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ABSTRACT
Reactive synthesis with the ambitious goal of automatically
synthesizing correct-by-construction controllers from high-
level specifications, has recently attracted significant atten-
tion in system design and control. In practice, complex sys-
tems are often not constructed from scratch but from a set
of existing building blocks. For example in robot motion
planning, a robot usually has a number of predefined mo-
tion primitives that can be selected and composed to en-
force a high-level objective. In this paper, we propose a
novel framework for synthesis from a library of parametric
and reactive controllers. Parameters allow us to take advan-
tage of the symmetry in many synthesis problems. Reac-
tivity of the controllers takes into account that the environ-
ment may be dynamic and potentially adversarial. We first
show how these controllers can be automatically constructed
from parametric objectives specified by the user to form a li-
brary of parametric and reactive controllers. We then give a
synthesis algorithm that selects and instantiates controllers
from the library in order to satisfy a given linear temporal
logic objective. We implement our algorithms symbolically
and illustrate the potential of our method by applying it to
an autonomous vehicle case study.

1. INTRODUCTION
Reactive synthesis with the ambitious goal of automat-

ically synthesizing correct-by-construction controllers from
high-level specifications, has recently attracted significant
attention in system design and control. Recent advances in
this growing research area have enabled automatic synthesis
of interesting real-world systems [4], indicating the potential
of the synthesis algorithms for solving realistic problems.

Although automatic synthesis of realistic systems with
large state spaces seems to be unattainable for now, in prac-
tice, complex systems are often not constructed from scratch
(an implicit assumption in many of the related works,) but
from a set of existing building blocks. For example in robot
motion planning, a robot usually has a number of prede-
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fined motion primitives that can be selected and composed
to enforce a high-level objective [7]. Intuitively, a compo-
sitional approach that solves smaller and more manageable
subproblems, and hierarchically composes the solutions to
implement more complicated behaviors seems to be a more
plausible way to synthesize complex systems.

To this end, we propose a compositional and hierarchical
framework for synthesis from a library of parametric and re-
active controllers. Parameters allow us to take advantage of
the symmetry in many synthesis problems, e.g., in motion
planning for autonomous robots and vehicles. Reactivity of
the controllers takes into account that the environment may
be dynamic and potentially adversarial. We first show how
these controllers can be synthesized from parametric objec-
tives specified by the user to form a library of parametric
and reactive controllers. We then give a synthesis algorithm
that selects and instantiates controllers from the library in
order to satisfy a given safety and reachability objective.

Consider an autonomous vehicle V1 that starting from an
initial location s0 needs to navigate safely through streets
and intersections to reach a final destination d, as shown
in Figure 1. Safe navigation means that the vehicle must
follow the traffic rules (e.g., moving in specific directions of
streets), and besides avoid collision with other vehicles. In
this example, V1 can cross both intersections I1 and I2 on its
way toward the location d. One can observe that although
intersections I1 and I2 are located in different positions, V1

can safely cross them in a similar way. In other words, V1

can employ a controller to cross the intersection I1 and em-
ploy the same controller to cross I2. To take advantage of
such symmetry in synthesis problems, we introduce paramet-
ric controllers. Let (x, y) be the location of V1 at any time
step. Assume a, b are two parameters. We would like to
synthesize a controller that starting from a parametric loca-
tion (x, y) = (a, b), guarantees to eventually move two steps
forward horizontally, i.e., eventually (x, y) = (a+2, b), while
avoiding collision with other vehicles. To this end, the para-
metric controller must also be reactive, i.e., it must react
to other vehicles’ movements to avoid collision. Once such
parametric reactive controller is obtained, it can be instan-
tiated by assigning values to parameters. For example, the
same parametric controller can be instantiated based on the
current location of the vehicle and be used to advance the
vehicle in different locations. Note that in many application
domains, systems may have task-specific controllers that are
designed and verified a priori, e.g., an autonomous vehicle
can have specialized controllers for different scenarios such as
crossing intersections, making U-turns, switching lanes, etc.
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Figure 1: One-way streets connected by intersections.

Such controllers can be defined parametrically and instanti-
ated and composed to perform more complicated tasks.

The proposed framework has two layers, parametric con-
troller synthesis (bottom layer) and synthesis from a library
of parametric controllers (top layer). In the bottom layer, a
set of parametric controllers are synthesized from parametric
objectives specified by the user. Here, unlike other related
works [7, 12, 14], we do not assume that the controllers are
a priori given, but we let the user specify them and synthe-
sis is done automatically. This facilitates the design process
and makes it more flexible, allowing the user to utilize her
insight into the system being designed to construct different
libraries. Furthermore, the user may not know the range
of the parameter values that guarantees correct behavior of
the controller. We allow the user to provide a paramet-
ric specification and the set of acceptable parameter val-
ues are discovered automatically. On the other hand, the
high-level composer does not necessarily need to know how
controllers enforce their objectives. Thus a controller inter-
face that hides the controller’s specific implementation while
providing information on possible outcomes of the controller
is synthesized for each parametric controller. A library of
parametric controllers can be reused to realize more com-
plex behaviors. In the top layer of the framework, given a
library of parametric controllers and a high-level objective
for the system, a control strategy that selects and instanti-
ates parametric controllers from the library such that their
composition enforces the objective is synthesized.

Note that adding parameters increases the size of the state
space and can add to the complexity of the problem. There-
fore, how parameters are handled is crucial. We provide
symbolic algorithms that efficiently explore the parametric
space. Besides, we show that the upper bound on the num-
ber of symbolic steps, i.e., pre-image or post-image compu-
tations, performed by the symbolic algorithm is independent
from the parameters. Nevertheless, this does not mean that
adding parameters has no cost as it increases the complex-
ity of the symbolic steps. The main advantages of the intro-
duced framework are i) reusability of controllers (parametric
controllers are computed once and can be reused in different
compositions to achieve higher level objectives,) ii) sepa-
ration of concerns (design of controllers is separated from
their composition which can also lead to strategies that are
defined hierarchically and are easier to understand).

One of the main motivations for our work is the growing
interest in controller synthesis for autonomous robots and
vehicles from high-level temporal logic specifications (e.g.,
[8, 9, 11, 18]). A common theme is based on first computing
a discrete controller satisfying the LTL specification over a
discrete abstraction of the system, which is then used to

synthesize continuous or hybrid controllers guaranteed to
fulfill the high-level specification. In this paper, we assume
that a finite-state abstraction of the system is given and we
present a compositional algorithm for synthesizing a discrete
controller. The computed controller can then be refined to a
controller enforcing the specification over the original system
using the techniques in the literature [16].

The concept of motion primitives is popular and widely
used in robotics and control literature, since they can be
designed by one group, e.g., the robot designer, and then
be used by other groups of people such as the end-users
to implement higher level objectives. The end-user only
needs to have an understanding of what a specific motion
primitive does through a provided interface, and the ac-
tual implementation is encapsulated and hidden from the
end-user. A compositional motion planning framework for
multi-robot systems is presented in [14] where given a li-
brary of motion primitives, the motion planning problem
is reduced to solving a satisfiability modulo theories prob-
lem. A similar approach to ours is considered in [7] for solv-
ing motion-planning problems for time-invariant dynamical
control systems with symmetries, such as mobile robots and
autonomous vehicles, where motion plans are described as
concatenation of a number of motion-primitives chosen from
a finite library. The main difference of our work with [7,14]
is that our motion primitives are reactive, i.e., the controllers
also takes the ongoing interaction between system and en-
vironment into account. To the best of our knowledge, we
are the first to study the problem of synthesizing controllers
from a library of parametric and reactive controllers.

The problem of LTL synthesis from a library of reusable
components is considered in [12]. Sequential composition of
controllers considered in this paper is similar to control-flow
composition in [12] and is inspired by software systems. In
the software context, when a function is called, the function
gains the control over the machine and the computation pro-
ceeds according to the function until it calls another func-
tion or returns. Similarly, the controllers in our framework
gain and relinquish control over computations of the system.
The controllers have a designated set of final states. Intu-
itively, a reactive controller receives the control by entering
an initial state and returns the control when reaching a final
state. The goal of the composer is to decide which controller
will gain control when the control is returned from the con-
troller currently in charge. Although by enumerating the
parameter values and instantiating parametric controllers
to obtain a library of non-parametric controllers our prob-
lem can be reduced to the one considered in [12], such naive
enumeration may lead to an exponentially larger number of
controllers in the library, making the method infeasible in



practice. Our algorithms symbolically explore the paramet-
ric space, thus avoiding the excessive explicit enumeration.
To the best of our knowledge, there is no implementation
of the methods proposed in [12]. Compositional reactive
synthesis from LTL specifications is also considered in some
recent works [1, 2, 6, 10, 15] where a strategy is synthesized
compositionally by treating parts of the given LTL specifi-
cation separately and combining the solutions. The setting
considered in this paper is different as we are interested in
synthesizing from a library of controllers that can be reused.

Contributions. The main contributions of this paper are
as follows. We give an algorithm for synthesizing a control
strategy that reactively chooses and instantiates controllers
from a given library of controllers to enforce a high-level
safety and reachability objective for the system. We show
how a designer can simply specify parametric controllers and
then a controller and its interface along with admissible pa-
rameter values are synthesized automatically. We imple-
ment our algorithms symbolically using binary decision dia-
grams and apply them to an autonomous vehicle case study
to show the potential of our approach.

2. PRELIMINARIES
In this section we present the notation and terminology

used in the rest of the paper. Let Z be the set of inte-
gers. For a, b ∈ Z, let [a..b] = {x ∈ Z | a ≤ x ≤ b}. Let
V = {v1, · · · , vn} be a set of variables where each vari-
able v ∈ V is defined over a finite domain Σv. We define
ΣV = Σv1×· · ·×Σvn to be the collective domain of the vari-
ables. Let P = {p1, · · · , pk} be a set of parameters where
each parameter p ∈ P is defined over a finite domain Σp.
Let ΣP = Σp1 × · · · × Σpk . A valuation s over variables V
is a value assignment to the variables in V, i.e., s ∈ ΣV . For
a subset X ⊆ V of variables and a valuation s ∈ ΣV , we
denote by s|X the projection of s to X .

Without loss of generality and to simplify the specifica-
tion language, in the rest of the paper, we assume that all
variables and parameters are defined over bounded integer
domains. Boolean variables are special case where the do-
main is {0, 1}. Note that since the domains of variables and
parameters are finite, they can be encoded using Boolean
variables. Ordered binary decision diagrams (OBDDs) can
be used for obtaining concise representations of sets and re-
lations over finite domain [5]. Let X ⊆ V ∪ P. A predicate
φ over X is a Boolean expression generated by the gram-
mar φ ::= e ∼ 0 | φ ∧ φ | ¬φ, where e is generated by the
grammar e ::= k | k × v | e + e | e − e, for k ∈ Z and
v ∈ V, and ∼∈ {<,≤,=, >,≥}. We will use v 6= k as a
shorthand for ¬(v = k). Other logical operators are defined
in their standard manner. Let X1, · · · ,Xn be disjoint sets
of variables defined over finite domains ΣXi for i = 1..n,
and let φ be a predicate over X1 ∪ · · · ∪ Xn. A valuation
s = (s1, · · · , sn) ∈ ΣX1 × · · · × ΣXn satisfies φ, denoted by
s |= φ, if replacing the variables in φ by their correspond-
ing value in s makes φ true. For a predicate φ, let VP(φ)
be the set of variables and parameters that appear in the
predicate’s formula. We say φ is a parametric predicate, if
VP(φ) ∩ P 6= ∅, i.e., there is at least one parameter in the
predicate’s formula. Otherwise we say φ is non-parametric.
For a predicate φ over X , we let JφK be the set of valuations
over X that make φ true, that is, JφK = {s ∈ ΣX | s |= φ}.
Given a parametric predicate φ over V ∪ P and a valuation
p ∈ ΣP over parameters, restriction of φ by p is a non-

parametric predicate φ↓p obtained by replacing each param-
eter with its corresponding value. Given a parametric set
Π = ΣV × ΣP and a parameter value p ∈ ΣP , projection of
Π by p, denoted by Π↓p, is the set {s ∈ ΣV | (s, p) ∈ Π}.

2.1 Linear Temporal Logic (LTL)
We use LTL to specify system objectives. LTL is a for-

mal specification language with two types of operators: log-
ical connectives (¬ (negation), ∨ (disjunction), ∧ (conjunc-
tion), and→ (implication)) and temporal operators (e.g.,©
(next), U (until), 3 (eventually), and 2 (always)). The set
of atomic formulas AP consists of any predicate over the
variables V. An LTL formula over variables V is interpreted
over infinite words w ∈ (ΣV)ω. The language of an LTL
formula Φ, denoted by L(Φ), is the set of infinite words that
satisfy Φ, i.e., L(Φ) = {w ∈ (ΣV)ω | w |= Φ}. We assume
some familiarity of the reader with LTL. An LTL specifica-
tion over the set of variables V∪P is called a parametric LTL
specification. Parametric LTL formulas are similar to non-
parametric ones, except that their formulas are interpreted
over infinite words w ∈ (ΣV × ΣP)ω.

Example 1. Let x, y ∈ [0..3] be two integer variables. Let
a ∈ [0..3] be an integer parameter. LTL formula Φ = 2(x >
y)∧3(x = y+1) requires that x must always be greater than y
and that eventually x is equivalent to y+1. The infinite word
w = (x = 2, y = 0), (x = 2, y = 1)ω satisfies Φ, i.e., w |= Φ.
The parametric formula ΦP = 2(x > y)∧3(x = y+a) is an
example of parametric LTL specification. Satisfaction of a
parametric LTL formula also depends on parameter values.
For example, by setting a = 1 in ΦP , we have w |= ΦP↓a=1 .

2.2 Symbolic Turn-Based Game Structures
Game structures provide a formalism for modeling possi-

ble executions of a system interacting with its environment.
Let V be a set of variables defined over a finite domain
ΣV , and V ′ be a primed copy of the variables in V, used
to represent the next values of variables after a transition.
Assume there exists a special variable t ∈ V with domain
Σt = {1, 2} representing which player’s turn it is during a
game. Let Λ be a finite set of actions. A symbolic turn-
based game structure G defined over the set of variables V
and the set of actions Λ is a tuple G = (V,Λ, τ) where τ is
a transition relation given as a predicate over V ∪ Λ ∪ V ′.
We denote by ΣiV =

{
s ∈ ΣV | s|t = i

}
the set of player-i

states for i = 1, 2. At any state s ∈ ΣiV , the player-i chooses
an action ` ∈ Λ such that there exists a successor state
s′ ∈ ΣV′ where (s, `, s′) |= τ . Intuitively, at a player-i state,
she chooses an available action according to the transition
relation τ and the next state of the system is chosen from
the possible successor states. For every state s ∈ ΣV , we de-
fine Γ(s) = {` ∈ Λ | ∃s′ ∈ ΣV′ . (s, `, s′) |= τ} to be the set
of available actions at that state. A run s0s1s2 · · · of a game
structure is a sequence of states si ∈ ΣV such that for all
i > 0 there is an action ` ∈ Λ with (si−1, `, s

′
i) |= τ , where s′i

is obtained by replacing the variables in si by their primed
copies. A run π is maximal if either it is infinite or it ends
in a state s ∈ ΣV where Γ(s) = ∅.

Strategies. A strategy of player-i is a partial function
fi : (ΣV)∗.ΣiV → Λ such that for every sequence of states
r.s ∈ (ΣV)∗ ending in a player-i’s state s ∈ ΣiV , if s has a
successor, then fi(r.s) is defined, and (s, fi(r.s), u) |= τ for
some u ∈ ΣV′ . Given two strategies f1 and f2 for players 1



and 2, the possible outcomes Ωf1,f2(s) from a state s ∈ ΣV
are runs: a run s0s1s2 · · · belongs to Ωf1,f2(s) iff s0 = s and
for all j ≥ 0, either sj has no successor, or sj ∈ ΣiV and
(sj , fi(s0 · · · sj), s′j+1) |= τ . Strategies may need memory
to remember the history of a game. Let M be a finite set
called memory. A finite-memory strategy S = (m0, fM , fΛ)
for player-i is defined as an initial memory m0 ∈ M along
with a pair of functions: a memory-update function fM :
M × ΣV → M , which given the current state of the game
and the memory, updates the memory, and a next-action
function fΛ : M × ΣiV → Λ, which given the current player-
i state and the memory, suggests the next action for the
player. A strategy S is memory-less (a.k.a. positional) if
the memory M is a singleton, i.e., |M | = 1. A memory-less
strategy is independent of the history of the game and only
depends on the current state. Thus, a memory-less strategy
for player-i can be represented as a function S : ΣiV → Λ.

Winning condition. A game (G, φinit,Φ) consists of a
game structure G, a predicate φinit over V specifying a set
of initial states, and an objective Φ for player-2 given as an
LTL formula. A run π = s0s1 · · · is winning for player-2 if it
is infinite and π ∈ L(Φ). Let Π1 be the set of runs that are
winning for player-2. A strategy f2 is winning for player-2
if for all strategies f1 of player-1 and all states s |= φinit,
we have Ωf1,f2(s) ⊆ Π1, i.e., all possible outcomes are win-
ning for player-2. The set of winning statesWΦ for player-2
and for objective Φ in the game structure G is the set of
states from which player-2 has a winning strategy. We say
an objective Φ is enforceable over a game structure G from
any initial state s |= φinit if and only if player-2 has a win-
ning strategy in the game (G, φinit,Φ), in which case we
also say (G, φinit,Φ) is realizable. A game structure G de-
fined over variables V and action Λ is deterministic iff for any
state s1 ∈ ΣV and any actions ` ∈ Λ, the set Succ(s1, `) =
{s2 ∈ ΣV′ | (s1, `, s2) |= τ} of successor states has at most
one element, i.e., ∀s1 ∈ ΣV ∀` ∈ Λ. |Succ(s1, `)| ≤ 1. Note
that we allow non-determinism in our definition of game
structures and we assume that the nondeterminism is al-
ways on player-1’s side.

All the definitions can be extended to parametric versions
in a straightforward manner by replacing V by V∪P and ΣV
by ΣV×ΣP . For example, a parametric finite memory strat-
egy SP = (m0, f

P
M , f

P
Λ ) for player-2 is defined by a memory-

update function fPM : M × ΣV × ΣP → M and next-action
function fPΛ : M ×Σ2

V ×ΣP → Λ. For a parametric strategy
SP and a parameters valuation p ∈ ΣP , instantiation of SP
by p, denoted by SP↓p, is a non-parametric finite-memory

strategy SP↓p = (m0, fM , fΛ) where for all m ∈ M and

s ∈ ΣV , fM (m, s) = fPM (m, s, p) and fΛ(m, s) = fPΛ (m, s, p).
Solving games. Symbolic algorithms for solving the re-

alizability and synthesis problems are based on the control-
lable predecessor operator [13]. The (player-2) controllable
predecessor operator CPre : 2ΣV → 2ΣV maps a set Z ⊆ ΣV
of states to the states from which player-2 can force the game
into Z in one step. Player-2 can force the game into Z from
a state s ∈ Σ1

V iff for all available moves `, all `-successors
of s are in Z, and she can force the game into Z from a
state s ∈ Σ2

V iff there is some available action ` such that
all `-successors of v are in Z. For example, the set of states
from which player-2 can avoid a set JΦerrK ⊆ ΣV of states
is the greatest fixed point νZ.J¬ΦerrK ∩ CPre(Z) (safety
objective,) and the set of states from which player-2 can

reach a set of states JΦreachK ⊆ ΣV is the least fixed point
µZ.JΦreachK ∪ CPre(Z) (reachability objective).

2.3 Controllers and Controller Interfaces
Controller. We refer to memory-less strategies for player-

2 with a designated set of final states as finite-horizon re-
active controllers (or controllers for short). In our setting,
controllers become active for a finite number of steps and
interact with environment until reaching a desirable target
state while avoiding some specified error states. Formally, a
controller C is a pair (S,F) where S : ΣV → Λ is a memory-
less strategy and F ⊆ ΣV is a designated set of final states.
At any time-step, if current state s ∈ ΣV is a final state, i.e.,
s ∈ F , the controller has reached the end of its computation.
Note that we only consider controllers with reachability and
safety objectives for which memory-less strategies suffice. A
parametric reactive controller is a controller whose strategy
and set of final states are parametric. Given a parameter
valuation p ∈ Σp and a parametric controller C = (S,F), in-
stantiation of C with p ∈ P is the controller C↓p = (S↓p,F↓p)
obtained by instantiating the strategy and projecting the set
of final states by p.

Controller interface. A controller interface abstracts a
controller by providing high-level information about its be-
havior while hiding its actual implementation. Formally,
a controller interface IC = (φinitC , φinvC , φfC ) for a con-
troller C is a tuple where φinitC is a set of initial valuations
over variables (and parameters), φinvC is an invariant that
holds over all possible runs of C while it has the control, φfC
is a possible set of valuations over variables (and parame-
ters) once C reaches a final state. A controller C = (S,F)
over a game structure G realizes a controller interface IC if
S is a winning strategy for the game (G, φinitC ,Ψ) where
Ψ = φinvC U (φinvC ∧ φfC ) and F ⊆ JφfC K, i.e., starting
from any initial state s |= φinitC , the controller C guaran-
tees that eventually a final state sf |= φfC is visited and
besides all the visited states along any possible outcome sat-
isfy φinvC , i.e., only safe states are visited. Instantiation of
a controller interafce IC by p ∈ ΣP is the non-parametric
controller interface IC↓p = (φinitC↓p

, φinvC↓p
, φfC↓p

). A pa-

rameter valuation p ∈ ΣP is admissible for controller C with
interface IC over a game structure G iff the instantiation
of C by p, C↓p, realizes the non-parametric interface IC↓p .
Intuitively, a parametric controller can be instantiated by
any admissible parameter value, and enforce its safety and
reachability objectives, provided that its execution starts
from a valid initial state. A set ΣaP ⊆ ΣP of admissible pa-
rameter values is maximal, if for any parameter valuation
p ∈ ΣP\ΣaP , C↓p does not realize IC↓p . A controller inter-
face I1 = (φinit1 , φinv1 , φf1) respects a controller interface
I2 = (φinit2 , φinv2 , φf2) if φinit1 → φinit2 , φinv1 → φinv2 ,
and φf1 → φf2 . Note that any controller that realizes I1,
also realizes the restricted interface I′2 = (φinit1 , φinv2 , φf2),
where I′2 is obtained from the interface I2 by restricting its
initial states to Jφinit1K ⊆ Jφinit2K. In our setting, the de-
signer can specify a parametric interface for the controllers
without knowing for what parameter valuations the con-
troller can enforce its safety and reachability objectives. A
parametric controller, a maximal set of admissible parame-
ter values, and an interface that respects the user-specified
interface are then synthesized automatically.



2.4 Composing Controllers
Let G = (V,Λ, τ) be a game structure, and ΓC = {C1, · · · Cn}

be a set of parametric controllers. For a given set of initial
states φinit and objective Φ, the goal of the composer is
to iteratively select a parametric controller and instantiate
it with a parameter valuation, delegate the control to the
instantiated controller until it enters a final state and re-
linquishes the control, upon which the composer selects the
next controller and the next parameter valuation, and the
process is repeated such that the objective Φ is enforced
starting from any initial state sinit |= φinit. A control strat-
egy SC : ΣV → ΣP × ΓC is a (partial) function that maps
states of the game to a controller and a parameter valua-
tion (note that we do not consider memory for the control
strategy since it is not needed for safety and reachability
objectives). A control strategy SC induces a finite-memory
strategy S = (m0, fM , fΛ) obtained by sequentially compos-
ing instantiated controllers according to SC as follows. Let
M ⊆ ΣP × ΓC ∪ {⊥} be the memory of the strategy where
m0 =⊥ and ⊥ is a special symbol indicating the initial mem-
ory where a controller and a parameter valuation is yet to
be selected. Intuitively, the memory of the strategy keeps
track of the controller that currently has the control and the
parameter valuation used to instantiate it. The memory-
update function fM : M × ΣV → M and the next-action
function fΛ : M × Σ2

V → Λ are defined as

fM (m, s) =

{
m if m 6=⊥ ∧s 6∈ FCm
SC(s) otherwise

fΛ(m, s) =

{
SCm(s) if m 6=⊥ ∧s 6∈ FCm
SCnext(s) otherwise

where Cm = (SCm ,FCm) = Ci↓p is the instantiated controller
for the memory m = (p, Ci), and Cnext = (SCnext ,FCnext) =
Cnext↓pnext with SC(s) = (pnext, Cnext) is the next controller cho-
sen by the control strategy. Intuitively, when a final state
of the currently active controller is reached or initially when
no controller is selected, the next controller and the next pa-
rameter valuation are chosen according to the control strat-
egy and the memory is updated to reflect this selection. The
selected and instantiated controller then becomes active and
guides the actions of the system while the memory stays un-
changed, until the active controller enters a final state, upon
which the control strategy decides the next action and the
process is repeated. Note that in practice, the induced strat-
egy S from SC is not computed explicitly, and the controllers
can be dynamically fetched, instantiated and executed ac-
cording to the control strategy.

3. PROBLEM STATEMENTS AND OVERVIEW
In this section we formally define the problems we consider

in this paper and give an overview of our solution approach.
Let V and P be sets of variables and parameters defined over
finite domains ΣV and ΣP , respectively, Λ be a finite set of
actions, and G be a game structure over V and Λ. We are
interested in how a parametric controller can be synthesized
from a given parametric controller interface. Formally,

Problem Statement 1. (Synthesis of Parametric Reac-
tive Controllers.) Given a game structure G and a paramet-
ric controller interface I = (φinit , φinv , φf), synthesize a
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Figure 2: Part of a road divided into grids.

parametric reactive controller C, its corresponding interface
IC, and a maximal set ΣaP ⊆ ΣP of admissible parameter
valuations such that IC respects I, and for any admissible
parameter valuation p ∈ ΣaP for C, instantiation of C by p,
C↓p, realizes the instantiated controller interface IC↓p .

A designer can specify a set of parametric controller inter-
faces. The synthesis algorithm then automatically computes
the set of controllers, their corresponding interfaces and ad-
missible parameter values. Once the parametric controllers
are computed, they can be reused in different compositions
to synthesize control strategies for different objectives.

Once a library of parametric controllers and their corre-
sponding interfaces are obtained, the next natural question
is how they can be composed to enforce high-level objec-
tives. Let φinit be a non-parametric predicate specifying ini-
tial states of the game, Φ be a non-parametric LTL objective
over V, ΓC = {C1, · · · , Cn} be a set of parametric controllers,
and ΓIC = {IC1 , · · · , ICn} be the set of corresponding con-
troller interfaces. Our goal is to synthesize a control strategy
SC that instantiates and composes controllers from ΓC using
the information provided through interfaces ΓIC such that
its induced strategy enforces the global objective Φ in the
game (G, φinit,Φ). Formally,

Problem Statement 2. (Synthesis with Parametric Re-
active Controllers.) Given a game structure G, a set of ini-
tial states specified by a non-parametric predicate φinit, a
non-parametric LTL objective Φ, and a set of parametric
controllers ΓC and their corresponding interfaces ΓIC , com-
pute a control strategy SC, if one exists, such that its induced
strategy S is winning in the game (G, φinit,Φ).

We assume that Φ is given as a safety and/or reachability
objective. We illustrate the methods with a simple example.

Example 2. Consider a block of a double-lane road di-
vided into grids each identified by a tuple (x, y) as shown
in Figure 2. Assume there is a controlled vehicle V1 ini-
tially at (x1, y1) = (0, 1) moving from left to right. More-
over, assume there is an uncontrolled vehicle V2 initially at
(x2, y2) = (7, 1) moving from right to left while staying on
the same lane at all times, i.e., always y2 = 1. Formally,
let φinit = (x1 = 0 ∧ y1 = 1 ∧ x2 = 7 ∧ y2 = 1) be the
predicate specifying the initial state of the system. Assume
V1 has two actions: move-forward action, `1, that moves the
vehicle one step ahead by incrementing x1 while keeping it
on the same lane, and lane-switch action, `2, that moves the
vehicle one step forward and changes the lane at the same
time. Our goal is to synthesize a controller that guides V1

from the starting point to the other end of the road without
colliding with V2. This objective can be specified with the for-
mula Φ = φ1 U (φ1 ∧ φ2) where φ1 = (x1 6= x2 ∨ y1 6= y2)
(no collision) and φ2 = (x1 = 7) (reaching the other end.)

Let a and b be two parameters. Assume the designer spec-
ifies a parametric controller interface I = (φinit, φinv , φf)
where φinit = (x1 = a) ∧ (y1 = b), φinv = (x1 6= x2) ∨ (y1 6=



y2), and φf = (x1 = a + 1), i.e., starting from initial para-
metric state (x1, y1) = (a, b), V1 must move one step for-
ward (to satisfy φf) while avoiding collision with V2 (thus
satisfying φinv). A parametric controller C = (S,F) is then
synthesized with a memory-less strategy S defined as

S(x1, y1, x2, y2, a, b) =


`2 if 0 ≤ a ≤ 6 ∧ x1 = a ∧ y1 = b

∧y1 = y2 ∧ x2 = a+ 1

`1 if 0 ≤ a ≤ 6 ∧ x1 = a ∧ y1 = b∧
(x1 6= x2 ∨ (y2 6= b ∧ y2 6= b+ 1))

Intuitively, the controller C switches the current lane of the
vehicle V1 by taking lane-switch action `2 if the other vehi-
cle V2 is on the same lane and one cell ahead of V1, and
otherwise keeps moving forward by taking move-forward ac-
tion `1. This way the controller C ensures that V1 eventually
makes progress by incrementing x1 while avoiding collision
with the other vehicle. For the set of final states of C we have
F = (0 ≤ a ≤ 6∧ x1 = a+ 1∧ ((x1 6= x2)∨ (y1 6= y2))), i.e.,
once the controller reaches a final state, V1 has moved one
step forward and does not occupy the same grid with V2. Be-
sides, correct behavior of the controller is guaranteed for the
parameter values 0 ≤ a ≤ 6. A potential controller interface
IC for C is (φ′init, φinv , φf) where φ′init = φinit ∧ 0 ≤ a ≤ 6.
Note that IC respects I and C realizes IC.

Once the parametric controllers are synthesized and a li-
brary is formed, the next step is to instantiate right para-
metric controllers and compose them to enforce a given sys-
tem objective. In the above example, the controller C can
be instantiated and composed sequentially in order to en-
force the objective Φ according to the memory-less control
strategy SC(x1, y1, x2, y2) = ((x1, y1), C) if 0 ≤ x1 ≤ 6. In-
tuitively, while V1 has not reached the end of the road (i.e.,
x1 6= 7), the control strategy selects C and instantiates it with
(a = x1, b = y1), i.e., V1’s current location. To enforce the
objective Φ, the parametric controller C is instantiated and
composed 7 times, where each controller moves the vehicle
one step forward without colliding with the other vehicle.

4. SYNTHESIZING PARAMETRIC REAC-
TIVE CONTROLLERS

In this section we describe our solution for Problem 1
stated in Section 3. Let G = (V,Λ, τ) be a game structure,
and I = (φinit , φinv , φf) be the user-specified controller in-
terface. Our goal is to synthesize a controller C and its
corresponding controller interface IC = (φinitC , φinvC , φfC )
and a set ΣaP of admissible parameter values such that for
any p ∈ ΣaP , C↓p realizes IC↓p and IC respects I.

To this end, we first obtain a parametric game struc-
ture GP from G. The idea is to treat parameters as spe-
cial variables that have unknown initial value in a bounded
set, but their value stays constant over the transitions of
the game structure. Formally, let P ′ be a primed copy of
parameters, and assume same(P,P ′) is a predicate stating
that the value of parameters stay unchanged. The paramet-
ric game structure GP is defined as (V ∪ P,Λ, τP) where
τP = τ ∧ same(P,P ′).

For example, Figure 3a shows a game structure where
player-1 (player-2) states are depicted by ovals (boxes, re-
spectively.) Each state is labeled by a state name qi and
a valuation over a variable x with domain Σx = [0..3]. At
each player-i state for i = 1, 2, the player can choose one of

Algorithm 1: Parametric controller synthesis

Input: Game structure G = (V,Λ, τ), controller
interface I = (φinit , φinv , φf) and parameters P

Output: Parametric controller C, controller interface
IC , and admissible parameter values ΣaP s.t.
IC respects I and ∀p ∈ ΣaP . C↓p realizes IC↓p.

1 τP := τ ∧ same(P,P ′);
2 GP := (V ∪ P,Λ, τP);
3 ΦI := φinv U (φinv ∧ φf);

4 Let JφWK be the set of winning states in GP with
respect to ΦI ;

5 φinitC := φinit ∧ φW ;
6 φaP := ∃V. φinitC ;
7 ΣaP := JφaPK;
8 Let S be a parametric winning strategy in the game

(GP , φinitC ,ΦI);

9 φR := Reachable(GP , φinitC ,S);
10 F := Jφf ∧ φRK;
11 C := (S,F);
12 φinvC := φR;
13 φfC := φf ∧ φR;
14 IC = (φinitC , φinvC , φfC );
15 return (C, IC ,ΣaP);

the actions inc or dec (if available,) to increment or decre-
ment x, respectively. Assume p is a parameter with domain
Σp = [0..2]. Figure 3b shows the parametric game struc-
ture obtained from the game structure in Figure 3a. Each
state is labeled with a state name qji and a valuation over

x and p. Each state qji in the parametric game structure
GP correspond to the state qi in the game structure G. In-
tuitively, the parametric game structure has parallel copies
of the non-parametric game structure for different values of
the parameters and moreover, there is no transition between
different copies. Note that explicit-state representations of
(parametric) game structures are not constructed in prac-
tice, and they are represented and manipulated symbolically,
thus avoiding the explicit enumeration of the parameters.

Algorithm 1 shows how a parametric controller is synthe-
sized for a given game structure G and specified interface
I. Once the parametric game structure GP is obtained,
the game (GP , φinit,ΦI) where ΦI = φinv U (φinv ∧ φf)
can be solved by standard realizability and synthesis algo-
rithms and a set of winning states can be computed [13].
Let W ⊆ ΣV × ΣP be the set of winning states in GP with
respect to objective ΦI , and let φW be a predicate speci-
fying W, i.e., JφWK = W. We define φinitC = φinit ∧ φW
as the intersection of set of parametric initial states spec-
ified by the user and set of winning states where player-2
can enforce the objective ΦI . The set JφinitC K includes all
the parametric initial states from which player-2 can win
the game (GP , φinitC ,ΦI) and hence, it contains all the ad-
missible parameter valuations. The set ΣaP of admissible
parameter values can be computed by existentially quan-
tifying the variables from φinitC , i.e., ΣaP = ∃V. φinitC .
Algorithm 1 then computes a parametric winning strategy
over the game (GP , φinitC ,ΦI) using a game solver. Let
φR = Reachable(GP , φinitC ,S) be a predicate specifying
the set JφRK ⊆ ΣV×ΣP of reachable states in the parametric
game structure GP starting from any initial state s |= φinitC
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Figure 3: (a) A game structure G defined over a variable
x ∈ [0..3], and (b) A parametric game structure GP obtained
from G with parameter p ∈ [0..2].

when player-2 actions are chosen according to the strategy
S. We define IC = (φinitC , φinvC , φfC ) as the controller inter-
face for C where φinvC = φR and φfC = φf ∧φR. Intuitively,
φinvC specifies the set of states that may be visited during
the game when player-2 behaves according to the controller
C, and serves as the invariant of the computed controller in-
terface. Similarly, φfC specifies a set of reachable final states
when C is active. The following theorem states that Algo-
rithm 1 can correctly synthesize a parametric controller, if
one exists, and that it computes the controller with effort
O(|ΣV |), where effort is measured in symbolic steps, i.e.,
in the number of pre-image or post-image computation [3].
Due to the lack of space, the proofs of theorems are omitted
and can be found in the technical report.

Theorem 1. Algorithm 1 is sound and complete. It per-
forms O(|ΣV |) symbolic steps in the worst case.

The number of symbolic steps is not the only factor deter-
mining the time taken by the symbolic algorithm, however,
it is an important measure of difficulty since image and pre-
image computations are typically the most expensive opera-
tions [3]. Intuitively, the number of symbolic steps in Algo-
rithm 1 is independent of the parameters because the sym-
bolic algorithm for computing the set of winning states can
manipulate the parallel copies in the parametric game struc-
ture simultaneously, and that each copy is of size O(|ΣV |)
(the parametric game structure can be viewed as |ΣP | copies
of the original game structure.) As an example, consider the
parametric game structure in Figure 3b. Observe that each
copy for each parameter valuation is of the same size of
the non-parametric game structure shown in Figure 3a. Let
Φ = (X = p) be a parametric predicate. It is easy to see
that states q0

0 , q
1
1 , and q2

2 in the parametric game structure
satisfy Φ. The pre-image of these states (states that can
reach them in one step) is the set

{
q1
0 , q

0
1 , q

1
2 , q

2
1 , q

2
3

}
that is

computed by the symbolic algorithm in one step. Note that
although the number of symbolic steps in Algorithm 1 is in-
dependent of the parameters, it does not mean that adding
parameters has no additional cost as they may increase the
complexity of the symbolic steps. However, transitions over
parameters have a special structure that may be utilized
for efficient implementation of the symbolic steps, which is
subject to our future research.

5. SYNTHESIS OF CONTROL STRATEGY
WITH PARAMETRIC CONTROLLERS

In this section we describe our solution for Problem 2
stated in Section 3. Our goal is to synthesize a control strat-
egy SC such that its induced strategy is winning in the game
(G, φinit,Φ). To this end, we first obtain a control game
structure GC using the set of controller interfaces ΓIC . Intu-
itively, GC models what controllers and parameter valuations
the system can choose at any state, possible states that may
be visited while the selected controller is active, and poten-
tial final states that may be reached once the controller is
done. From the standpoint of the composer, each instanti-
ated controller that becomes active goes through three steps:
initialization (the controller starts its execution from a valid
initial state), execution (the state of the system evolves ac-
cording to the controller), and termination (the controller
enters a final state and returns the control).

Formally, let γC 6∈ V defined over the domain ΣγC = [1..n]
be a variable representing the controllers, i.e., γC = i corre-
sponds to the controller Ci ∈ ΓC for i = 1, · · · , n. Let tc 6∈ V
defined over Σtc = {1, 2} be a variable indicating which
player’s turn it is in the control game structure. Moreover,
let te 6∈ V defined over Σte = {1, 2} be an additional variable
that player-1 uses to distinguish a controller’s possible initial
states from intermediate states that may be visited during
the execution of the controller. A control game structure GC
is a tuple (VC ,ΛC , τC) where VC = V ∪ {tc, te, γC} ∪ P is a
set of variables defined over the domain ΣVC = ΣV × Σtc ×
Σte ×ΣγC ×ΣP , ΛC = ΣP′ ×Σγ′C is a set of actions, and τC

is symbolically defined as τC =
∨n
i=1(τCis ∨ τCie1 ∨ τ

Ci
e2 ) where

τCis := tc = 2 ∧ same(V,V ′) ∧ t′c = 1 ∧ t′e = 1 ∧ γ′c = i ∧ φ′initCi
,

τCie1 := tc = 1 ∧ γc = i ∧ te = 1 ∧ t′c = 1 ∧ t′e = 2 ∧ φ′invCi
∧

same(P,P ′) ∧ same(γc, γ′c), and

τCie2 := tc = 1 ∧ te = 2 ∧ γc = i ∧ t′c = 2 ∧ φ′fCi
∧

same(P,P ′) ∧ same(γc, γ′c)

where γ′C is a primed copy of γC, and φ′ is obtained by re-
placing variables in φ by their primed copies. Note that
the primed copies of the parameters and γC encode the ac-
tions ΛC of the control game structure to indicate that the
composer (player-2 in GC) selects the parameter valuation
and the parametric controller when it is her turn, and also
to avoid introducing additional variables. We denote by
ΣiVC =

{
vC ∈ ΣVC | vC|tc = i

}
the set of player-i states in

the control game structure for i = 1, 2.
At any player-2 state in the control game structure, the

composer must choose a controller C ∈ ΓC and an admis-
sible parameter valuation p ∈ ΣP , if one exists. Further-
more, the composer must ensure that the selected controller
starts from a valid initial state, i.e., the state where the
instantiated controller C↓p receives the control satisfies the
predicate φinitC↓p . This is captured in the predicate τCis

of τC for each controller Ci. According to τCis at any state
(v, tc = 2, te, γC , p) ∈ Σ2

VC , the controller Ci can be chosen
by selecting γ′C = i if there exists a parameter valuation
p′ ∈ ΣP′ such that the initial condition of the controller is
satisfied, i.e., (v′, p′) |= φ′initCi

where v′ is obtained by re-

placing variables in v by their primed copies. t′c = 1 means
that it is player-1 state in the next turn, and t′e = 1 means



that player-1 states in the next turn satisfy the initial con-
dition of the controller. Intuitively, each predicate τCis for
i = 1..n models initialization of a controller Ci.

Once a controller Ci and a parameter valuation p ∈ ΣP are
selected by the composer, the control is transferred to the
instantiated controller Ci↓p, and the controller and param-
eter valuation are fixed until the control is returned to the
composer. This is captured in τCie1 and τCie2 by same(P,P ′)∧
same(γC , γ

′
C). Player-1 states with te = 1 (te = 2) and

γCi = i in GC represent initial (intermediate) states where
the predicate φinitC↓p (φinvC↓p , respectively) of the instan-

tiated controller interface ICi↓p is satisfied. Intuitively, each

predicate τCie1 captures transitions from controller’s initial
state to its intermediate states (representing the execution
of the controller), and τCie2 shows the transition from interme-
diate states to final states (modeling termination) where the
controller has reached a final state and control is returned to
the composer. We illustrate the ideas with a simple example.

Example 3. Let x ∈ [0..2] be a variable, and p ∈ [0..2]
be a parameter. Consider two controllers C1 and C2 with
controller interfaces IC1 = (φinitC1

, φinvC1
, φfC1

) and IC2 =

(φinitC2
, φinvC2

, φfC2
) defined as follows: φinitC1

= (φP1 ∧
x = p), φfC1

= (φP1 ∧ (x = p+ 1)) , φinvC1
= φinit1 ∨ φfC1

,

φinitC2
= (φP2 ∧ x = p), φfC2

= (φP2 ∧ (x = p − 1)),

and φinvC2
= φinit2 ∨ φfC2

, where φP1 = (0 ≤ p ≤ 1) and

φP2 = (1 ≤ p ≤ 2). Intuitively, C1 eventually increments
the value of x by 1, while C2 eventually decrements it by 1.
Furthermore, φinvCi

= φiniti ∨ φfCi
, for i = 1, 2, indicates

that the set of states that are possibly visited during execu-
tion of controller Ci is the union of initial states and final
states. Figure 4 shows the control game structure for this ex-
ample where player-2 (player-1) states are depicted by boxes
(ovals, respectively) and player-2 states are grouped together
based on their valuations over x for a compact representa-
tion. Each node of the graph in Figure 4 is labeled with a
name qj and a set of predicates that hold in those states. For
example, node q0 represents all player-2 states in the control
game structure for which x = 1. Nodes q7 and q11 can be
interpreted in a similar way. Outgoing edges from player-2
states are labeled by an instantiated controller that the com-
poser can select at those states, e.g., at q0, the composer can
select either the instantiated controller C1↓1 (corresponding

to the action (p′ = 1, γ′C = 1),) or the instantiated con-
troller C2↓1 . If the composer chooses C2↓1, then the control
of the system is transferred to C2↓1, and q4 is visited next
in the control game structure. Note that the controller and
parameter valuations are selected by the composer and they
do not change in player-1 states. Once the controller is ini-
tialized, any intermediate state that satisfies the invariant of
the instantiated controller can be visited in the control game
structure (nodes q5 and q6 in Figure 4,) and at the next step,
a final state of the instantiated controller is visited (repre-
sented by q11), indicating the execution of the controller is
over and the composer must decide the next action.

Once the control game structure is obtained, we solve the
control game (GC, φCinit,Φ) where φCinit = (tc = 2 ∧ φinit),
i.e., the control game starts from a player-2 state so that
the composer can initially select a controller and a param-
eter valuations. If player-2 has a winning strategy in the
control game, we synthesize a winning strategy SΦ of spe-
cial form that only depends on the valuation over variables

V and then extract a control strategy SC from it. Formally,
let Υ = VC\V be the set of parameters and additional vari-
ables introduced for the control game structure. We say
a player-2 strategy SΦ in the control game structure is Υ-
independent if there exists a partial function fC : ΣV → ΛC

such that for any player-2 state vC = (v, 2, i, j, p) ∈ Σ2
VC ,

SΦ(v, 2, i, j, p) = fC(v). Intuitively, it means that SΦ only
depends on the valuation over variables V. The following
theorem states that if player-2 can win the control game,
then a Υ-independent winning strategy can be synthesized.

Theorem 2. If the control game is realizable, then there
exists a Υ-independent winning strategy for player-2.

The main reason is that the predicates τCis in the transi-
tion relation τC of GC do not depend on the variables te, γC or
parameters (though depending on their primed copies,) and
the value of tc = 2 is fixed. Intuitively, it means the com-
poser can select the next controller and parameter valuations
only based on the current valuation over V and regardless of
current values of parameters, te and γC . A control strategy
SC : ΣV → ΣP ×ΓC is extracted from SΦ using the function
fC as follows. For any v ∈ ΣV such that fC(v) is defined and
fC(v) = (p′, i) ∈ ΣP′ × Σγ′C , we let SC(v) = (p, Ci) where

p is obtained by replacing primed copies of parameters in
p′ by their unprimed versions. Algorithm 2 summarizes the
steps for computing SC . The following theorem establishes
the correctness and the complexity of Algorithm 2.

Theorem 3. Algorithm 2 is sound. For reachability and
safety objectives, it performs O(|ΣV |) symbolic steps.

Note that the upper-bound on the number of symbolic
steps in Algorithm 2 is independent from the variables VC\V.
This is partly because transitions from player-2 states in the
control game structure do not depend on the current valu-
ation over variables te, γC, and P. Thus, if a player-2 state
with the valuation v ∈ ΣV over variables V is winning, then
all player-2 states with the same valuation v over V are win-
ning. Roughly speaking, the symbolic algorithm for comput-
ing the set of winning states manipulates the set of player-2
states based on their valuations over V. Note that there are
only |ΣV | player-2 states with different valuations over V in
GC . Besides, any infinite run in GC starting from a player-2
state has a special form where every player-2 state is followed
by two player-1 states and then a player-2 state is visited,
and this pattern repeats infinitely. Due to this special form,
with every three symbolic steps, either the symbolic algo-
rithm terminates by reaching a fix point that characterize
the set of winning states, or a new set of player-2 states
with some valuation v over V are discovered to be winning
(or losing) by the symbolic algorithm. Hence, the number
of symbolic steps is bounded by O(3|ΣV |) = O(|ΣV |).

Example 4. Consider the setting in Example 3. Let φinit =
(x = 0) be a set of initial states, and Φ = 2(x 6= 2)∧3(x =
1) be the objective. A control strategy enforcing the objec-
tive Φ is shown in Figure 4 by solid edges at player-2 states.
Initially, at q11, the composer chooses controller C1 with pa-
rameter value p = 0. Once C1↓0 reaches a final state, the
control is returned to the composer, and based on the current
valuation over x, x = 1 in this example, the next controller,
C2, and the next parameter valuation, p = 1, are chosen by
the composer. Intuitively, at states with x = 0, the com-
poser increments x by selecting C1 and at states with x = 1,
it decrements x by choosing C2.



q0 : x = 1

q1 : x = 1, te = 1,
p = 1, γC = 1

q2 : x = 1, te = 2,
p = 1, γC = 1

q3 : x = 2, te = 2,
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q10 : x = 2, te = 2,
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Figure 4: Control game structure for Example 3 where player-2 states are grouped together for a compact representation.
Outgoing edges from player-2 states are labeled by an instantiated controller that the composer can choose at those states.
A Control strategy for objective Φ = 2(x 6= 2) ∧3(x = 1) is to choose solid edges at player-2 states.

Algorithm 2: Control Strategy Synthesis

Input: A predicate φinit specifying a set of initial
states, a non-parametric safety and reachability
objective Φ, a set ΓIC of controller interfaces

Output: A control strategy SC s.t. its induced
strategy is winning in the game (G, φinit,Φ)

1 Obtain the control game structure GC using ΓIC ;

2 φCinit := tc = 2 ∧ φinit;
3 Synthesize a VC\V-independent winning strategy SΦ by

solving the game (GC , φCinit,Φ);

4 Extract and return a control strategy SC from SΦ;

Completeness. Note that Algorithm 2 is not complete
as the interfaces provide an abstraction of the controllers and
they might lack some information on the sequence of states
that will be visited during the execution of the controller.
As an example consider a game structure G with an integer
variable x. Consider a controller C that starting from a state
x = p where p is a parameter, increments x by three, i.e.,
eventually x = p+3. Assume that the controller does this by
incrementing x one by one in three consecutive steps. Figure
5a shows a part of a run of G starting from a state where
x = 1 and applying the controller C↓p=1. For simplicity, we
assume that all states in G are player-2 states (represented
by boxes). The interface IC of the controller C is defined as
IC = (φinitC , φinvC , φfC ) where φinitC = (x = p), φinvC =∨p+3
i=p x = i, and φfC = (x = p+ 3). That is, starting from a

parametric state x = p and using the controller C, any state
x ∈ [p..p+3] can be visited, and eventually x is incremented
by 3. Note that here we removed the constraints concerning
the set of admissible parameter values from the interface to
keep the example simple. Figure 5b shows part of a control
game structure obtained from IC from any state with x =
1. To keep the figure simple, we removed the parameters
and variables corresponding to the controllers, and similar
to Example 3, player-2 states are grouped together based
on their valuations over x. Let φinit = (x = 1) and Φ =
3(x = 3) specify the initial state and the objective of the
system, respectively. It is easy to see that using controller
C guarantees visiting the state x = 3 on its path to the final
state x = 4. However, there is no control strategy over the
control game structure that guarantees visiting x = 3 as
player-1 can avoid the state with x = 3 in the control game
structure. Intuitively, the sequence of states (x = 1)(x =

x = 1

x = 2

x = 3

x = 4

(a)

x = 1

x = 1, te = 1

x = 1, te = 2

x = 2, te = 2

x = 3, te = 2

x = 4, te = 2

x = 4

(b)

Figure 5: (a) Part of a run in a game structure where the
controller takes the control at a state with x = 1 and incre-
ments x by 3. (b) Part of a control game structure capturing
execution of the controller from a state with x = 1.

2)(x = 3)(x = 4) is “lost” in the control game structure.
This loss of information is the cost paid for having a simpler
control game structure.

For a given objective Φ, completeness of the framework
can be achieved by analyzing the controllers and enriching
the interfaces, or in the extreme case by having interfaces
that exactly capture the possible outcomes of applying cor-
responding controllers. However, our main emphasis is on
simplicity and separating the two design layers, the para-
metric controller synthesis and synthesis from a library of
parametric controllers. Controllers in our framework can
be viewed as black-boxes where their input-output behavior
is provided through their simple interfaces. An alternative
view is to see the controllers as white-boxes and extract more
information from them. The trade-off is that the former ap-
proach is simpler and more computationally efficient as the
control game structure is simpler and requires less number
of symbolic steps, while the latter guarantees completeness.

6. CASE STUDY
In this section we apply the methods developed in Sections

4 and 5 to an autonomous vehicle case study. Consider a net-
work of one-way streets connected via intersections as shown
in Figure 1. Assume there is a controlled autonomous vehi-
cle V1 initially positioned in the grid marked with s0. Also
assume there is an uncontrolled vehicle V2 initially at the
grid-cell s∗. Each vehicle has actions move-forward, back-
up, turn-left, turn-right, and stop that moves it one step
forward, backward, to the left, to the right, and leaves its
position unchanged, respectively. The goal is to synthesize
a controller for V1 that can guide it from the initial position



s to the final destination d while obeying the traffic laws
(e.g., moving in the specified directions of streets, no stop-
ping inside an intersection, etc.) and avoiding collision with
V2 and static obstacles. We assume that the uncontrolled
vehicle respects traffic laws by always moving in the specified
directions for the streets. We implemented our algorithms
symbolically in Java and using BDD package JDD [17]. We
first specify and synthesize a set of parametric reactive con-
trollers that guarantee advancing the vehicle in north, south,
west, and east directions while avoiding collision with static
obstacles and the other vehicle. We then synthesize a control
strategy that instantiates and composes these controllers to
navigate V1 safely from initial position to the destination.

Synthesis of Parametric Controllers. We denote the
location of the vehicle Vi at any time-step with (xi, yi) for
i = 1, 2. We specify four parametric controllers that can
move the car in different directions: Controller C1 (C2) with
specified controller interface I1 (I2) that moves the car three
steps toward east (west, respectively), and controller C3 (C4)
with specified controller interface I3 (I4) that advance the
car one step toward north (south, respectively.) More specif-
ically, let a, b be two parameters. Let φinit = (x1 = a ∧ y1 =
b) be the parametric initial state. Let φinv = (x1 6= x2 ∨ y1 6=
y2), i.e., no collision between vehicles. Finally, let φf1 =
(x = a + 3, y = b), φf2 = (x = a − 3, y = b), φf3 = (x =
a, y = b + 1), and φf4 = (x = a, y = b − 1) specify moving
in different directions. Controllers are specified by inter-
faces ICi = (φinit, φinv , φfi). Algorithm 1 is then used to
synthesize parametric controllers, their corresponding inter-
faces and the set of admissible parameter values.

Synthesis of Control Strategy. Once a library of para-
metric reactive controllers ΓC and their corresponding inter-
faces ΓIC are formed, Algorithm 2 is used to synthesize a
control strategy for the controlled vehicle. A synthesized
control strategy instantiates and applies the controller C1
consecutively to advance the vehicle toward east and finally
bring it to the position marked by s6, from which controller
C3 is instantiated and employed consecutively to take the
vehicle to its destination. More specifically, at any position
marked by si for i = 0, · · · , 5, controller C1 is instantiated
and becomes active, and it guarantees to eventually advance
the controlled vehicle to the next position si+1. Similarly,
at any position marked by si for i = 6, · · · , 9, controller C3
is instantiated and becomes active, and it eventually navi-
gates the controlled vehicle to the next position si+1 where
s10 = d is the final destination. The control strategy sets
the parameters a and b according to the current state of the
vehicle, i.e., if the current position of V1 is (x1 = i, y1 = j),
the control strategy instantiates the controllers C1 and C3 by
parameter valuation (a, b) = (i, j).

7. CONCLUSION AND FUTURE WORK
We presented a framework for symbolic synthesis from

a library of parametric and reactive controllers. We also
showed how these controllers can be synthesized from para-
metric objectives specified by the user. In this paper, we
assumed that the controllers have perfect information about
the state of the system at any time-step. However, in prac-
tice, this assumption might be unrealistic, e.g., due to the
imperfection and limitations of the sensors of the system. In
future, we plan to investigate how our approach can be gen-
eralized to synthesize strategies for systems from a library
of controllers with partial information.
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compositional framework for controller synthesis. In
Concurrency Theory. 2011.

[3] R. Bloem, H. N. Gabow, and F. Somenzi. An
algorithm for strongly connected component analysis
in n log n symbolic steps. FMSD, 2006.

[4] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and
Y. Sa’ar. Synthesis of reactive (1) designs. Journal of
Computer and System Sciences, 2012.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT press, 1999.

[6] E. Filiot, N. Jin, and J.-F. Raskin. Antichains and
compositional algorithms for LTL synthesis. FMSD,
2011.

[7] E. Frazzoli, M. Dahleh, and E. Feron. Maneuver-based
motion planning for nonlinear systems with
symmetries. IEEE Transactions on Robotics, 2005.

[8] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas.
Temporal-logic-based reactive mission and motion
planning. IEEE Transactions on Robotics, 2009.

[9] H. Kress-gazit, T. Wongpiromsarn, and U. Topcu.
Correct, reactive robot control from abstraction and
temporal logic specifications.

[10] O. Kupferman, N. Piterman, and M. Vardi. Safraless
compositional synthesis. In CAV 2006, 2006.

[11] J. Liu, N. Ozay, U. Topcu, and R. M. Murray.
Synthesis of reactive switching protocols from
temporal logic specifications. IEEE Transactions on
Automatic Control, 58(7), 2013.

[12] Y. Lustig and M. Y. Vardi. Synthesis from component
libraries. In Foundations of Software Science and
Computational Structures. Springer, 2009.

[13] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis
of discrete controllers for timed systems. In
Symposium on Theoretical Aspects of Computer
Science, pages 229–242, 1995.

[14] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas,
and S. A. Seshia. Automated composition of motion
primitives for multi-robot systems from safe LTL
specifications. In IROS, 2014.

[15] S. Sohail and F. Somenzi. Safety first: A two-stage
algorithm for LTL games. In FMCAD, 2009.

[16] P. Tabuada. Verification and control of hybrid
systems: a symbolic approach. Springer Science &
Business Media, 2009.

[17] A. Vahidi. Jdd.
http://javaddlib.sourceforge.net/jdd/index.html.

[18] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning. AC, 2012.


	Introduction
	Preliminaries
	Linear Temporal Logic (LTL)
	Symbolic Turn-Based Game Structures
	Controllers and Controller Interfaces
	Composing Controllers

	Problem Statements and Overview
	Synthesizing Parametric Reactive Controllers
	Synthesis of Control Strategy with Parametric Controllers
	Case Study
	Conclusion and Future Work
	References

