
Decision Problems for Additive Regular Functions?

Rajeev Alur and Mukund Raghothaman

University of Pennsylvania
{alur, rmukund}@cis.upenn.edu

Abstract. Additive Cost Register Automata (ACRA) map strings to
integers using a finite set of registers that are updated using assignments
of the form “x := y+ c” at every step. The corresponding class of additive
regular functions has multiple equivalent characterizations, appealing
closure properties, and a decidable equivalence problem. In this paper, we
solve two decision problems for this model. First, we define the register
complexity of an additive regular function to be the minimum number
of registers that an ACRA needs to compute it. We characterize the
register complexity by a necessary and sufficient condition regarding
the largest subset of registers whose values can be made far apart from
one another. We then use this condition to design a pspace algorithm
to compute the register complexity of a given ACRA, and establish a
matching lower bound. Our results also lead to a machine-independent
characterization of the register complexity of additive regular functions.
Second, we consider two-player games over ACRAs, where the objective
of one of the players is to reach a target set while minimizing the cost.
We show the corresponding decision problem to be exptime-complete
when the costs are non-negative integers, but undecidable when the costs
are integers.

1 Introduction

Consider the following scenario: a customer frequents a coffee shop, and each
time purchases a cup of coffee costing $2. At any time, he may fill a survey, for
which the store offers to give him a discount of $1 for each of his purchases that
month (including for purchases already made). We model this by the machine
M1 shown in figure 1.1. There are two states qS and q¬S , indicating whether the
customer has filled out the survey during the current month. There are three
events to which the machine responds: C indicates the purchase of a cup of coffee,
S indicates the completion of a survey, and # indicates the end of a month. The
registers x and y track how much money the customer owes the establishment:
in the state q¬S , the amount in x assumes that he will not fill out a survey that
month, and the amount in y assumes that he will fill out a survey before the end
? The full version of this paper is available on the arXiv (arXiv:1304.7029). This research
was partially supported by the NSF Expeditions in Computing award 1138996.

mailto:alur@cis.upenn.edu
mailto:rmukund@cis.upenn.edu
http://arxiv.org/abs/1304.7029

of the month. At any time the customer wishes to settle his account, the machine
outputs the amount of money owed, which is always the value in the register x.

q¬S

xstart
qS
x

C

/
x := x+ 2
y := y + 1

S/x := y

#/y := x

C/x := x+ 1

S
#/y := x

Fig. 1.1: ACRA M1 models a customer in a coffee shop. It implements a function
f1 : {C, S,#}∗ → Z mapping the purchase history of the customer to the amount
he owes the store.

The automaton M1 has a finite state space, and a finite set of integer-valued
registers. On each transition, each register u is updated by an expression of the
form “u := v + c”, for some register v and constant c ∈ Z. Which register will
eventually contribute to the output is determined by the state after reading the
entire input, and so the cost of an event depends not only on the past, but also on
the future. Indeed, it can be shown that these machines are closed under regular
lookahead, i.e. the register updates can be conditioned on regular properties of
an as-yet-unseen suffix, for no gain in expressivity. The important limitation is
that the register updates are test-free, and cannot examine the register contents.

The motivation behind the model is generalizing the idea of regular languages
to quantitative properties of strings. A language L ⊆ Σ∗ is regular when it is
accepted by a DFA. Regular languages are a robust class, permitting multiple
equivalent representations such as regular expressions and as formulas in monadic
second-order logic. Recently in [2], we proposed the model of regular functions:
they are the MSO-definable transductions from strings to expression trees over
some pre-defined grammar. The class of functions thus defined depends on the
grammar allowed; the simplest is when the underlying domain is the set of
integers Z, and expressions involve constants and binary addition, and we call
the resulting class additive regular functions. Additive regular functions have
appealing closure properties, such as closure under linear combination, input
reversal, and regular lookahead, and several analysis problems are efficiently
decidable – such as containment, shortest paths and equivalence checking. The
machine M1 is an example of an Additive Cost Register Automaton (ACRA),
and this class defines exactly the additive regular functions

Observe that the machineM1 has two registers, and it is not immediately clear
how (if it is even possible) to reduce this number. This is the first question that
this paper settles: Given an ACRAM , how do we determine the minimum number

of registers needed by any ACRA to compute the function it defines, JMK? We
describe a property called register separation, and show that any equivalent ACRA
needs at least k registers iff the registers of M are k-separable. It turns out that
the registers ofM1 are 2-separable, and hence two registers are necessary. We then
go on to show that determining k-separability is pspace-complete. Determining
the register complexity is the natural analogue of the state minimization problem
for DFAs [6].

The techniques used to analyse the register complexity allow us to state a result
similar to the pumping lemma for regular languages: The register complexity of
f is at least k iff for some m, we have strings σ0, . . . , σm, τ1, . . . , τm, suffixes w1,
. . . , wk, k distinct coefficient vectors c1, . . . , ck ∈ Zm, and values d1, . . . , dk ∈ Z
so that for all vectors x ∈ Nm, f (σ0τx1

1 σ1τ
x2
2 . . . σmwi) =

∑
j cijxj + di. Thus,

depending on the suffix wi, at least one of the cycles τ1, . . . , τk contributes
differently to the final cost.

Finally, we consider ACRAs with turn-based alternation. These are games
where several objective functions are simultaneously computed, but only one
of these objectives will eventually contribute to the output, based on the ac-
tions of both the system and its environment. Alternating ACRAs are thus
related to multi-objective games and Pareto optimization [12], but are a distinct
model because each run evaluates to a single value. We study the reachability
problem in ACRA games: Given a budget k, is there a strategy for the system
to reach an accepting state with cost at most k? We show that this problem
is exptime-complete when the incremental costs assume values from N, and
undecidable when the incremental costs are integer-valued.

Related work The traditional model of string-to-number transducers has been
(non-deterministic) weighted automata (WA). Additive regular functions are
equivalent to unambiguous weighted automata, and are therefore strictly sand-
wiched between weighted automata and deterministic WAs in expressiveness.
Deterministic WAs are ACRAs with one register, and algorithms exist to compute
the state complexity and for minimization [10]. Mohri [11] presents a comprehen-
sive survey of the field. Recent work on the quantitative analysis of programs [5]
also uses weighted automata, but does not deal with minimization or with no-
tions of regularity. Data languages [7] are concerned with strings over a (possibly
infinite) data domain D. Recent models [3] have obtained Myhill-Nerode charac-
terizations, and hence minimization algorithms, but the models are intended as
acceptors, and not for computing more general functions. Turn-based weighted
games [9] are ACRA games with a single register, and in this special setting, it
is possible to solve non-negative optimal reachability in polynomial time. Of the
techniques used in the paper, difference bound invariants are a standard tool.
However when we need them, in section 3, we have to deal with disjunctions of
such constraints, and show termination of invariant strengthening – to the best
of our knowledge, the relevant problems have not been solved before.

Outline of the paper We define the automaton model in section 2. In sec-
tion 3, we introduce the notion of separability, and establish its connection to
register complexity. In section 4, we show that determining the register com-
plexity is pspace-complete. Finally, in section 5, we study ACRA reachability
games – in particular, that ACRA (Z) games are undecidable, and that ACRA (N)
reachability games are exptime-complete.

2 Additive Regular Functions

We will use additive cost register automata as the working definition of additive
regular functions, i.e. a function1 f : Σ∗ → Z⊥ is regular iff it is implemented
by an ACRA. An ACRA is a deterministic finite state machine, supplemented
by a finite number of integer-valued registers. Each transition specifies, for each
register u, a test-free update of the form “u := v + c”, for some register v, and
constant c ∈ Z. Accepting states are labelled with output expressions of the form
“v + c”.

Definition 1. An ACRA is a tuple M = (Q,Σ, V, δ, µ, q0, F, ν), where Q is a
finite non-empty set of states, Σ is a finite input alphabet, V is a finite set of
registers, δ : Q×Σ → Q is the state transition function, µ : Q×Σ × V → V ×Z
is the register update function, q0 ∈ Q is the start state, F ⊆ Q is the set of
accepting states, and ν : F → V × Z is the output function.

The configuration of the machine is a pair γ = (q, val), where q is the current
state, and val : V → Z maps each register to its value. Define (q, val)→a (q′, val′)
iff δ (q, a) = q′ and for each u ∈ V , if µ (q, a, u) = (v, c), then val′ (u) = val (v)+c.

The machine M implements a function JMK : Σ∗ → Z⊥ defined as follows.
For each σ ∈ Σ∗, let (q0, val0)→σ (qf , valf), where val0 (v) = 0 for all v. If
qf ∈ F and ν (qf) = (v, c), then JMK (σ) = valf (v) + c. Otherwise JMK (σ) = ⊥.

We will write val (u, σ) for the value of a register u after the machine has processed
the string σ starting from the initial configuration. In the rest of this section, we
summarize some known results about ACRAs [2]:

Equivalent characterizations Additive regular functions are equivalent to
unambiguous weighted automata [11] over the tropical semiring. These are non-
deterministic machines with a single counter. Each transition increments the
counter by an integer c, and accepting states have output increments, also integers.
The unambiguous restriction requires that there be a single accepting path for
each string in the domain, thus the “min” operation of the tropical semiring is
unused. Recently, streaming tree transducers [1] have been proposed as the regular
model for string-to-tree transducers – ACRAs are equivalent in expressiveness
to MSO-definable string-to-term transducers with binary addition as the base
grammar.
1 By convention, we represent a partial function f : A → B as a total function
f : A→ B⊥, where B⊥ = B ∪ {⊥}, and ⊥ /∈ B is the “undefined” value.

q0
xstart

q1
y

a

/
x := x+ 1
y := y b

/
x := x
y := y + 1

b

/
x := x
y := y + 1

a

/
x := x+ 1
y := y

(a) M2.

q0
xstart

a

/x := y + 1
y := y + 1
z := z

b

/x := z + 1
y := y
z := z + 1

(b) M3.

Fig. 2.1: ACRAs M2 and M3 operate over the input alphabet Σ = {a, b}. Both
implement the function defined as f2 (ε) = 0, and for all σ, f2 (σa) = |σa|a, and
f2 (σb) = |σb|b. Here |σ|a is the number of occurrences of the symbol a in the
string σ.

Closure properties What makes additive2 regular functions interesting to
study is their robustness to various manipulations:

1. For all c ∈ Z, if f1 and f2 are regular functions, then so are f1 + f2 and cf1.
2. If f is a regular function, then frev defined as frev (σ) = f (σrev) is also

regular.
3. If f1 and f2 are regular functions, and L is a regular language, then the

function f defined as f (σ) = if σ ∈ L, then f1 (σ) , else f2 (σ) is also regular.
4. ACRAs are closed under regular lookahead, i.e. even if the machine were

allowed to make decisions based on a regular property of the suffix rather than
simply the next input symbol, there would be no increase in expressiveness.

Analysis problems Given ACRAs M1 and M2, equivalence-checking and the
min-cost problem (minσ∈Σ∗ JMK (σ)) can be solved in polynomial time. It follows
then that containment (for all σ, JM1K (σ) ≤ JM2K (σ)) also has a polynomial
time algorithm.

3 Characterizing the Register Complexity

The register complexity of an additive regular function f is the minimum number
of registers an ACRA needs to compute it. For example the register complexity
of both JM1K in figure 1.1 and JM2K in figure 2.1a is 2. Computing the register
complexity is the first problem we solve, and is the subject of this section and
the next.
2 We will often drop the adjective “additive”, and refer simply to regular functions.

Definition 2. Let f : Σ∗ → Z⊥ be a regular function. The register complexity
of f is the smallest number k such that there is an ACRA M implementing f
with only k registers.

Informally, the registers of M are separable in some state q if their values
can be pushed far apart. For example, consider the registers x and y of M1

in the state q0. For any constant c, there is a string σ = Cc leading to q0 so
that |val (x, σ)− val (y, σ)| ≥ c. In formalizing this idea, we need to distinguish
registers that are live in a given state, i.e. those that can potentially contribute to
the output. For example, M1 could be augmented with a third register z tracking
the length of the string processed. However, the value of z would be irrelevant
to the computation of f1. Informally, a register v is live3 in a state q if for some
suffix σ ∈ Σ∗, on processing σ starting from q, the initial value of v is what
influences the final output.

Definition 3. Let M = (Q,Σ, V, δ, µ, q0, ν) be an ACRA. The registers of M
are k-separable if there is some state q, and a subset U ⊆ V so that

1. |U | = k, all registers v ∈ U are live in q, and
2. for all c ∈ Z, there is a string σ, such that δ (q0, σ) = q and for all distinct

u, v ∈ U , |val (u, σ)− val (v, σ)| ≥ c.

The registers of a machine M are not k-separable if at every state q, and subset
U of k live registers, there is a constant c such that for all strings σ to q,
|val (u, σ)− val (v, σ)| < c, for some distinct u, v ∈ U . Note that the specific
registers which are close may depend on σ. For example, in the machine M3 from
figure 2.1b, if a string σ ends with an a, then x and y will have the same value,
while if the last symbol was a b, then x and z are guaranteed to be equal.

Theorem 1. Let f : Σ∗ → Z⊥ be a function defined by an ACRA M . Then the
register complexity of f is at least k iff the registers of M are k-separable.

We now sketch the proofs for each direction.

k-separability implies a lower bound on the register complexity

Consider the machine M1 from figure 1.1. Here k = 2, and the registers x and y
are separated in the state q¬S . Let σ1 = ε, i.e. the empty string, and σ2 = S –
these are suffixes which, when starting from q¬S , “extract” the values currently
in x and y respectively.

Now suppose an equivalent counter-example machine M ′ is proposed with
only one register v. At each state q′ of M ′, observe the “effect” of processing
suffixes σ1 and σ2. Each of these can be summarized by an expression of the form
v + cq′i for i ∈ {1, 2}, the current value of register v, and cq′i ∈ Z. Thus, the
outputs differ by no more than |(v + cq′1)− (v + cq′2)| ≤ |cq′1|+ |cq′2|. Fix n =
maxq′ (|cq′1|+ |cq′2|), and observe that for all σ, |JM ′K (σσ1)− JM ′K (σσ2)| ≤ n.
However, for σ = Cn+1, we know that |f1 (σσ1)− f1 (σσ2)| > n, so M ′ cannot
be equivalent to M1. This argument can be generalized to obtain:
3 Live registers are formally defined in the full version of this paper.

Lemma 1. LetM be an ACRA whose registers are k-separable. Then the register
complexity of the implemented function f is at least k.

Non-separability permits register elimination

Consider an ACRA M whose registers are not k-separable. We can then state an
invariant at each state q: there is a constant cq such that for every subset U ⊆ V
of live registers with |U | = k, and for every string σ with δ (q0, σ) = q, there
must exist distinct u, v ∈ U with |val (u, σ)− val (v, σ)| < c. For example, with 3
registers x, y, z, this invariant would be ∃c, |x− y| < c∨ |y − z| < c∨ |z − x| < c.
We will construct a machineM ′, where each state q′ = (q, C,v) has 3 components:
the first component q is the state of the original machine, and C identifies some
term (not necessarily unique) in the disjunction which is currently satisfied. Now
for example, if we know that |x− y| < c, then it suffices to explicitly maintain
the value of only one register, and the (bounded) difference can be stored in the
state – this is the third component v.

Since we need to track these register differences during the execution, the
invariants must be inductive: if Dq and Dq′ are the invariants at states q and
q′ respectively, and q →a q′ is a transition in the machine, then it must be the
case that Dq =⇒ wp (Dq′ , q, a). Here wp refers to the standard notion of the
weakest precondition from program analysis: wp (Dq′ , q, a) is exactly that set
of variable valuations val so that (q, val) →a (q′, val′) for some Dq′-satisfying
valuation val′.

The standard technique to make a collection of invariants inductive is strength-
ening: if Dq 6=⇒ wp (Dq′ , q, a), then Dq is replaced with Dq ∧ wp (Dq′ , q, a),
and this process is repeated at every pair of states until a fixpoint is reached.
This procedure is seeded with the invariants asserting non-separability. However,
before the result of this back-propagation can be used in our arguments, we must
prove that the method terminates – this is the main technical problem solved in
this section.

We now sketch a proof of this termination claim for a simpler class of invariants.
Consider the class of difference-bound constraints – assertions of the form C =∧
u,v∈V auv < u − v < buv, where for each u, v, auv, buv ∈ Z or auv, buv ∈
{−∞,∞}. When in closed form4, C induces an equivalence relation ≡C over the
registers: u ≡C v iff auv, buv ∈ Z. Let C and C ′ be some pair of constraints such
that C 6=⇒ C ′. Then the assertion C ∧ C ′ is strictly stronger than C. Either
C ∧C ′ relates a strictly larger set of variables – ≡C(≡C∧C′ – or (if ≡C=≡C∧C′)
for some pair of registers u, v, the bounds a′uv < u− v < b′uv imposed by C ∧ C ′
are a strict subset of the bounds auv < u − v < buv imposed by C. Observe
that the first type of strengthening can happen at most |V |2 times, while the
second type of strengthening can happen only after auv, buv are established for a
pair of registers u, v, and can then happen at most buv − auv times. Thus the
process of repeated invariant strengthening must terminate. This argument can
be generalized to disjunctions of difference-bound constraints, and we conclude:
4 For all u, v ∈ V , auv = −bvu, and for all u, v, w ∈ V , auv + avw ≤ auw.

Lemma 2. Consider an ACRA M whose registers are not k-separable. Then,
we can effectively construct an equivalent machine M ′ with only k − 1 registers.

4 Computing the Register Complexity

4.1 Computing the register complexity is in pspace

We reduce the problem of determining the register complexity of JMK to one of de-
termining reachability in a directed “register separation” graph with O

(
|Q| 2|V |2

)
nodes. The presence of an edge in this graph can be determined in polynomial
space, and thus we have a pspace algorithm to determine the register complexity.
Otherwise, if polynomial time algorithms are used for graph reachability and
1-counter 0-reachability, the procedure runs in time O

(
c3 |Q|4 24|V |2

)
, where c

is the largest constant in the machine.
We first generalize the idea of register separation to that of separation relations:

an arbitrary relation ‖ ⊆ V × V separates a state q if for every c ∈ Z, there is
a string σ so that δ (q0, σ) = q, and whenever u ‖ v, |val (u, σ)− val (v, σ)| ≥ c.
Thus, the registers of M are k-separable iff for some state q and some subset U
of live registers at q, |U | = k and {(u, v) | u, v ∈ U, u 6= v} separates q.

Consider a string τ ∈ Σ∗, so for some q, δ (q, τ) = q. Assume also that:

1. For every register u in the domain or range of ‖, µ (q, τ, u) = (u, cu), for some
cu ∈ Z, and

2. for some pair of registers x, y, µ (q, τ, x) = (x, c) and µ (q, τ, y) = (y, c′) for
distinct c, c′.

Thus, every pair of registers that is already separated is preserved during the
cycle, and some new pair of registers is incremented differently. We call such
strings τ “separation cycles” at q. They allow us to make conclusions of the form:
If ‖ separates q, then ‖ ∪ {(x, y)} also separates q.

Now consider a string σ ∈ Σ∗, such that for some q, q′, δ (q, σ) = q′. Pick
arbitrary relations ‖, ‖′, and assume that whenever u′ ‖′ v′, and µ (q, σ, u′) =
(u, cu), µ (q, σ, v′) = (v, cv), we have u ‖ v. We can then conclude that if ‖
separates q, then ‖′ separates q′ We call such strings σ “renaming edges” from
(q, ‖) to (q′, ‖′).

We then show that if ‖ separates q and ‖ is non-empty, then there is a
separation cycle-renaming edge sequence to (q, ‖) from some strictly smaller
separation (q′, ‖′). Thus, separation at each node can be demonstrated by a
sequence of separation cycles with renaming edges in between, and thus we
reduce the problem to that of determining reachability in an exponentially
large register separation graph. Finally, we show that each type of edge can be
determined in pspace.

Theorem 2. Given an ACRA M and a number k, there is a pspace procedure
to determine whether its register complexity is at least k.

4.2 Pumping lemma for ACRAs

The following theorem is the interpretation of a path through the register sep-
aration graph. Given a regular function f of register complexity at least k, it
guarantees the existence of m cycles τ1, . . . , τm, serially connected by strings σ0,
. . . , σm, so that based on one of k suffixes w1, . . . , wk, the cost paid on one of
the cycles must differ. These cycles are actually the separation cycles discussed
earlier, and intermediate strings σi correspond to the renaming edges. Consider
for example, the function f2 from figure 2.1, and let σ0 = ε, τ1 = aab, and σ1 = ε.
We can increase the difference between the registers x and y to arbitrary amounts
by pumping the cycle τ1. Now if the suffixes are w1 = a, and w2 = b, then the
choice of suffix determines the “cost” paid on each iteration of the cycle.

Theorem 3. A regular function f : Σ∗ → Z⊥ has register complexity at least k
iff there exist strings σ0, . . . , σm, τ1, . . . , τm, and suffixes w1, . . . , wk, and k
distinct coefficient vectors c1, . . . , ck ∈ Zm, and values d1, . . . , dk ∈ Z so that for
all x1, . . . , xm ∈ N,

f (σ0τ
x1
1 σ1τ

x2
2 . . . σmwi) =

∑
j

cijxj + di.

4.3 Computing the register complexity is pspace-hard

We reduce the DFA intersection non-emptiness checking problem [8] to the
problem of computing the register complexity. Let A = (Q,Σ, δ, q0, {qf}) be a
DFA. Consider a single-state ACRA M with input alphabet Σ. For each state
q ∈ Q, M maintains a register vq. On reading a symbol a ∈ Σ, M updates
vq := vδ(q,a), for each q. Observe that this is simulating the DFA in reverse: if we
start with a special tagged value in vqf , then after processing σ, that tag is in the
register vq0 iff σrev is accepted by A. Also observe that doing this in parallel for
all the DFAs no longer requires an exponential product construction, but only as
many registers as a linear function of the input size. We use this idea to construct
in polynomial time an ACRA M whose registers are (k + 2)-separable iff there
is a string σ ∈ Σ∗ which is simultaneously accepted by all the DFAs. Therefore:

Theorem 4. Given an ACRA M and a number k, deciding whether the register
complexity of JMK is at least k is pspace-hard.

5 Games over ACRAs

We now study games played over ACRAs. We extend the model of ACRAs to
allow alternation – in each state, a particular input symbol may be associated
with multiple transitions. The system picks the input symbol to process, while
the environment picks the specific transition associated with this input symbol.
Accepting states are associated with output functions, and the system may choose
to end the game in any accepting state. Given a budget k, we wish to decide

whether the system has a winning strategy with worst-case cost no more than
k. We show that ACRA games are undecidable when the incremental costs
are integer-valued, and exptime-complete when the incremental costs are from
D = N.

Definition 4. An ACRA (D) reachability game G is a tuple (Q,Σ, V, δ, µ, q0, F, ν),
where Q, Σ, and V are finite sets of states, input symbols and registers respec-
tively, δ ⊆ Q×Σ×Q is the transition relation, µ : δ×V → V ×D is the register
update function, q0 ∈ Q is the start state, F ⊆ Q is the set of accepting states,
and ν : F → V × D is the output function.

The game configuration is a tuple γ = (q, val), where q ∈ Q is the current
state, and val : V → D is the current register valuation. A run π is a (possibly
infinite) sequence of game configurations (q1, val1)→a1 (q2, val2)→a2 · · · with
the property that

1. the transition qi →ai qi+1 ∈ δ for each i, and
2. vali+1 (u) = vali (v) + c, where µ (qi →ai qi+1, u) = (v, c), for each register

u and for each transition i.

A strategy is a function θ : Q∗ ×Q→ Σ that maps a finite history q1q2 . . . qn to
the next symbol θ (q1q2 . . . qn).

Definition 5. A run π is consistent with a strategy θ if for each i, θ (q1q2 . . . qi) =
ai. θ is winning from a configuration (q, val) with a budget of k ∈ D if for every
consistent run π starting from (q1, val1) = (q, val), for some i, qi ∈ F and
ν (qi, vali) ≤ k.

For greater readability, we write tuples (q, a, q′) ∈ δ as q →a q′. If q ∈ F , and
val is a register valuation, we write ν (q, val) for the result val (v) + c, where
ν (q) = (v, c). When we omit the starting configuration for winning strategies it
is understood to mean the initial configuration (q0, val0) of the ACRA.

5.1 ACRA (N) reachability games can be solved in exptime

Consider the simpler class of (unweighted) graph reachability games. These are
played over a structure Gf = (Q,Σ, δ, q0, F), where Q is the finite state space,
and Σ is the input alphabet. δ ⊆ Q×Σ×Q is the state transition relation, q0 ∈ Q
is the start state, and F ⊆ Q is the set of accepting states. If the input symbol
a ∈ Σ is played in a state q, then the play may adversarially proceed to any
state q′ so that (q, a, q′) ∈ δ. The system can force a win if every run compatible
with some strategy θf : Q∗ × Q → Σ eventually reaches a state qf ∈ F . Such
games can be solved by a recursive back-propagation algorithm – corresponding
to model checking the formula µX ·

(
F ∨

∨
a∈Σ [a]X

)
– in time O (|Q| |Σ|). In

such games, whenever there is a winning strategy, there is a memoryless winning
strategy θsmall which guarantees that no state is visited twice.

From every ACRA (N) reachability game G = (Q,Σ, V, δ, µ, q0, F, ν), we can
project out an unweighted graph reachability game Gf = (Q,Σ, δ, q0, F). Also,
Gf has a winning strategy iff for some k ∈ N, G has a k-winning strategy.

Consider the cost of θsmall (computed for Gf) when used with G. Since no
run ever visits the same state twice, θsmall is c0 |Q|-winning, where c0 is the
largest constant appearing in G. We have thus established an upper-bound on
the optimal reachability strategy, if it exists.

Given an upper-bound k ∈ N, we would like to determine whether a winning
strategy θ exists within this budget. Because the register increments are non-
negative, once a register v achieves a value larger than k, it cannot contribute
to the final output on any suffix σ permitted by the winning strategy. We thus
convert G into an unweighted graph reachability Gfk , where the value of each
register is explicitly tracked in the state, as long as it is in the set {0, 1, . . . , k}.
This game can be solved for the optimal reachability strategy, and so we have:

Theorem 5. The optimal strategy θ for an ACRA (N) reachability game G can
be computed in time O

(
|Q| |Σ| 2|V | log c0|Q|

)
, where c0 is the largest constant

appearing in the description of G.

Note that the optimal strategy in ACRA (N) games need not be memoryless: the
strategy may visit a state again with a different register valuation. However, the
strategy θ constructed in the proof of the above theorem is memoryless given the
pair (q, val) of the current state and register valuation.

5.2 Hardness of solving ACRA (D) reachability games

We reduce the halting problem for two-counter machines to the problem of solving
an ACRA (Z) reachability game. Informally, we construct a game GM given a
two-counter machine M so that the player has a 0-winning strategy through GM
iff M halts. This strategy encodes the execution of M , and the adversary verifies
that the run is valid. A similar idea is used to show that deciding ACRA (N)
reachability games is exptime-hard. The reduction in that case proceeds from
the halting problem for linearly bounded alternating Turing machines [4]. Given
such a machine M , we construct in polynomial time a game gadget GM where
the only strategy is to encode the runs of the Turing machine.

Theorem 6. Determining whether there is a winning strategy with budget k in
an ACRA (N) reachability game is exptime-hard.

Theorem 7. Determining whether there is a winning strategy with budget k in
an ACRA (Z) reachability game is undecidable.

6 Conclusion

In this paper, we studied two decision problems for additive regular functions:
determining the register complexity, and alternating reachability in ACRAs. The
register complexity of an additive regular function f is the smallest number k
so there is some ACRA implementing f with only k registers. We developed an
abstract characterization of the register complexity as separability and showed

that computing it is pspace-complete. We then studied the reachability problem
in alternating ACRAs, and showed that it is undecidable for ACRA (Z) and
exptime-complete for ACRA (N) games. Future work includes proving similar
characterizations and providing algorithms for register minimization in more
general models such as streaming string transducers. String concatenation does not
form a commutative monoid, and the present paper is restricted to unary operators
(increment by constant), and so the technique does not immediately carry over.
Another interesting question is to find a machine-independent characterization
of regular functions f : Σ∗ → Z⊥. A third direction of work would be extending
these ideas to trees and studying their connection to alternating ACRAs.

References

1. Rajeev Alur and Loris D’Antoni. Streaming tree transducers. In Artur Czumaj, Kurt
Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Automata, Languages,
and Programming, Lecture Notes in Computer Science, pages 42–53. Springer, 2012.

2. Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman,
and Yifei Yuan. Regular functions and cost register automata. To appear in the
28th Annual Symposium on Logic in Computer Science, Full version available at
http://www.cis.upenn.edu/~alur/rca12.pdf, 2013.

3. Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata with group
actions. In 26th Annual Symposium on Logic in Computer Science, pages 355–364,
2011.

4. Ashok Chandra, Dexter Kozen, and Larry Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, January 1981.

5. Krishnendu Chatterjee, Laurent Doyen, and Thomas Henzinger. Quantitative
languages. In Michael Kaminski and Simone Martini, editors, Computer Science
Logic, volume 5213 of Lecture Notes in Computer Science, pages 385–400. Springer,
2008.

6. John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata
Theory, Languages, and Computation. Prentice Hall, 3rd edition, 2006.

7. Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical
Computer Science, 134(2):329–363, 1994.

8. Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium
on Foundations of Computer Science, 1977., pages 254–266, 31 Oct – 2 Nov 1977.

9. Nicolas Markey. Weighted automata: Model checking and games. Lecture
notes, Available at http://www.lsv.ens-cachan.fr/~markey/Teaching/MPRI/
2008-2009/MPRI-2.8b-4.pdf, 2008.

10. Mehryar Mohri. Minimization algorithms for sequential transducers. Theoretical
Computer Science, 234:177–201, 2000.

11. Mehryar Mohri. Weighted automata algorithms. In Manfred Droste, Werner
Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata, Monographs in
Theoretical Computer Science, pages 213–254. Springer, 2009.

12. Christos Papadimitriou and Mihalis Yannakakis. Multiobjective query optimization.
In Proceedings of the 20th Symposium on Principles of Database Systems, PODS
’01, pages 52–59. ACM, 2001.

http://www.cis.upenn.edu/~alur/rca12.pdf
http://www.lsv.ens-cachan.fr/~markey/Teaching/MPRI/2008-2009/MPRI-2.8b-4.pdf
http://www.lsv.ens-cachan.fr/~markey/Teaching/MPRI/2008-2009/MPRI-2.8b-4.pdf

	Decision Problems for Additive Regular Functions

