+ c, a+ b, a+ c, a, b+ c, b, c, 0}

We have used implicitly the rewrite rules for eliminating ⊥ as much as possible.

The previous example shows that there are queries whose evaluation requires
an enormous amount of computational resources. Given that the size of the
output can be exponential in the size of the input sequence and the size of the
query, we have exponential time and space requirements for every evaluation
algorithm.



4 Antimirov Derivative

The evaluation of the general QREs of Fig. 1 w.r.t. the multiset semantics is
inherently expensive, since the output itself can be of size exponential in the
size of the query and the input sequence. So, we focus here on the evaluation of
QREs w.r.t. the unambiguous semantics, and our goal is to describe a stream-
ing algorithm that uses resources that are independent of the size of the input
stream. Using a variant of the partial derivatives of Antimirov [7], we show that
this is indeed possible. We obtain a streaming algorithm for evaluation that uses
space and time-per-element exponential in the size of the query and indepen-
dent of the stream length. The crucial idea for this algorithm is that we can
prune the Antimirov derivative to contain only a couple of QREs with the same
rate without changing its unambiguous meaning. Antimirov-style derivatives are
preferable for the results of this section, because the representation itself encodes
many valid equations on queries that are useful for proving the result. This is
similar to classical regular expressions where the Antimirov derivatives encode
the ACI rules (associativity, commutativity and idempotence) by virtue of the
set-based representation.

Example 7. We continue with Example 4 to consider Antimirov derivatives.
Recall that r = (at b)∗bb, and that Antimirov derivatives are a set-based repre-
sentation of Brzozowski derivatives. That is, DA

a(r) = {r}, DA

ab(r) = DA

b({r}) =
{r, b} and DA

abb(r) = DA

b({r, b}) = {r, b, ε}. For the query k of Example 4 we
calculate using Antimirov-style derivatives:

DA

4(k) = {split(iter((λx.0 + x)(eps(4)), fe t fo,+), h,max)}
DA

43(k) = {split(iter((λx.4 + x)(eps(3)), fe t fo,+), h,max),

(λx.max(4, x))((λx.3 + x)(fo))}
DA

435(k) = {split(iter((λx.7 + x)(eps(5)), fe t fo,+), h,max),

(λx.max(7, x))((λx.5 + x)(fo)),

(λx.max(4, x))((λx.3 + x)(eps(5)))}

Since the choice operation t for queries is not idempotent, we need multisets for
the representation of QRE Antimirov derivatives. ut

For a regular expression r : RE〈D〉 we define E(r) ∈ {0, 1} (the two-element
Boolean algebra with join operation + and meet operation ·) and the Antimirov
derivative DA

d(r) w.r.t. d ∈ D, which is a set of regular expressions of type RE〈D〉:

E(⊥) = 0

E(ε) = 1

E(φ) = 0

E(r1 t r2) = E(r1) + E(r2)

E(r1 u r2) = E(r1) · E(r2)

E(r1 · r2) = E(r1) · E(r2)

E(r∗) = 1

DA

d(ε) = DA

d(⊥) = ∅
DA

d(φ) = ∅, if d 6|= φ

DA

d(φ) = {ε}, if d |= φ

DA

d(r1 t r2) = DA

d(r1) ∪ DA

d(r2)

DA

d(r1 u r2) = DA

d(r1) u DA

d(r2)

DA

d(r1 · r2) = DA

d(r1) · r2 ∪ E(r1) · DA

d(r2)

DA

d(r∗) = DA

d(r) · r∗



State : Finite multiset S of queries of type QRE〈D,C〉.
Initialization() : Set the state S to the singleton multiset {f}.

Update(d) : Compute the Antimirov derivative S′ = DA
d(S) =

⊎
{DA

d(g) | g ∈ S}.
Now, iterate the following conditional modification until no further
changes can be made: if S′ contains at least three queries that have
the same rate, keep only two of them and remove the rest. Finally,
set S to be equal to S′.

Output() : If E(S) =
⊎
{E(g) | g ∈ S} is the singleton multiset {c}, then return

the value c. Otherwise, the output is undefined.

Fig. 3. Streaming evaluation algorithm for an arbitrary query f : QRE〈D,C〉, with
respect to the unambiguous semantics of QREs.

For subsets X,Y of expressions we have used in the definition the abbreviations:
X u Y = {r u s | r ∈ X, s ∈ Y }, X · s = {r · s | r ∈ X}, 0 ·X = ∅ and 1 ·X = X.

Lemma 8. For every regular expression r, the set
⋃

w∈D∗DA
w(r) of all derivatives

of r is of size exponential in r.

For a query f of type QRE〈D,C〉 and a data item d ∈ D, the Antimirov
derivative DA

d(f) of f w.r.t. d is a finite multiset of queries of type QRE〈D,C〉.

DA

d(eps(c)) = DA

d(⊥) = ∅
DA

d(atom(φ, op)) = ∅, if d 6|= φ

DA

d(atom(φ, op)) = {eps(op(d))}, if d |= φ

DA

d(f t g) = DA

d(f) ] DA

d(g)

DA

d(op(f)) = op(DA

d(f))

DA

d(op(f, g)) = op(DA

d(f),DA

d(g))

DA

d(split(f, g, op)) = split(DA

d(f), g, op) ]
⊎

a∈E(f)(op a)(DA

d(g))

DA

d(iter(f, g, op)) = iter(DA

d(f), g, op) ]
⊎

b∈E(f)iter((op b)(DA

d(g)), g, op)

We have used above convenient abbreviations like op(X) = {op(f) | f ∈ X}.
The derivative DA

w(f) w.r.t. a sequence w ∈ D∗ is defined by induction on w:
DA

ε(f) = {f} and DA

dw(f) =
⋃
{DA

w(g) | g ∈ DA

d(f)}.

Theorem 9. The algorithm of Fig. 3 solves the evaluation problem for QREs
w.r.t. the unambiguous semantics. It requires space and time-per-element that
are constant in the length of the stream, and exponential in the size of the query.

Proof. To prove that the algorithm of Fig. 3 is correct, we observe that it satisfies
the following crucial invariant: after consuming the input w ∈ D∗, the multiset
S is ∼∼∼-equivalent to the derivative DA

w(f). This is because the removal step of
the Update procedure preserves the unambiguous meaning of S (recall Obser-
vation 3). It remains to see that the Antimirov derivative is a streamlined rep-
resentation of the Brzozowski derivative. That is, for every query f : QRE〈D,C〉



and every data item d ∈ D, it holds that DB

d(f) ≡
⊔
DA

d(f). The equivalences

f t g ≡ g t f op(f t g, h) ≡ op(f, h) t op(g, h)

op(f t g) ≡ op(f) t op(g) op(f, g t h) ≡ op(f, g) t op(f, h)

split(f t g, h) ≡ split(f, h) t split(g, h)

iter(f t g, h, op) ≡ iter(f, h, op) t iter(g, h, op)

are used in the proof of this claim. Essentially, the above equations are encoded in
the derivatives by way of their representation as multisets of queries. The output
procedure returns 〈〈S〉〉 ε = 〈〈DA

w(f)〉〉 ε = θ(JDB
w(f)K ε) = θ(JfKw) = 〈〈f〉〉w.

The Antimirov derivatives on QREs correspond closely to the Antimirov
derivatives on regular expressions. For every query g ∈ DA

d(f), it holds that
rate(g) ∈ DA

d(rate(f)). Because of the pruning step, the state S contains at most
two queries for every possible rate of the derivatives. Since there are at most
exponentially many derivatives of rate(f) by Lemma 8, the cardinality of S is
also at most exponential in f and independent of the size of the input sequence.
The time to process each element is also exponential in |f|. ut

Example 10. The query f = atom(trueN, idN) is of type QRE〈N,N〉 and it maps
a single natural number to itself. The query g = iter(eps(0), f,+) maps any
sequence of natural numbers to their sum. We calculate the derivative of g:

E(eps(0)) = {0} DA

d(f) = {eps(d)} DA

d(eps(0)) = ∅
DA

d(g) = iter(DA

d(eps(0)), f,+) ] iter((λx.0 + x)(DA

d(f)), f,+)

= {iter((λx.0 + x)(eps(d)), f,+)}

For x, y ∈ N define gxy = iter((λz.x + z)(eps(y)), f,+). The derivative of gxy
is:

DA

d(gxy) = iter(DA

d((λz.x+ z)(eps(y))), f,+) ]
iter((λz.(x+ y) + z)(DA

d(f)), f,+)

= {iter((λz.(x+ y) + z)(eps(d)), f,+)} = gx+y,d

because E((λz.x+ z)(eps(y))) = {x+ y} and DA

d((λz.x+z)(eps(y))) = ∅. ut

5 Strongly typed queries and Hierarchical derivatives

Following [5], we consider a syntactic restriction of QREs that ensures unam-
biguity of parsing. This means that the multiset and unambiguous semantics
coincide, thus this subclass of QREs inherently describes well-defined functions
on data streams. Together with an additional restriction that demands in ex-
pressions of the form op(f, g) the subqueries f and g to have the same domain,
it can be ensured that the evaluation of QREs can be performed efficiently, that
is, using space and time-per-element that is polynomial in the size of the query



and independent of the stream. Such an algorithm is proposed in [5] and imple-
mented in [21], but it is hard to describe and even harder to analyze. We consider
here an alternative approach based on derivatives, which gives rise to an evalua-
tion algorithm of the same complexity that is much easier to describe and prove
correct. The main technical tool is a novel representation of derivatives, which
we call hierarchical derivatives. This is a very space-efficient representation and
is crucial for obtaining our complexity bounds.

Before defining the subclass of strongly typed queries, we introduce some
definitions that will be used for formalizing the idea of uniqueness of parsing.
The languages L1, L2 are said to be unambiguously concatenable if for every
word w ∈ L1 · L2 there are unique w1 ∈ L1, w2 ∈ L2 with w = w1w2. The
language L is said to be unambiguously iterable if for every word w ∈ L∗ there is
a unique integer n ≥ 0 and unique wi ∈ L with w = w1 · · ·wn. These definitions
extend to regular expressions in the obvious way.

We say that a query is strongly typed if the following hold: (1) for every
subquery f t g the rates rate(f) and rate(g) are disjoint, (2) for every subquery
split(f, g, op) the rates rate(f) and rate(g) are unambiguously concatenable.
(3) for every subquery iter(f, g, op) the rate rate(g) is unambiguously iterable
and rate(f), rate(g)∗ are unambiguously concatenable, and (4) for every subquery
op(f, g) the rates rate(f) and rate(g) are equivalent. It is shown in [5] that
checking whether a query is strongly typed can be done in polynomial-time.

Lemma 11. If the query f is strongly typed, then JfK is an unambiguous func-
tion. So, the multiset and unambiguous semantics coincide, i.e. JfK = 〈〈f〉〉.

The main problem with the Antimirov derivative of Sect. 4 is the treatment of
op(f, g), where DA

d(op(f, g)) = {op(f′, g′) | f′ ∈ DA

d(f), g′ ∈ DA

d(g)}. This defini-
tions corresponds to a cartesian product of derivatives, thus causing a quadratic
blowup in the number of possible derivatives. As we will see later in Example 14,
this blowup can materialize even in the context of strongly typed queries. Since
the output combination operation can nest with other regular constructs, the
Antimirov representation can result in an exponenial blowup, which is avoidable
in the strongly typed case. In order to prove this, we need a new representa-
tion that avoids this “cartesian product” problem of the Antimirov derivative
by allowing sets of queries to be used as subexpressions.

We thus generalize the syntax of strongly typed queries to allow finite sets
of queries as subexpressions. Intuitively, these finite sets of queries extend the
choice operation t to a finite number of arguments. Since the subqueries of ftg
must have disjoint domains, the t constructor is associative and commutative,
which means that we can represent (f t g) t h as {f, g, h}. This finite choice
constructor can be nested arbitrarily with the other query constructors. In Fig. 4
we see the formal definition, where queries and q-sets (finite sets of queries) are
defined by mutual induction. To reduce the notational clutter, we sometimes
write the query f instead of the q-set {f}, for example iter〈f, g, op〉 instead of
iter〈{f}, {g}, op〉. The rate of a generalized query is defined in the usual way,
the only difference being rate({f1, . . . , fk}) = rate(f1) t · · · t rate(fk).



c ∈ C
eps(c) : QRE〈D,C〉

satisfiable φ : D → B op : D → C

atom(φ, op) : QRE〈D,C〉

F : QSET〈D,A〉 G : QSET〈D,B〉 op : A×B → C

F, G 6= ∅ rate(F), rate(G) unambiguously concatenable

split〈F, G, op〉 : QRE〈D,C〉

op : B ×A→ B F : QSET〈D,B〉 rate(F), rate(G)∗ unambiguously concatenable

F, G 6= ∅ G : QSET〈D,A〉 rate(G) unambiguously iterable

iter〈F, G, op〉 : QRE〈D,B〉

F 6= ∅ : QSET〈D,A〉
op : A→ B

op〈F〉 : QRE〈D,C〉

F : QSET〈D,A〉 G : QSET〈D,B〉 op : A×B → C

F, G 6= ∅ rate(F) and rate(G) are equivalent

op〈F, G〉 : QRE〈D,C〉

f1, . . . , fk : QRE〈D,C〉 rate(f1), . . . , rate(fk) pairwise disjoint

{f1, . . . , fk} : QSET〈D,C〉

Fig. 4. Generalized syntax for strongly typed QREs.

DH
d({fi | i ∈ I}) =

⋃
i∈ID

H
d(fi)

DH
d(eps(c)) = ∅
DH

d(op〈F〉) = {op〈DH
d(F)〉}

DH
d(atom(φ, op)) = ∅, if d 6|= φ

DH
d(atom(φ, op)) = {eps(op(d))}, if d |= φ

DH
d(op〈F, G〉) = {op〈DH

d(F),DH
d(G)〉}

DH
d(split〈F, G, op〉) = {split〈DH

d(F), G, op〉} ∪ {(op a)〈DH
d(G)〉 | a ∈ E(f)}

DH
d(iter〈F, G, op〉) = {iter〈DH

d(F), G, op〉} ∪ {iter〈(op b)〈DH
d(G)〉, G, op〉 | b ∈ E(F)}

E(eps(c)) = {c} E(op〈F〉) = M(op)(E(F))

E(atom(φ, op)) = ∅ E(op〈F, G〉) = M(op)(E(F), E(G))

E({fi}i) =
⋃

iE(fi) E(split〈F, G, op〉) = M(op)(E(F), E(G))

E(iter〈F, G, op〉) = E(F)

Fig. 5. Hierarchical derivatives for generalized QREs.

For the expressions of Fig. 4 we define in Fig. 5 a new kind of derivative,
called the (syntactic) hierarchical derivative DH

d(·), which maps a query of type
QRE〈D,C〉 or a q-set of type QSET〈D,C〉 to a q-set of type QSET〈D,C〉. The
hierarchical derivative DH

w(F) w.r.t. a sequence w ∈ D∗ is defined by induction
on w: DH

ε(F) = F and DH

dw(F) = DH
w(DH

d(F)). For every sequence u ∈ D∗, the
derivative DH

u(split〈F, G, op〉) is of the form:

{split〈DH

u(F), G, op〉, op〈a1,DH

v1(G)〉, . . . , op〈an,DH

vn(G)〉}

for some ai ∈ A and sequences vi ∈ D∗. Because of unambiguity, the rates
of the derivatives DH

v1(G), . . . , DH
vn(G) are pairwise disjoint. Similarly, for every

sequence u ∈ D∗, the derivative DH
u(iter〈F, G, op〉) is of the form:

{iter〈DH

u(F), G, op〉, iter〈op〈b1,DH

v1(G)〉, G, op〉, . . . , iter〈op〈bn,DH

vn(G)〉, G, op〉}



for some bi ∈ B and sequences vi ∈ D∗. Again, because of unambiguity, the
rates of the derivatives DH

u(F), DH
v1(G), . . . , DH

vn(G) are pairwise disjoint. A key
technical lemma to obtain an efficient evaluation algorithm is that the derivatives
of strongly typed queries are of polynomial size. To show this, first we define a
reasonable notion of size of queries:

size({fi}i) =
∑

isize(fi)

size(eps(c)) = 1

size(atom(φ, op)) = 2

size(op〈F〉) = 1 + size(F)

size(op〈F, G〉) = 1 + size(F) + size(G)

size(split〈F, G, op〉) = 1 + size(F) + size(G)

size(iter〈F, G, op〉) = 1 + size(F) + size(G)

In order to obtain the desired lemma, the claim has to be strengthened:

Lemma 12. Let F be a q-set in QSET〈D,C〉 and u1, . . . , un be sequences over
D such that the rates of DH

u1
(F), . . . , DH

un
(F) are pairwise disjoint. Then:

(1) At most size(F) of the sets DH
u1

(F), . . . , DH
un

(F) are nonempty.
(2) The space needed to represent DH

u1
(F)∪ · · · ∪DH

un
(F) is bounded by size(F)2.

Proof. To prove the lemma, we must extend the same claim to queries as well.
The proof then proceeds by induction on the structure of queries and q-sets. The
base cases eps(c) and atom(φ, op) and the step case op〈F〉 are easy.

For the case of a q-set F = {f1, . . . , fm} we first notice for an arbitrary j in
{1, . . . ,m} that: rate(fj) ⊆ rate(F) and therefore rate(DH

v(fj)) ⊆ rate(DH
v(F)) for

every v ∈ D∗. It follows that the rates of the derivatives DH
u1

(fj), . . . , DH
un

(fj)
are pairwise disjoint. To show part (1), we observe that

{i | DH

ui
(F) 6= ∅} = {i | DH

ui
(f1) ∪ · · · ∪ DH

ui
(fm) 6= ∅} =

⋃m
j=1{i | D

H

ui
(fj) 6= ∅}.

By the induction hypothesis, the size of this set is bounded by
∑m

j=1size(fj) =
size(F). Now,

space(
⋃n

i=1D
H

ui
(F)) = space(

⋃n
i=1

⋃n
j=1D

H

ui
(fj))

=
∑n

j=1space(
⋃n

i=1D
H

ui
(fj))

≤
∑n

j=1size(fj)
2,

which is less than (size(f1) + · · ·+ size(fm))2 = size(F)2.
For the case of the query h = op〈F, G〉, we first recall that rate(h) = rate(F) ≡

rate(G). So, the hypotheses of the lemma hold for both F and G. This means
that at most min(size(F), size(G)) ≤ size(h) of the sets DH

u1
(h), . . . , DH

un
(h) are

nonempty. For part (2), we have that

space(
⋃n

i=1D
H

ui
(h)) = space({op〈DH

ui
(F),DH

ui
(G)〉 | i = 1, . . . , n})

≤ size(F) +
(∑n

i=1space(D
H

ui
(F))

)
+
(∑n

i=1space(D
H

ui
(G))

)
≤ size(F) + size(F)2 + size(G)2,

which is less than (1 + size(F) + size(G))2 = size(op〈F, G〉)2.



State : Q-set H of type QSET〈D,C〉.
Initialization() : Set the state H to the singleton q-set {f}.

Update(d) : Replace H by its hierarchical derivative DH
d(H).

Output() : If E(H) is the singleton multiset {c}, then return the value c. Oth-
erwise, the output is undefined.

Fig. 6. Streaming evaluation algorithm for a strongly typed query f : QRE〈D,C〉.

We handle now the case h = split〈F, G, op〉. As discussed previously, the
union DH

u1
(h) ∪ · · · ∪ DH

un
(h) of the derivatives is of the form

H = {split〈DH

u1
(F), G, op〉, . . . , split〈DH

un
(F), G, op〉,

op〈a1,DH

v1(G)〉, . . . , op〈an,DH

vm(G)〉}

for some a1, . . . , am ∈ A and v1, . . . , vm ∈ D∗. Now, H is unambiguous and
therefore the q-sets DH

u1
(F), . . . , DH

un
(F) are pairwise disjoint, and similarly the

q-sets DH
v1(G), . . . , DH

vm(G) are pairwise disjoint. From the induction hypothesis
(part 1) for F and G, we get that H is of size ≤ size(F) + size(G), which implies
part (1) for h. To measure the space needed to represent H, we first observe that
the subquery G is shared by several queries in H and therefore we can replace
every G occurrence with a pointer to a representation of G. Total space:

space(H) ≤ size(F)2 + 2 · size(F) + size(G)2 + size(G),

which is less than (1 + size(F) + size(G))2 = size(h)2.
Finally, we consider the case h = iter〈F, G, op〉 of iteration. As discussed

previously, the union DH
u1

(h) ∪ · · · ∪ DH
un

(h) of the derivatives is of the form

H = {iter〈DH

u1
(F), G, op〉, . . . , iter〈DH

un
(F), G, op〉,

iter〈op〈b1,DH

v1(G)〉, G, op〉, . . . , iter〈op〈bn,DH

vm(G)〉, G, op〉}

for some b1, . . . , bm ∈ B and v1, . . . , vm ∈ D∗. The total space requirements are:

space(H) ≤ size(F)2 + 2 · size(F) + size(G)2 + 3 · size(G),

which is less than (1 + size(F) + size(G))2 = size(h)2. ut

Lemma 12 establishes, in particular, that the hierarchical derivative of any
strongly typed q-set F w.r.t. any sequence is of size at most quadratic in the size
of F. Using this fact, we can prove the main theorem of this paper:

Theorem 13. The algorithm of Fig. 6 solves the evaluation problem for strongly
typed QREs. It requires space and time-per-element that are constant in the
length of the stream, and polynomial in the size of the query.

Proof. First, we observe that the hierarchial derivative is simply a different rep-
resentation of the Brzozowski derivative, which is streamlined for space effi-
ciency. This implies that DB

d(f), DA

d(f) and DH

d(f) are all ≡-equivalent when



f : QRE〈D,C〉 is strongly typed. The algorithm of Fig. 6 satisfies the invariant:
after consuming input w ∈ D∗, the q-set H is equal to the hierarchical derivative
DH

w(f). The correctness of the algorithm then follows immediately from the se-
mantic agreement of the hierarchical derivative with the Brzozowski derivative.
At every step of the computation the state H is of the form DH

w(f), where w is
the input sequence seen so far. Lemma 12 give us immediately that H can be
represented using space that is quadratic in the size of the input query. It follows
that the time to process each element is also quadratic in the query. ut

Example 14. The queries h1, h2 below calculate the maximum and minimum
respectively of two consecutive natural numbers, where f = atom(trueN, idN).
The top-level query k shown below is strongly typed, and it calculates the average
of the maximum and minimum of the last two elements of the stream.

h1 = split(f, f,max) k1 = split(g, h1, π2)

h2 = split(f, f,min) k2 = split(g, h2, π2)

g = iter(eps(0), atom(trueN, λx.0), π2) k = avg(k1, k2)

The Antimirov and hierarchical derivatives of g are the following:

{g′} = DA

w(g) = {iter((λx.π2(0, x))(eps(0)), atom(trueN, λx.0), π2)}
g′′ = DH

w(g) = {iter〈(λx.π2(0, x))〈eps(0)〉, atom(trueN, λx.0), π2〉}

for every w 6= ε. For the Antimirov derivative of k w.r.t. 3 we calculate:

DA

3(k1) = {split(g′, h1, π2), (λx.π2(0, x))((λx.max(3, x))(f))}
DA

3(k2) = {split(g′, h2, π2), (λx.π2(0, x))((λx.min(3, x))(f))}
DA

3(k) = {avg(split(g′, h1, π2), split(g′, h2, π2)),

avg(split(g′, h1, π2), (λx.π2(0, x))((λx.min(3, x))(f))),

avg((λx.π2(0, x))((λx.max(3, x))(f)), split(g′, h2, π2)),

avg((λx.π2(0, x))((λx.max(3, x))(f)),

(λx.π2(0, x))((λx.min(3, x))(f)))}

and then the Antimirov derivative DA
35(k) contains 3 · 3 = 9 queries. For the

hierarchical derivative of k w.r.t. 3 we calculate:

DH

3(k1) = {split〈g′′, h1, π2〉, (λx.π2(0, x))〈(λx.max(3, x))〈f〉〉}
DH

3(k2) = {split〈g′′, h2, π2〉, (λx.π2(0, x))〈(λx.min(3, x))〈f〉〉}
DA

3(k) = {avg〈DH

3(k1),DH

3(k2)〉}

In the hierarchical derivative DH
35(k), on the other hand, the subexpressions

DH
35(k1) and DH

35(k2) contain a total of 3 + 3 = 6 queries. This example illus-
trates the quadratic blowup for Antimirov derivatives, which is avoided using
hierarchical derivatives.



6 Conclusion

This paper introduces syntactic derivatives for the Quantitative Regular Expres-
sions (QREs) of [5]. The most natural generalization of the classical Brzozowski
derivative to QREs is appropriate for the so-called multiset semantics of QREs,
which records the possibility of several (finitely many) outputs. Since QREs are
meant to describe well-defined functions on streams, we consider a projection of
the multiset semantics into the so-called unambiguous semantics. Using a rep-
resentation of derivatives that is inspired from Antimirov’s variant of classical
derivatives, we obtain an evaluation algorithm for QREs with streaming space
and time complexity that is constant in the stream and exponential in the query.
We then restrict attention to the strongly-typed QREs, also considered in [5],
which admit more efficient streaming evaluation. We devise a novel represen-
tation of derivatives on QREs, which we call hierarchical derivatives, and we
obtain an evaluation algorithm that streaming space and time complexity that
is polynomial in the query. This matches the bounds of [5] and [21], but the
algorithm presented here is much easier to describe, prove correct, and analyze.

The treatment of QRE evaluation using derivatives is a significant step to-
wards developing automata models for QREs that play the same role as NFAs
do for plain regular exressions. The definition of the space-efficient hierarchical
derivatives of Sect. 5 suggests that the parallel evaluation of f, g in subqueries of
the form op(f, g) and some form of hierarchical nesting are essential features of a
model that can support efficient evaluation of QREs. A hierarchical automaton
model for the streaming computation of quantitative queries is described in [6],
but its precise relationship to the QREs of [5] remains to be clarified. Finding
the appropriate model of automata for QREs is an important direction for fu-
ture work, since it would also open the door for query optimization by applying
equivalence preserving transformations on the automata.
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