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Abstract. Model checking is a popular algorithmic verification teaue for
checking temporal requirements of mathematical modelystess. In this pa-
per, we consider the problem of verifying bounded reachslgtoperties of sto-
chastic real-time systems modeled as generalized senkeMarocesses (GSMP).
While GSMPs is a rich model for stochastic systems widelyusgerformance
evaluation, existing model checking algorithms are applie only to subclasses
such as discrete-time or continuous-time Markov chaing. fkin contribution
of the paper is an algorithm to compute the probability thgivan GSMP sat-
isfies a property of the form “can the system reach a targetré¢imeT within

k discrete events, while staying within a set of safe statéef.this, we show
that the probability density function for the remainingrgitimes of different
events in a GSMP aftek discrete events can be effectively partitioned into fi-
nitely many regions and represented by exponentials aryshpuaiials. We report
on illustrative examples and their analysis using our tepkes.

1 Introduction

Probabilistic modeling is commonly used in the design anfopmance evaluation of
a wide range of real-time systems such as communicatioguts and multi-media
systems ([11, 8]). Traditional analysis of probabilistioaels involves simulations, and
is used to obtain estimates of quality-of-service metizhsas mean delivery time for
a message. In contrast, formal verification techniquesiaredhat checking whether or
not a system model satisfies a functional correctness propech as “every message is
eventually delivered.” Model checking has emerged as devimethod for formal veri-
fication for debugging critical components in industrigtisgs ([6, 5, 12]). The goal of
probabilistic model checking is to integrate the two apphes so that a probabilistic
model of a real-time system can be algorithmically checlgadrest a specification such
as “every message is delivered withims with probability0.9.”

Early work on probabilistic model checking considers déiéemodels such as finite-
state Markov chains or Markov decision processes, andn&mgents given by temporal
logics or automata, and shows how to algorithmically coragbe probability that a
model satisfies the requirement ([19, 7, 10]). More recenkvatlows modeling using
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continuous-time Markov chains (CTMCs), and specificatwriten in temporal logics
such as CSL and PCTL that allow requirements with time antatiity ([3, 15, 16]).
Issues concerning symbolic representation and efficieplieimentation have also been
studied leading to a number of probabilistic model checlé&® 17]). In particular, the
model checker PRISM has been applied to a number of casestuadiistributed proto-
cols and embedded systems (b&p://www.cs.bham.ac.uk/“dxp/prism ).

In this paper, we consider the probabilistic model checkingpblem for systems
modeled asseneralized Semi-Markov Proces§esSMPs) ([9, 18, 8]). In our model of
finite-stateGSMPs, the system can be in one of the finitely many statescamdtave
a finite number of scheduled events. When the event(s) withethst remaining firing
time happens, the state is updated probabilistically, @wdevents can be scheduled at
times chosen randomly according to distributions desdrityeexponential and polyno-
mial density functions with finitely many discontinuitieghich we callexpolynomial
region distributiong ERDs). Unlike CTMCs, such distributions need not be memory
less, and the class of ERDs includes uniform or polynomistrithutions over finite
intervals, point distributions over finitely many constaalues, and exponentials.

The classical way to analyze GSMP models involves MontedCanhulations. In
[1], the authors show how to chegkialitativeprobabilistic properties, that is, whether
a GSMP satisfies a property with probability O or 1, and thialgsis is based on the
so-called region graph introduced for analysis of non-philistic real-time systems
modeled using timed automata [2]. Region graph, howevantiadequate for comput-
ing quantitativeprobabilistic properties as different configurations ie #ame region
have different probabilities of satisfaction of propestien [14], the authors show that
by refining the region graph, one can approximate the satisfaof quantitative proba-
bilistic properties, while [20] shows that statistical gzimg can be adopted to compute
estimates for the model checking problem. The literaturstoohastic Petri nets shows
how GSMPs can be approximated by Markovian models [8]. Ia f@iper, we show
that if we are given a bound on the number of events, then eyatbolic analysis for
verifying quantitative probabilistic properties of GSMiBpossible. More specifically,
given a finite-state GSMR/, a target sef’, a safety sef, a boundk on the number
of discrete events, we show how to compute the probabilayith will reach F', while
staying within the sef, within % discrete events (and also, within a time bouhdf
specified). The bounklis analogous to the bound on the lengths of paths used intrecen
work onbounded model checkirgj discrete Boolean systems using SAT solvers [4].

For quantitative analysis of a GSMP, we need to effectivepresent and compute
the distribution on the remaining firing times of scheduleeregs when the event(s) with
the least firing time happens. For this purpose, we considdtidimensional expoly-
nomial region distributions: the space of configurationdiidded into finitely many
regions using axis-parallel and diagonal constraintslamio the region graph, and
with each region, the density function is continuous repmésd by a combination of
exponential and polynomial functions. Our main technicalstruction shows that the
class of ERDs is effectively closed under expiration of ésemd scheduling of new
events. This leads to an iterative symbolic algorithm whiomputes the probability
distribution after each discrete step.



We are implementing our modeling and analysis approach oohcalled Event
Horizon Verifier and we illustrate it using a classical example from queuieigvorks.
Consider a buffer for which the interarrival time betweewccassive messages from
the producer, and the processing time for a message by tteeican, are described
by ERDs. Given a capacityv, suppose we want to calculate the probability that the
number of unprocessed messages excéedshen, our analysis allows us to compute
this probability, given a bound on the total number of events

2 Generalized Semi-Markov Processes

LetN be the set of all natural numbeb§; beNU {0}, R be the set of reals, aril; be
the set of all non-negative reals.

In a GSMP the time between scheduling an event and its oqgme@r firing time)
is modeled as a positive random variable. For this reasonrigéiyoreview related ter-
minology. A random variablé& is characterized by itsumulative distribution function
(cdf) distr(z) = Pr(X < x), and if distr(x) is continuous then also byrobabil-
ity density functior(pdf) dens(z) defined by the equatiodistr(z) = fow dens(y) dy.
For many modeling purposes, however, it is convenient taariséom variables whose
cdf’s are not continuous. For instance, it may be necessamyodel the firing time of
an event by a random variable that takes only a finite numbgpss$ible values. We
say thatr € R, is amass poinbf X if Pr(X = z) > 0. We will see that for random
variables with a finite number of mass points it is still pbsesto define a function with
properties similar to those of the pdf of a random variablwontinuous cdf.

We say that an expression(z) is expolynomialif it can be written as
orey crx™ e T wherecy, A, € R, my, € Ny, forallk = 1,...,r. Let Ezpr(x)
be the set of all expolynomial expressions. Consider atjartk, of R, which con-
sists ofa bounded intervals followed by an unbounded interval angtiiets between
them:R, = U~ {i, (i,i+ 1)} U {a, (a, +o0)}. The constant is thewidth of R,. We
say that a functiorf () is expolynomialvith finite support onR,, if there exists a map
My¢: R, — Ezpr(z), such that for al € Ry, f(z) = M(r)(z), wherez € r and
r € R, (i.e.r is either an interval or a point).

Definition 1. A (unidimensional) random variabl® has an expolynomial region dis-
tribution of widtha, if there exists an expolynomial functidans(z) > 0 on R,, such

thatforallt € Ry, Pr(X <) =301, [iner dens(y) dy+ 33 @t dens(i) =
fot dens(y) dy + S ) gens (i), wherel, is the set of all intervals irR,, and

|t] denotes the largest integer no greater thtan

We call dens(x) the pdf of X. Notice, thatX has a mass point aiff dens(i) > 0
andi € {1,...,a}.

Uniform distributions, exponential and truncated expdigmistributions, finite
discrete distributions are all examples of expolynomigioa distributions. Many other

! Mass points can also be treated using Dirac delta fundife. We have chosen not to do so
because this approach leads to cumbersome expressiomsnmuttidimensional settings.



distributions with continuous and discrete componentdeaapproximated by expoly-
nomial distributions. Our definition requires finite intats to be of the unit length and
mass points to occur at a finite number of point8limhowever this is done only to sim-
plify the presentation of the results. In general, it is sigfit if a distribution is defined
by expolynomial expressions on a finite number of intervaith wational endpoints,
and has only a finite number of mass points.

Now we are ready to give a formal definition of the class of ls&mstic processes
that we study in this paper.

Definition 2. A finite-state generalized semi-Markov process (GSMP) igpetd =
(Q, X, E, init, distr, next) where:

— (@ is afinite set of locations;

— Xis afinite set of events;

- E: Q — 2% assigns to each location € Q a set of events that awctivein ¢. A
locationg is absorbingff E(q) = 0.

— init: Q — [0,1] is a probability measure oy, which for each locatioy € @
gives the probability thag is the initial location ofA;

— distr: ¥ — (R4 — [0, 1]) assigns to each event fising time distribution which
is an expolynomial region distribution. For a cdfstr(e), dens(e) denotes the
corresponding pdf.

— next: Q x (2% \ {0}) — (Q — [0,1]) defines transitions between the locations
of A. This function takes as its arguments a source locati@nd a non-empty
subsetG of the active events af, and returns a probability measure ap. For
each locationy’, this measure gives the probability thatwill move fromg to ¢’ if
all events inG' occur simultaneously; we require that ., nezt(q, G)(¢') = 1

forall G C 2F(@) \ {§}.

Itis convenient to think that a clock is assigned to eachevddpon (re-)scheduling
of e we update its clock to a new valuation chosen independenthnaom according
to distr(e).The clock shows the time remaining until the next occureeoice. Every
clock runs down with the same rate equalltd_et us say that: >’ — R, is a clock
valuation (or simply valuation) i maps events to the values of their clocks. If an event
is not active in the current location we assume that its visluadefined.

A configurationof the GSMPA is a pairs = (q,v), whereq € @ andv is a clock
valuation. Given a configuration = (q,v), lett*(s) = min{v(e),e € E(q)} be the
time until the next transition anf™(s) = {e* | e* = argmin{v(e),e € E(q)}} be the
set of events that causes the transition (the clocks of thesgs expire simultaneously).
For anyt < t*(s) we denote by — ¢ the valuationv’ such that for alle € E(q),
V'(e) = v(e) — t. We say thas L, ¢ is atimed transitionbetween the configurations
s = (q,v)ands’ = (¢, if v/ =v —t. If t*(s) = 0, thenE* = {e* | v(e*) = 0},
ands £ s’ denotes aliscrete transitiorbetween the configurations= (¢, ~) and
s’ = (¢’,v'), whereq’ is chosen according to the probability measure next(q, E*),
and the valuation’ is constructed as follows:

1. ifanevent € E,4(q, E*,¢'), whereEqa(q, E*,¢') = E(¢') N[E(q) \ E*] is the
set of events, excluding the eventshH, that were active iy and continue to be
active in¢’, thenv/(e) = v(e);



2. ife € Enewl(q, E*,¢'), WwhereE,ow(q, E*,q") = E(¢') \ Foa(g, E*,q') is the
set of events that were not active gnbut become active i’ and events that
are inE* N E(q') (i.e. events that fired ig and are active ig’), then valuations
/' (e) are chosen independently at random accordingidt-(e) (i.e. the events in
Enew(q, E*,q') are (re-)scheduled);

3. ife € Feancenled(q, E*,¢'), WhereFEcancened(q, E*,¢') = E(q) \ E(q¢') is the set
of cancelled events that were activedrbut no longer active iy’, thenv/(e) is
undefined.

A run o of A is a sequence of alternating timed and discrete transitions

_ t"(s0) ;o t"(s1)  , m t"(s2)  ; pe
O=8) — 8y —> 8] ——> 8§ — 2 —— S5 —>

The runo starts at the initial configuratiosy = (go,0), go is the initial loca-
tion,which is chosen according tait, andvy is the initial valuations of the events in
E(qo), scheduled according to the corresponding firing time iistions. A run can
have a finite or infinite number of transitions; a run that leeched an absorbing loca-
tion will stay in that location forever.

The time of thex!” transition is the tim&},(c) = 37" t*(s;) that elapsed since
the start ofr and until then?" discrete transition.

Example 1.Let us describe a GSMR,, which we will use as our running examplég,
has six locationsy is the initial location (i.esnit picks this location with probability
one), and locationgs, g3, q4, andgs are absorbing. Iy two eventse; ande, are
active, the initial clock valuations for these events areseim according to their firing
time density functionsdens(e1)(t1) = Dtie”™ whent; € (0,1) and0 otherwise
(the normalizing constari is equal tol /(1 — 2e~1)), anddens(es)(t2) = 1/2 when
to € (0,1) U (1,2) and0 otherwise, i.e. it is uniformly distributed i, 2). If e; fires
first, then the process movesgowith probability1, otherwise it moves tg, and stays
there forever. Iry; three events are active €z whose clock keeps its valuation fragm
and eventg; andes whose clocks obtain new valuations upon entetingThe firing
time density function foes is dens(es)(ts) = 1 whents € (0,1) and0 otherwise,
and it describes the uniform distribution ¢ 1). Firings ofe;, ex andes in ¢; lead to
locationsgs, ¢4 andgs, respectively.

A historyr of the lengthn of a runo is a sequence of tuples and transitions between
them marked with sets of events:

7 = (qo, Oo, No) L2 (q1,01,MNq) By By (qns On, Ny)

Each tuple(q;, O;, NV;) consists of a visited location and two sets that partiti@n th
set of active events of that location. The €&t consists of active events that were
not scheduled upon arriving 9 and the setV; consists of active events that were
scheduled. For the tupleo, Oy, Ny), we have tha®y = § and Ny = E(q), and for
anyi > 0, 0; = Eoa(qi-1, Ei, ;) andN; = Eyew(qi-1, Ei, ¢:).

By last(m) = ¢, we will denote the last visited location in a histary and byl
we will denote the set of all finite histories.



It easy to see that two runs share the same histafilengthn if they visit the same
sequence of, locations and transitions between those locations aredamsfiring of
the same sets of events.

We say that a history’ is asuccessoof 7 along an edge marked by a set of events

E iff there exists a tupléq;, O, Ny/) such thatr’ = = EZN (q, Oy, Npy).

Definition 3. Letr be a history of lengthv and letl = |E(last(n))| be the number of
the active events in the last locationmfthen theevent clock valuations af (abbrevi-
ated asecvof r) is ani-dimensional random variable of values of the active claoks
the locationlast (), immediately after it has been reached by & transition.

Given a historyr, we denote by ™ (x4, . .., ;) the pdf of the event clock valuations
of . We will show how to usef™(x1,...,x;) to compute probability,, which is
called theoccurrence probabilityf 7 and which is equal to the probability that a run
of A hasr as its history.

3 Computing Probabilities of Bounded Until Properties

Suppose that we are given a GSMP The locations ofA are partitioned into two
sets:(, and @,, which are called the sets shfeandunsafelocations, respectively.
Furthermore, a subsét, of @), is called the set aoflestination locations

Let 71" .. C I be a set of histories of length less than or equad,tand such that

until =

for everym € II7 .., all locations ofr belong toQ)s and the only location that belongs

n

t0 Qq is last(m); let Iuneit = Un>o Il -

Given two parameters — a real numbet [0, 1] and an integer > 0, we consider
thebounded until problem

— Is the probability that a rurr of A has a historyr € 117 .., greater thanp?

n

Algorithm 1 is a generic algorithm to solve this problem. Ttgorithm works on
tuples(r, f™, px), the first element of a tuple is a history the second element is the
ecv densityf™ of 7, and the last elememt; is the occurrence probability of. Given
f™ andp,, we assume (and we will prove later) that for any successiotyin’ of
7, we are able to computg™ andp,|. (which is the occurrence probability af
conditioned on the probabilistic event thahas happened).

HistorySet is the set of tuples that the algorithm has to process. Ths setialized
with the tupleg(w, /™, p,.: ), wherer) = (¢;, O, N) for locationsg; of A, such that
init(¢g;) > 0. The algorithm also sets to zero two real numb@ysaand P,,, which are
the lower bounds of reaching a destination location and aaferiocation, respectively.
In the main loop, the algorithm picks a history fralfistorySet and checks if its last
location is a destination or an unsafe location. If this s¢hse then it increaséy or
P,. If the last location is a safe location but not a destinakimation and the length of
the history is less tham, then the algorithm computg§’ andp, . for every successor
history 7’ of = and updatedfistorySet with the computed tuples. When the loop is
completed, the algorithm output&¥’ES” if P; > p and “NO” otherwise.

Suppose that in addition to the numbgndn, we are given a positive real number
T'. Then, applying our algorithm, we can also solvebloended timed-until problem



Algorithm 1 Genereric iterative algorithm
forall gi: ¢; € Q A init(g;) > 0do

HistorySet «— (m§, f”‘%,pwg)
end for
Pd — O, Pu — 0
while HistorySet # 0 APy <pAP, <(1—p) do
pick (7, ™, pr) in HistorySet
if last(m) € Qg then
Py — Py 4+ px
else iflast(m) € Q. then
Py, — P, +px
else iflength of ™ < nthen
forall 7s: 75 is a successor of wdo
compute f™* and pr,|»
add (7s, f™ , pr - Pr,|x) to HistorySet
end for
end if
end while
if Py > pthen
return YES
else
return NO
end if

— Is the probability that a runr of A has a historyr € 11"

until and T’|7T\(U) <T
greater tharp?

The bounded timed-until problem can be reduced to the baundgl problem by
introducing a new evenrt and a new unsafe absorbing locatignThe random variable
that models firing time distribution fat; is equal tal” with probability one. For every
locationg and every set of evenfs, such that; € E, nezt(q, E) returns a probability
measure concentrated gn Thus, if a destination location is reached then it is redche
before timeT" has elapsed.

3.1 A Sample Computation
Consider the GSMP, from Example 1 of Section 2. Given a histoty = g Lea},
(Q17 {62}3 {617 63})! o = (QOa Qv {ela 62})! we want to CompUtﬁﬂl andfﬂ'l_

Later, in Section 4, we will prove that to fing,, andf™ we need to compute three
formulas:

~ o +OO ~
fﬂ-l (tg) = A dens(ez)(tl + tz)dens(el)(tl) dtl, Py = /O fﬂ-l (tg) dtg,

fT (b, b, t3) = dens(el)(tl)ﬁ;iwdens(eg)(tg).

T
Intuitively, the first formula captures the necessary infation on the distribution
of values of the clock of; in ¢1, given thate; has fired before,. The second formula
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(a) dens(e2)(t2)dens(e1)(t1) (b) dens(e2)(t1 + t2)dens(e1)(f1)

Fig. 1. Computingf™*

shows that we can fing,, by integrating/™ (t2) over all possible values. And the last
formula gives an expression fgf (¢1,t2, t3) as a product of three density functions,
each corresponds to an active cloclgofEven though the formulas above use integrals
we will not use numerical computations, but instead we wbliain the formulas in an
explicit form. This suitability for symbolic computatioisa distinctive property of the
expolynomial functions and we will use it throughout the ap

We show two ways to compute the first formula. Léf,.,-; denote a
function of ¢, which is 1 if « < ¢t < b and 0 otherwise. We know that
dens(e1)(t1) = Dtie " 1oy, <1 anddens(ez)(t2) = 31jo<ty<o), thus f™ (t3) =

+ — 1 _ .
% 0 oot]_e t11[0<t1<1]1[0<t1+t2<2] dt]_ = % fo tle t11[0<t1+t2<2] dt]_ We COﬂSIder

two cases: ~ .
—ifty € (0,1), thenf™ (ty) = £ [ tre " dty = ;
27t2

—ifiy € (1, 2), thenf’” (tg) = % t1€7t1 dt1 = %(f2€t272 — 3et272 4 1)

Note that computing’™ (t2) requires analysis of different possible cases and the
number of cases quickly becomes intractable with the irseréa the number of ac-
tive events in a location and complexity of firing time distriions. To deal with these
difficulties we present now a more convenient “geometricywacomputef ™ (¢2).

In Figure 1(a), the support for the functi@ians(ez2)(t2)dens(e1)(t1) is shown. It
consists of two squared and B (without the borders), and in each of these squares
the function is equal ttgtle—tl. Now consider a linear transformation = #;, ts =
t1 + t2. Under this transformation the squardsand B are transformed into areas
A} U A, and B’, respectively (see Figure 1(b)). The original function dat depend
on t,, and after the transformation the function will not depemd: either — it is
equal to2¢,e~* in the areasd], 4} and B, and it is0 in C. Now it is easy to see
that if £, € (0,1) then we have to compute two integrals, one oiérand the other
OVEI‘A/QZ .]Fﬂ’1 (fg) =D 1=t £1€_£1 thl + % fllig2 516_51 dil = %; and Ifig S (1, 2)

2
then we need to compute only one integral adér /™ (i,) = 2 fogft2 fre~tidty =

%(2?2652_2 — 3ef2—2 4 1).



Now, using the second formula and renaming the variableack tot,, we obtain
that

Finally, f™ (t1,t2,t3) = Dtre™ " Loy, <1) (g5 Lo<tn <1) F3mm (22 =32 724
D1p<ty<2)) - Lo<ts<1)- Again, for this function we can have a convenient geometric
representation but this time in three dimensions.

4 Multidimensional Expolynomial Region Distributions

In this section we introduce multidimensional expolynomémgion distributions. We
are interested in this class because it is closed under digxbmputations that we will
use. It follows that if the firing time distributions of theews are (one-dimensional)
ERDs then all the distributions that we will encounter wil@be ERDs. Before giving

a formal definition, we describe a class of partitions of tleek valuation space that
we will call diagonal mesh partitionsThese partitions serve as domains for the ERDs
— in each region of a diagonal mesh partition, an ERD is giwea lmultidimensional
expolynomial expression

4.1 Diagonal and Inverse Diagonal Mesh Partitions

For a set of variables, . . ., t,, ann-dimensional diagonal mesh partitié), of width
a € Nis a partition ofR?} into regions such that each region is described by:

— mesh constraintdor each variable, by a constraint of the fort— 1 < t < b (we
say that such a constraintisunded, ort = b, or¢ > a (anunboundedonstraint),
whereb € Nandb < q;

— diagonal constraintsfor every pair of different variablesandt’, such that both of
them have bounded mesh constraints in the region, by aniogdan the fractional
parts of the variables, i.e. by a constraint of the fom- [¢]) ~ (¢ — [t']),
where~e {<,>,=}. Equivalently, if there are constrainis— 1 < ¢ < b and
¢ —1 <t < ¢, thenthe diagonal constraint can be writtert ast’ + (b — c¢).

Given a regionr of an n-dimensional diagonal mesh partitid®y,, let m be the
number of independent constraints of the farm b ort = ¢ + b, then we say that the
dimension of- isn — m. The regions that have dimensiarare calledull dimensional
regions and regions that have less thadimensions are calleghass regions

For technical reasons, we will be also interested initiverse diagonal mesh par-
titions. Compared to the diagonal mesh partitions these partitiame one designated
variablet*, which cannot form diagonal constraints with any otherafale but, instead,
it forms inverse diagonal constraints. Formally, for a detasiablesty, ..., t,_1,t* an
n-dimensional inverse diagonal mesh partitiep of width « € N is a partition ofR”
into regions such that each region is described by:



— mesh constraintdor each variable € {t4,...,t,—1,t*} by a mesh constraint, as
described in the definition of diagonal mesh partition;

— diagonal constraintsfor every pair of different variables+# t* and¢’ # ¢* with
bounded mesh constraints, by a diagonal constraint, asildeddn the definition
of diagonal mesh patrtition;

— inverse diagonal constraintdor every pair of variable$ andt*, such that for
each of them there is a bounded mesh constraint, by a caristfahe form(t —
[t])+ (t* — [t*]) ~ 1, where~€ {<, >, =}. Equivalently, if there are constraints
b—1<t<bandc—1 < t* < ¢ then the inverse diagonal constraint can be
writtenast +t* + 1~ b+ c.

Note that the number of the regions in every diagonal or sweéiagonal mesh par-
tition is finite, and exponential in the number of variablMste also that the constraints
can be seen as hyperplane®if.

Next we will consider an important linear transformatibn R’} — R}. Letp =
(t1,...,tn_1,t*) be a point thal maps to a poinp = (¢1,...,,_1,%*), then coordi-
nates o andp are related by the following equationts:= ¢;+¢*, fori = 1,...,n—1
andt* = {*. We have seen an application®in Section 3.1. The properties of the par-
titions are given by the following lemmas. Due to the lackmdse, we omit the proofs.

Lemma 1. Let R, be ann-dimensional diagonal mesh partition of width ThenZ
transformsR, into ann-dimensional inverse diagonal mesh partiti&a of the same
width. The pre-image of arlydimensional region i?,, for. = 0, ..., n, is a (part of)
[-dimensional region iR,,.

Lemma 2. Let R, be ann-dimensional inverse diagonal mesh partition with the vari

ables(ty, ..., t,—1,t*), then the projectio/, of R, onthe subspadE’jL‘1 that corre-
sponds to the variableg, ..., t,—1) is (n — 1)-dimensional diagonal mesh partition
of widtha.

Our interest in diagonal and inverse diagonal mesh panrttis justified by the follow-
ing example. Let us revisit the GSME, from Example 1. In Section 3.1 we have com-
putedp., andf™ (¢4, t2, t3) and showed that™ had its support on cubes & . Now
we want to show that it is necessary to have diagonal conséritio. Consider the his-

tory w2, which is a successor af;: 7, = m; des, (g5,0,0). We want to computg,, .

Similarly to the formula forf™ (t,), we can writef ™ (t1,to) = [."°° f™ (t; +t3,t1 +
ts, t3) dts. Evaluating this formula using, for example A¥MLE we will see that in two
regions(0 < t; < 1,0 < tp < 1,t; < tz)and(0 < t; < 1,0 < tp < 1,81 > ta),
f™(t1,t2) is given by twodifferentexpolynomial expressions.

4.2 Expolynomial Expressions, Functions, and Distributios

We say thate(zq,...,z,) is an expolynomial expression if it is of the
form >0 g™ - gmenermtat et T where e, A1y ..., A € R,
ME1,...,Men € Noforallk =1,...,r. By Expr(z,...,x,) we denote the class of

all expolynomial expressions in the variables. . ., z,,.



A function f,(x1, ..., x,) is amultidimensional expolynomial functiaf width
with finite support on a diagonal mesh partitié if there exists a map/; : R, —

Ezxpr(x1,...,x,) such that if a poin{xy,...,x,) € r, r is a region inR,, then
fl@i, . zn) = Me(r)(21, ..., 20).
Given an expolynomial functiori(z) = f(x1,...,x,) and anm-dimensional re-

gionr € R,, 1 < m < n, we want to define the integral gfonr (denoted ag, f). It
is easy to see that due to the region’s constraints, eachipoircan be determined by
only m independent parametejs= (y1, ..., ym), and we can expressas a function
of g, i.e.x; = x;(y) fori = 1,...,n. Thus we can definér f as a multiple integral
f(rl(g),...,zn(gj))Er f(¥) dij taken overn variables.

Definition 4. Multidimensional random variablé&l = (X1,..., X,,) has anexpoly-
nomial region distributio(ERD) of widtha if there exists an expolynomial function
fa(@) = fa(z1,...,2,) > 00N R, such thatforallt = (¢1,...,t,) € R}, Pr(X <

t) = Pr(Xy < t1,..., Xy < tn) = ETEIRQ frﬂ(zl(17)<t1,~:~71n(37)<t3z) fa@) dy +

Y (z1,.wn)ePr, | (T1,...,7,), Wherelg, is the set of all regions of dimension one or

T1<t1,...,Tn<tn
higherinR,, and Py, is the set of all zero-dimensional regions (points).

We call f,(z) the pdf of X. Note, that for every regione R,, Pr(X € r) = [ f.
Let us give a simple example. Consider two one-dimensiompendent random
variables with ERDs given by their density functions:

_Jo,ifz=00rz=1 _Jo, ify=0
fl(x)_{l,if0<a:<1 ’ fz(y)_{l/z,if0<y<lory:1'

The first random variabléX is uniformly distributed on(0, 1). The second random
variableY is uniformly distributed on(0, 1) and has a mass pointat= 1. Then the
random variableZ = XY is a two-dimensional random variable with the pdf

0, f(z=d,y=j)or(z=14,0<y<1),4,j=0,1

1/2,if 0<z<1,0<y<l,z~y),~€c{<,>}
Fs@v) =9 {aif (y=1,0 <z < 1)

0, f0<z<l0<y<l,z=y)or(y=0,0<z<1)

We see thafs(z, y) is not zero in both full dimensional regions and in one mag#re
(y=1,0<z<1).

5 Image Computation

In this section we will prove our main technical result.

Theorem 1. Let A be a GSMP, such that the firing time distributions of all egeare
ERDs of widtha. Let ™ € IT be a history ofA4, f™ be the pdf of the ecv of, 7’ =

2, (qv, O, Ni») be a successor of, f™ be the pdf of the ecv af, andm’ be the
number of active events i, then:

1. /™ is anm’-dimensional ERD of width;



2. givenf™, f can be computed symbolically.

The theorem will follow from the steps described below.

To simplify complex expressions we will use a convenienttend notation. Sup-
pose thal3 = {by,...,b,} is aset ofindices, then instead of writifigzy, , . .., zp,, )
we will write fye g (zp, y). We will also slightly abuse notation by writinf,e g (z» +
z,y) (wherez is a variable) instead of writindy,c 5 (25, y), Z» = xp + 2.

Suppose a non-negativedimensional random variabl€ with pdf f(z) is divided
into two random variableX’; and X,, such thatX; € R% andX, € R’ "°. Then the
pdf 0fX1 is le (531) = 0+OO' e 0+OO .f(yl, e Ysy Ys 1y - ,yn) dy5+1 cee dyn The
function fx, (z1) is called amarginal pdfof X .

Analysis off™ : Notice thatf™ can be written as

FRoun, (te) = fleo, (te) T dens(e)(te),

EGM/

where Vge'ol, (te) is the joint density function of the clock values of the ewentO,..

Thus, obtaining™ is sufficient for the construction gf* . It is also easy to see that if
/™ is an expolynomial function of width, thenf™ is also an expolynomial function
of width a (but of a higher dimension).

Computation off™¢": Let us pick any event* € E* and let(q;, O;, ;) be the last
tuple of 7. Suppose that! has followedr and now is ing;. Let G = {t. > t.-
e € (O,UN) \ {e*}} be a probabilistic event that the clock of the evehexpires
before or simultaneously with the other clocks @dG) be its probability. Then let

f:é?;lu/\/l) {6*}(758) be the pdf of clock values of all events (®; UA;) \ {e*} at the
moment wheri.- = 0, conditioned on occurrence 6f.

Let{, = t, — t.» and define

ee(@ruN\{er} (Fes ter) = Flco,unn fery (Fe + ter ter). 1)

Theng can be seen as the joint density functiortofand thedifferencedetween the
values of the other event clocks ahd (these differences may be positive or negative).
Now let gée(olu/\fl)\{e*}(te) = f0+°° Gec(OLUN)\{e*} (e, te*)dfe* be a marginal
pdf. Then, given the definition of that states that all differences should be non-

negative we obtain that

—+o0

, R gee(OluM)\{e*}(iea te*)dte*
geE(OLU/\/l)\{e*}(te) _ 0 )

Tecowmnierlte) = —— 51 Pr(G)

~ *

If we know how to compute/, it is easy to comput®r(G). Sincef™¢ is a pdf
then if we integrate over all its variables we should obtaiHence, from (2):

—+o0 —+o0
Pr(G) :/0 /0 Jere(@runin\fe-y (te) dbey -+ dte,,



wherem is the number of active eventsn

It remains to show how, giveﬁ;’e(oluM)(te), we can computg’ and to examine

properties of this computation. Let us introduce a new \dei&.« = .-, then from (1)
we see that to computefrom f™ we need to apply the linear transformatiGrfrom
Section 4.1. The expolynomial expressions are closed dimaéar transformations, and
we also saw that diagonal mesh partitions are transfornmednerse diagonal mesh
partitions of the same width (Lemma 1). So we conclude thit an expolynomial
function on an inverse diagonal partitiaﬁg.

Now we have to obtaig’ from g. First, notice that by Lemma 2/ is defined on a
diagonal partitiong' of the dimension one less thaﬁ‘g and of the same width. As in
the example of Section 3.1, at each regtdtis given as a sum of integrals of expolyno-
mial expressions of regions (5{3 that are projected on These integrals can be com-
puted symbolically using the formufaDz™e® dz = D(2a™me®—2 [ gm~1e® dy),
which can be easily derived by applying the integration byyspaethod. Thug’ (and
thereforef™¢") are computable expolynomial functions of width

Computation off™ : First, we “integrate out” off™¢" all clocks that were cancelled
upon transition fromy; to ¢;:

z o« +oo +oo
feéol/(te) :/0 ‘/0 feé(OlUM)\{e*}(te) dtel "'dtes7

whereey, ..., es € Ecancellea(q, E*, ¢), thusf’T is a marginal pdf, and it easy to check
that it is also an expolynomial function of width

We are almost done. Itis left to extract froffi¢” information that is pertinent only
to the transition that was caused by firing of the evéfitand not to the transitions that
are triggered by the sets of events that properly conidinLet £* = E*\{e*}, then

we constructf™ from f”* by extracting exactly those regions that have a constraint
of the formt. = 0 if and only if e € E*. For example, ife* is the only event inf*,

then E* = § and we obtainf™ from f™¢" by setting to zero all regions that have a
constraintt, = 0 for any evente. Similarly, if £* = {e1} then we extract all those
regions that are defined by the constraint = 0 (and set to zero the expolynomial
expressions for regions that in addition#to = 0 have a constraint,, = 0 for any
other event’).

Note, thatf™ constructed fromf™¢" may no longer be a pdf, so we have to divide
it by a normalizing constartt < H < 1, which is easily computable.

Computation op,|.: As a consequence of our previous computations, we obtain the
formula forp . .:
Prr = Pr(G) - H - next(q, E*, qr).

6 lllustrative Example

We are developing a tool called EHV (Event Horizon Verifidratt implements the
algorithm of Section 5. The tool is written imvA and relies on JSIENCE open source
library for the symbolic computations.



As an application of our method we consider a queueing pnoblhe producer
generates messages and the consumer processes them. $hgendisat await process-
ing are stored in a buffer of capacify (initially the buffer is empty). The interar-
rival time between successive messages is modeled by ERDtvetpdf: f1(¢) is p if
t€(0,1),isa(p) + b(p)zx if t € (1,2), and0 otherwise, wherg < (0, 1) is a parame-
ter. With f; (¢) we can model a situation when the interval between any twoessive
messages are at most two time units, the probability thatssage arrives during the
first time unit is uniform and the probability that a messagmild arrive during the
second time unit is “skewed” towards the end of the interval.

The time that the consumer needs to process a message isnlgittstributed on
(0,1). Itis also known that the producer can produce at Most K messages and we
want to find the probability?,,..10w that the buffer exceeds its capacity.

Notice, that if the difference betweel and K is small, thenP,crq0w Can also
be very small. Simulation techniques to estimate small alodlies are involved, they
require a large number of simulations and give only stati$tjuarantees. To the con-
trary, the running time of our method does not depend on thelate value of,c. 0w,
and, in fact, performance improves if there are only a fewp#tat lead to the unsafe
locations.

The problem can be reduced to the bounded until problem &GBMPB defined
as follows. The locations @8 are encoded with paifg, n), wherek = 0,..., K +11is
the number of messages in the bufferand 0, ..., N is the total number of messages
received so far. The locatidi, 0) is the initial location. For any, the locationg K +
1,n) are “unsafe”, and all locatior(¢’, n’), such thatV —n’ < K — k' are destinations
(if B is in such a location then the buffer cannot overfloi)has two events, and
ec.. Foralln =0,..., N — 1, the locationg0, n) havee,, as their only active event and
upon firing of that evenB moves to the locatioifl, n + 1). Unsafe and destination
locations are absorbing, and all the other locations hatte gpande. as their active
events. WherB is in such a locatiof{s, j), firing of e, or e. causes a transition to
(t+1,5+1)or(i—1,5), respectively.

We performed experiments for some sets of parameters. Thpuer that we used
for our experiments was a Linux server equipped with duatiBemlll processors op-
erating at1400 MHz and with2 GB of RAM. For each set of parameters we analyzed
all histories inll,,; (the total number of them is in the “Dest. reached” column) an
all histories that end in an unsafe location (the “Unsafeted” column). Below is the
summary of results.

Results
Parameter values:(K, N), p Pooerfiow Running timgDest. reached)nsafe reached
(5,11),1/2 9.0897 x 10~" [T min.23sec| ~ 2380 1040
(7,11),1/2 7.5504 x 107%| 36 sec. 560 185
(7,11),1/5 4.1124 x 107° | 3min. 7 sec. 560 185
(7,11),1/10 1.9335 x 107! |3 min. 17 sec 560 185
(30,31),1/10 1.2161 x 107%| 23 sec. 30 1
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