
Bounded Model Checking for GSMP Models of
Stochastic Real-time Systems⋆

Rajeev Alur and Mikhail Bernadsky

Department of Computer and Information Science
University of Pennsylvania

{alur, mbernads }@cis.upenn.edu

Abstract. Model checking is a popular algorithmic verification technique for
checking temporal requirements of mathematical models of systems. In this pa-
per, we consider the problem of verifying bounded reachability properties of sto-
chastic real-time systems modeled as generalized semi-Markov processes (GSMP).
While GSMPs is a rich model for stochastic systems widely used in performance
evaluation, existing model checking algorithms are applicable only to subclasses
such as discrete-time or continuous-time Markov chains. The main contribution
of the paper is an algorithm to compute the probability that agiven GSMP sat-
isfies a property of the form “can the system reach a target before timeT within
k discrete events, while staying within a set of safe states”.For this, we show
that the probability density function for the remaining firing times of different
events in a GSMP afterk discrete events can be effectively partitioned into fi-
nitely many regions and represented by exponentials and polynomials. We report
on illustrative examples and their analysis using our techniques.

1 Introduction

Probabilistic modeling is commonly used in the design and performance evaluation of
a wide range of real-time systems such as communication protocols and multi-media
systems ([11, 8]). Traditional analysis of probabilistic models involves simulations, and
is used to obtain estimates of quality-of-service metrics such as mean delivery time for
a message. In contrast, formal verification techniques are aimed at checking whether or
not a system model satisfies a functional correctness property such as “every message is
eventually delivered.” Model checking has emerged as a viable method for formal veri-
fication for debugging critical components in industrial settings ([6, 5, 12]). The goal of
probabilistic model checking is to integrate the two approaches so that a probabilistic
model of a real-time system can be algorithmically checked against a specification such
as “every message is delivered within1ms with probability0.9.”

Early work on probabilistic model checking considers discrete models such as finite-
state Markov chains or Markov decision processes, and requirements given by temporal
logics or automata, and shows how to algorithmically compute the probability that a
model satisfies the requirement ([19, 7, 10]). More recent work allows modeling using
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continuous-time Markov chains (CTMCs), and specificationswritten in temporal logics
such as CSL and PCTL that allow requirements with time and probability ([3, 15, 16]).
Issues concerning symbolic representation and efficient implementation have also been
studied leading to a number of probabilistic model checkers([13, 17]). In particular, the
model checker PRISM has been applied to a number of case studies in distributed proto-
cols and embedded systems (seehttp://www.cs.bham.ac.uk/˜dxp/prism ).

In this paper, we consider the probabilistic model checkingproblem for systems
modeled asGeneralized Semi-Markov Processes(GSMPs) ([9, 18, 8]). In our model of
finite-stateGSMPs, the system can be in one of the finitely many states, andcan have
a finite number of scheduled events. When the event(s) with the least remaining firing
time happens, the state is updated probabilistically, and new events can be scheduled at
times chosen randomly according to distributions described by exponential and polyno-
mial density functions with finitely many discontinuities,which we callexpolynomial
region distributions(ERDs). Unlike CTMCs, such distributions need not be memory-
less, and the class of ERDs includes uniform or polynomial distributions over finite
intervals, point distributions over finitely many constantvalues, and exponentials.

The classical way to analyze GSMP models involves Monte Carlo simulations. In
[1], the authors show how to checkqualitativeprobabilistic properties, that is, whether
a GSMP satisfies a property with probability 0 or 1, and this analysis is based on the
so-called region graph introduced for analysis of non-probabilistic real-time systems
modeled using timed automata [2]. Region graph, however, isnot adequate for comput-
ing quantitativeprobabilistic properties as different configurations in the same region
have different probabilities of satisfaction of properties. In [14], the authors show that
by refining the region graph, one can approximate the satisfaction of quantitative proba-
bilistic properties, while [20] shows that statistical sampling can be adopted to compute
estimates for the model checking problem. The literature onstochastic Petri nets shows
how GSMPs can be approximated by Markovian models [8]. In this paper, we show
that if we are given a bound on the number of events, then exactsymbolic analysis for
verifying quantitative probabilistic properties of GSMPsis possible. More specifically,
given a finite-state GSMPM , a target setF , a safety setS, a boundk on the number
of discrete events, we show how to compute the probability thatM will reachF , while
staying within the setS, within k discrete events (and also, within a time boundT , if
specified). The boundk is analogous to the bound on the lengths of paths used in recent
work onbounded model checkingof discrete Boolean systems using SAT solvers [4].

For quantitative analysis of a GSMP, we need to effectively represent and compute
the distribution on the remaining firing times of scheduled events when the event(s) with
the least firing time happens. For this purpose, we consider multidimensional expoly-
nomial region distributions: the space of configurations isdivided into finitely many
regions using axis-parallel and diagonal constraints similar to the region graph, and
with each region, the density function is continuous represented by a combination of
exponential and polynomial functions. Our main technical construction shows that the
class of ERDs is effectively closed under expiration of events and scheduling of new
events. This leads to an iterative symbolic algorithm whichcomputes the probability
distribution after each discrete step.



We are implementing our modeling and analysis approach in a tool calledEvent
Horizon Verifier, and we illustrate it using a classical example from queuingnetworks.
Consider a buffer for which the interarrival time between successive messages from
the producer, and the processing time for a message by the consumer, are described
by ERDs. Given a capacityN , suppose we want to calculate the probability that the
number of unprocessed messages exceedsN . Then, our analysis allows us to compute
this probability, given a bound on the total number of events.

2 Generalized Semi-Markov Processes

Let N be the set of all natural numbers,N0 beN∪ {0}, R be the set of reals, andR+ be
the set of all non-negative reals.

In a GSMP the time between scheduling an event and its occurrence (or firing time)
is modeled as a positive random variable. For this reason we briefly review related ter-
minology. A random variableX is characterized by itscumulative distribution function
(cdf) distr(x) = Pr(X < x), and if distr (x) is continuous then also byprobabil-
ity density function(pdf) dens(x) defined by the equationdistr(x) =

∫ x

0
dens(y) dy.

For many modeling purposes, however, it is convenient to userandom variables whose
cdf’s are not continuous. For instance, it may be necessary to model the firing time of
an event by a random variable that takes only a finite number ofpossible values. We
say thatx ∈ R+ is amass pointof X if Pr(X = x) > 01. We will see that for random
variables with a finite number of mass points it is still possible to define a function with
properties similar to those of the pdf of a random variable with continuous cdf.

We say that an expressione(x) is expolynomial if it can be written as
∑r

k=1 ckxmkeλkx, whereck, λk ∈ R, mk ∈ N0, for all k = 1, . . . , r. Let Expr(x)
be the set of all expolynomial expressions. Consider a partition Ra of R+, which con-
sists ofa bounded intervals followed by an unbounded interval and thepoints between
them:Ra = ∪a−1

i=0 {i, (i, i + 1)}∪ {a, (a, +∞)}. The constanta is thewidthof Ra. We
say that a functionf(x) is expolynomialwith finite support onRa if there exists a map
Mf : Ra → Expr(x), such that for allx ∈ R+, f(x) = M(r)(x), wherex ∈ r and
r ∈ Ra (i.e.r is either an interval or a point).

Definition 1. A (unidimensional) random variableX has an expolynomial region dis-
tribution of widtha, if there exists an expolynomial functiondens(x) ≥ 0 onRa, such
that for all t ∈ R+, Pr(X < t) =

∑

I∈IRa

∫

I∩(y<t)
dens(y) dy+

∑min(a,⌊t⌋)
i=1 dens(i) =

∫ t

0 dens(y) dy +
∑min(a,⌊t⌋)

i=1 dens(i), whereIRa
is the set of all intervals inRa, and

⌊t⌋ denotes the largest integer no greater thant.

We calldens(x) the pdf ofX . Notice, thatX has a mass point ati iff dens(i) > 0
andi ∈ {1, . . . , a}.

Uniform distributions, exponential and truncated exponential distributions, finite
discrete distributions are all examples of expolynomial region distributions. Many other

1 Mass points can also be treated using Dirac delta functionδ(x). We have chosen not to do so
because this approach leads to cumbersome expressions in the multidimensional settings.



distributions with continuous and discrete components canbe approximated by expoly-
nomial distributions. Our definition requires finite intervals to be of the unit length and
mass points to occur at a finite number of points inN, however this is done only to sim-
plify the presentation of the results. In general, it is sufficient if a distribution is defined
by expolynomial expressions on a finite number of intervals with rational endpoints,
and has only a finite number of mass points.

Now we are ready to give a formal definition of the class of stochastic processes
that we study in this paper.

Definition 2. A finite-state generalized semi-Markov process (GSMP) is a tupleA =
(Q, Σ, E, init , distr ,next) where:

– Q is a finite set of locations;
– Σ is a finite set of events;
– E : Q → 2Σ assigns to each locationq ∈ Q a set of events that areactivein q. A

locationq is absorbingiff E(q) = ∅.
– init : Q → [0, 1] is a probability measure onQ, which for each locationq ∈ Q

gives the probability thatq is the initial location ofA;
– distr : Σ → (R+ → [0, 1]) assigns to each event itsfiring time distribution, which

is an expolynomial region distribution. For a cdfdistr(e), dens(e) denotes the
corresponding pdf.

– next : Q × (2Σ \ {∅}) → (Q → [0, 1]) defines transitions between the locations
of A. This function takes as its arguments a source locationq and a non-empty
subsetG of the active events ofq, and returns a probability measure onQ. For
each locationq′, this measure gives the probability thatA will move fromq to q′ if
all events inG occur simultaneously; we require that

∑

q′∈Q next(q, G)(q′) = 1

for all G ⊆ 2E(q) \ {∅}.

It is convenient to think that a clock is assigned to each event e. Upon (re-)scheduling
of e we update its clock to a new valuation chosen independently at random according
to distr (e).The clock shows the time remaining until the next occurrence of e. Every
clock runs down with the same rate equal to1. Let us say thatν : Σ → R+ is a clock
valuation (or simply valuation) ifν maps events to the values of their clocks. If an event
is not active in the current location we assume that its valueis undefined.

A configurationof the GSMPA is a pairs = (q, ν), whereq ∈ Q andν is a clock
valuation. Given a configurations = (q, ν), let t∗(s) = min{ν(e), e ∈ E(q)} be the
time until the next transition andE∗(s) = {e∗ | e∗ = arg min{ν(e), e ∈ E(q)}} be the
set of events that causes the transition (the clocks of theseevents expire simultaneously).
For anyt ≤ t∗(s) we denote byν − t the valuationν′ such that for alle ∈ E(q),

ν′(e) = ν(e) − t. We say thats
t
−→ s′ is a timed transitionbetween the configurations

s = (q, ν) ands′ = (q, ν′) if ν′ = ν − t. If t∗(s) = 0, thenE∗ = {e∗ | ν(e∗) = 0},
ands

µ
−→ s′ denotes adiscrete transitionbetween the configurationss = (q, ν) and

s′ = (q′, ν′), whereq′ is chosen according to the probability measureµ = next(q, E∗),
and the valuationν′ is constructed as follows:

1. if an evente ∈ Eold(q, E∗, q′), whereEold(q, E∗, q′) = E(q′)∩ [E(q) \E∗] is the
set of events, excluding the events inE∗, that were active inq and continue to be
active inq′, thenν′(e) = ν(e);



2. if e ∈ Enew(q, E∗, q′), whereEnew(q, E∗, q′) = E(q′) \ Eold(q, E∗, q′) is the
set of events that were not active inq but become active inq′ and events that
are inE∗ ∩ E(q′) (i.e. events that fired inq and are active inq′), then valuations
ν′(e) are chosen independently at random according todistr (e) (i.e. the events in
Enew(q, E∗, q′) are (re-)scheduled);

3. if e ∈ Ecancelled(q, E
∗, q′), whereEcancelled(q, E

∗, q′) = E(q) \ E(q′) is the set
of cancelled events that were active inq but no longer active inq′, thenν′(e) is
undefined.

A run σ of A is a sequence of alternating timed and discrete transitions:

σ = s0
t∗(s0)
−−−−→ s′0

µ0

−→ s1
t∗(s1)
−−−−→ s′1

µ1

−→ s2
t∗(s2)
−−−−→ s′2

µ2

−→ . . .

The runσ starts at the initial configurations0 = (q0, ν0), q0 is the initial loca-
tion,which is chosen according toinit , andν0 is the initial valuations of the events in
E(q0), scheduled according to the corresponding firing time distributions. A run can
have a finite or infinite number of transitions; a run that has reached an absorbing loca-
tion will stay in that location forever.

The time of thenth transition is the timeTn(σ) =
∑n−1

i=0 t∗(si) that elapsed since
the start ofσ and until thenth discrete transition.

Example 1.Let us describe a GSMPAs, which we will use as our running example.As

has six locations,q0 is the initial location (i.e.init picks this location with probability
one), and locationsq2, q3, q4, andq5 are absorbing. Inq0 two eventse1 ande2 are
active, the initial clock valuations for these events are chosen according to their firing
time density functions:dens(e1)(t1) = Dt1e

−t1 when t1 ∈ (0, 1) and0 otherwise
(the normalizing constantD is equal to1/(1 − 2e−1)), anddens(e2)(t2) = 1/2 when
t2 ∈ (0, 1) ∪ (1, 2) and0 otherwise, i.e. it is uniformly distributed on(0, 2). If e1 fires
first, then the process moves toq1 with probability1, otherwise it moves toq2 and stays
there forever. Inq1 three events are active —e2 whose clock keeps its valuation fromq0

and eventse1 ande3 whose clocks obtain new valuations upon enteringq1. The firing
time density function fore3 is dens(e3)(t3) = 1 whent3 ∈ (0, 1) and0 otherwise,
and it describes the uniform distribution on(0, 1). Firings ofe1, e2 ande3 in q1 lead to
locationsq3, q4 andq5, respectively.

A historyπ of the lengthn of a runσ is a sequence of tuples and transitions between
them marked with sets of events:

π = (q0,O0,N0)
E1−−→ (q1,O1,N1)

E2−−→ . . .
En−−→ (qn,On,Nn)

Each tuple(qi,Oi,Ni) consists of a visited location and two sets that partition the
set of active events of that location. The setOi consists of active events that were
not scheduled upon arriving toqi and the setNi consists of active events that were
scheduled. For the tuple(q0,O0,N0), we have thatO0 = ∅ andN0 = E(q0), and for
anyi > 0, Oi = Eold(qi−1, Ei, qi) andNi = Enew(qi−1, Ei, qi).

By last(π) = qn we will denote the last visited location in a historyπ, and byΠ
we will denote the set of all finite histories.



It easy to see that two runs share the same historyπ of lengthn if they visit the same
sequence ofn locations and transitions between those locations are caused by firing of
the same sets of events.

We say that a historyπ′ is asuccessorof π along an edge marked by a set of events

E iff there exists a tuple(ql′ ,Ol′ ,Nl′) such thatπ′ = π
E
−→ (ql′ ,Ol′ ,Nl′).

Definition 3. Letπ be a history of lengthn and letl = |E(last(π))| be the number of
the active events in the last location ofπ, then theevent clock valuations ofπ (abbrevi-
ated asecvof π) is an l-dimensional random variable of values of the active clocksin
the locationlast(π), immediately after it has been reached by thenth transition.

Given a historyπ, we denote byfπ(x1, . . . , xl) the pdf of the event clock valuations
of π. We will show how to usefπ(x1, . . . , xl) to compute probabilitypπ, which is
called theoccurrence probabilityof π and which is equal to the probability that a run
of A hasπ as its history.

3 Computing Probabilities of Bounded Until Properties

Suppose that we are given a GSMPA. The locations ofA are partitioned into two
sets:Qs andQu which are called the sets ofsafeandunsafelocations, respectively.
Furthermore, a subsetQd of Qs is called the set ofdestination locations.

Let Πn
until ⊆ Π be a set of histories of length less than or equal ton, and such that

for everyπ ∈ Πn
until all locations ofπ belong toQs and the only location that belongs

to Qd is last(π); let Πuntil = ∪n>0Π
n
until.

Given two parameters — a real numberp ∈ [0, 1] and an integern > 0, we consider
thebounded until problem:

– Is the probability that a runσ of A has a historyπ ∈ Πn
until greater thanp?

Algorithm 1 is a generic algorithm to solve this problem. Thealgorithm works on
tuples(π, fπ, pπ), the first element of a tuple is a historyπ, the second element is the
ecv densityfπ of π, and the last elementpπ is the occurrence probability ofπ. Given
fπ andpπ, we assume (and we will prove later) that for any successor history π′ of
π, we are able to computefπ′

andpπ′|π (which is the occurrence probability ofπ′

conditioned on the probabilistic event thatπ has happened).
HistorySet is the set of tuples that the algorithm has to process. The setis initialized

with the tuples(πi
0, f

πi
0 , pπi

0

), whereπi
0 = (qi,O

i
0,N

i
0) for locationsqi of A, such that

init(qi) > 0. The algorithm also sets to zero two real numbersPd andPu, which are
the lower bounds of reaching a destination location and an unsafe location, respectively.
In the main loop, the algorithm picks a history fromHistorySet and checks if its last
location is a destination or an unsafe location. If this is the case then it increasesPd or
Pu. If the last location is a safe location but not a destinationlocation and the length of
the history is less thann, then the algorithm computesfπ′

andpπ′|π for every successor
history π′ of π and updatesHistorySet with the computed tuples. When the loop is
completed, the algorithm outputs “YES ” if Pd > p and “NO” otherwise.

Suppose that in addition to the numbersp andn, we are given a positive real number
T . Then, applying our algorithm, we can also solve thebounded timed-until problem:



Algorithm 1 Genereric iterative algorithm
for all qi : qi ∈ Q ∧ init(qi) > 0 do

HistorySet ← (πi

0, f
π

i
0 , p

πi
0

)
end for
Pd ← 0, Pu ← 0
while HistorySet 6= ∅ ∧ Pd ≤ p ∧ Pu ≤ (1− p) do

pick (π, fπ , pπ) in HistorySet

if last(π) ∈ Qd then
Pd ← Pd + pπ

else if last(π) ∈ Qu then
Pu ← Pu + pπ

else if length of π < n then
for all πs : πs is a successor of π do

compute fπs and pπs|π

add (πs, f
πs , pπ · pπs|π) to HistorySet

end for
end if

end while
if Pd > p then

return YES

else
return NO

end if

– Is the probability that a runσ of A has a historyπ ∈ Πn
until and T|π|(σ) < T

greater thanp?

The bounded timed-until problem can be reduced to the bounded until problem by
introducing a new eventet and a new unsafe absorbing locationqt. The random variable
that models firing time distribution foret is equal toT with probability one. For every
locationq and every set of eventsE, such thatet ∈ E, next(q, E) returns a probability
measure concentrated onqt. Thus, if a destination location is reached then it is reached
before timeT has elapsed.

3.1 A Sample Computation

Consider the GSMPAs from Example 1 of Section 2. Given a historyπ1 = π0
{e1}
−−−→

(q1, {e2}, {e1, e3}), π0 = (q0, ∅, {e1, e2}), we want to computepπ1
andfπ1 .

Later, in Section 4, we will prove that to findpπ1
andfπ1 we need to compute three

formulas:

f̃π1(t2) =

∫ +∞

0

dens(e2)(t1 + t2)dens(e1)(t1) dt1,

fπ1(t1, t2, t3) = dens(e1)(t1)
f̃π1(t2)

pπ1

dens(e3)(t3).

pπ1
=

∫ +∞

0

f̃π1(t2) dt2,

Intuitively, the first formula captures the necessary information on the distribution
of values of the clock ofe2 in q1, given thate1 has fired beforee2. The second formula



t2

1

1
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0
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(a) dens(e2)(t2)dens(e1)(t1)
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0

1

1

A′
2

C

t̂1

t̂2
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1

(b) dens(e2)(t̂1 + t̂2)dens(e1)(t̂1)

Fig. 1. Computingfπ1

shows that we can findpπ1
by integratingf̃π1(t2) over all possible values. And the last

formula gives an expression forfπ1(t1, t2, t3) as a product of three density functions,
each corresponds to an active clock ofq1. Even though the formulas above use integrals
we will not use numerical computations, but instead we will obtain the formulas in an
explicit form. This suitability for symbolic computationsis a distinctive property of the
expolynomial functions and we will use it throughout the paper.

We show two ways to compute the first formula. Let1[a<t<b] denote a
function of t, which is 1 if a < t < b and 0 otherwise. We know that
dens(e1)(t1) = Dt1e

−t11[0<t1<1] anddens(e2)(t2) = 1
21[0<t2<2], thus f̃π1(t2) =

D
2

∫ +∞

0
t1e

−t11[0<t1<1]1[0<t1+t2<2] dt1 = D
2

∫ 1

0
t1e

−t11[0<t1+t2<2] dt1. We consider
two cases:

– if t2 ∈ (0, 1), thenf̃π1(t2) = D
2

∫ 1

0 t1e
−t1 dt1 = 1

2 ;

– if t2 ∈ (1, 2), thenf̃π1(t2) = D
2

∫ 2−t2

0
t1e

−t1 dt1 = D
2 (t2e

t2−2 − 3et2−2 + 1).

Note that computing̃fπ1(t2) requires analysis of different possible cases and the
number of cases quickly becomes intractable with the increase in the number of ac-
tive events in a location and complexity of firing time distributions. To deal with these
difficulties we present now a more convenient “geometric” way to computef̃π1(t2).

In Figure 1(a), the support for the functiondens(e2)(t2)dens(e1)(t1) is shown. It
consists of two squaresA andB (without the borders), and in each of these squares
the function is equal toD2 t1e

−t1 . Now consider a linear transformationt1 = t̂1, t2 =

t̂1 + t̂2. Under this transformation the squaresA and B are transformed into areas
A′

1 ∪ A′
2 andB′, respectively (see Figure 1(b)). The original function didnot depend

on t2, and after the transformation the function will not depend on t̂2 either — it is
equal toD

2 t̂1e
−t̂1 in the areasA′

1, A′
2 andB′, and it is0 in C. Now it is easy to see

that if t̂2 ∈ (0, 1) then we have to compute two integrals, one overB′ and the other

overA′
2: f̃π1(t̂2) = D

2

∫ 1−t̂2

0 t̂1e
−t̂1 dt̂1 + D

2

∫ 1

1−t̂2
t̂1e

−t̂1 dt̂1 = 1
2 ; and if t̂2 ∈ (1, 2)

then we need to compute only one integral overA′
1: f̃π1(t̂2) = D

2

∫ 2−t̂2

0
t̂1e

−t̂1 dt1 =
D
2 (t̂2et̂2−2 − 3et̂2−2 + 1).



Now, using the second formula and renaming the variablet̂2 back tot2, we obtain
that

pπ1
=

∫ 2

0

f̃π1(t2) dt =

∫ 1

0

1

2
dt2 +

D

2

∫ 2

1

(t2e
t2−2 − 3et2−2 + 1) dt2

=
1

2
+

D

2
(3e−1 − 1) ≈ 0.7

Finally,fπ1(t1, t2, t3) = Dt1e
−t11[0<t1<1]·(

1
2pπ

1[0<t2<1]+
D

2pπ
(t2e

t2−2−3et2−2+

1)1[1<t2<2]) · 1[0<t3<1]. Again, for this function we can have a convenient geometric
representation but this time in three dimensions.

4 Multidimensional Expolynomial Region Distributions

In this section we introduce multidimensional expolynomial region distributions. We
are interested in this class because it is closed under symbolic computations that we will
use. It follows that if the firing time distributions of the events are (one-dimensional)
ERDs then all the distributions that we will encounter will also be ERDs. Before giving
a formal definition, we describe a class of partitions of the clock valuation space that
we will call diagonal mesh partitions. These partitions serve as domains for the ERDs
— in each region of a diagonal mesh partition, an ERD is given by a multidimensional
expolynomial expression.

4.1 Diagonal and Inverse Diagonal Mesh Partitions

For a set of variablest1, . . . , tn ann-dimensional diagonal mesh partitionRa of width
a ∈ N is a partition ofRn

+ into regions such that each region is described by:
– mesh constraints:for each variablet, by a constraint of the formb− 1 < t < b (we

say that such a constraint isbounded), or t = b, or t > a (anunboundedconstraint),
whereb ∈ N andb ≤ a;

– diagonal constraints:for every pair of different variablest andt′, such that both of
them have bounded mesh constraints in the region, by an ordering on the fractional
parts of the variables, i.e. by a constraint of the form(t − ⌊t⌋) ∼ (t′ − ⌊t′⌋),
where∼∈ {<, >, =}. Equivalently, if there are constraintsb − 1 < t < b and
c − 1 < t′ < c, then the diagonal constraint can be written ast ∼ t′ + (b − c).
Given a regionr of an n-dimensional diagonal mesh partitionRa, let m be the

number of independent constraints of the formt = b or t = t′ + b, then we say that the
dimension ofr is n−m. The regions that have dimensionn are calledfull dimensional
regions, and regions that have less thann dimensions are calledmass regions.

For technical reasons, we will be also interested in theinverse diagonal mesh par-
titions. Compared to the diagonal mesh partitions these partitionshave one designated
variablet∗, which cannot form diagonal constraints with any other variable but, instead,
it forms inverse diagonal constraints. Formally, for a set of variablest1, . . . , tn−1, t

∗ an
n-dimensional inverse diagonal mesh partitionR̃a of width a ∈ N is a partition ofRn

+

into regions such that each region is described by:



– mesh constraints:for each variablet ∈ {t1, . . . , tn−1, t
∗} by a mesh constraint, as

described in the definition of diagonal mesh partition;
– diagonal constraints:for every pair of different variablest 6= t∗ andt′ 6= t∗ with

bounded mesh constraints, by a diagonal constraint, as described in the definition
of diagonal mesh partition;

– inverse diagonal constraints:for every pair of variablest and t∗, such that for
each of them there is a bounded mesh constraint, by a constraint of the form(t −
⌊t⌋) + (t∗ −⌊t∗⌋) ∼ 1, where∼∈ {<, >, =}. Equivalently, if there are constraints
b − 1 < t < b andc − 1 < t∗ < c, then the inverse diagonal constraint can be
written ast + t∗ + 1 ∼ b + c.

Note that the number of the regions in every diagonal or inverse diagonal mesh par-
tition is finite, and exponential in the number of variables.Note also that the constraints
can be seen as hyperplanes inR

n
+.

Next we will consider an important linear transformationL : R
n
+ → R

n
+. Let p =

(t1, . . . , tn−1, t
∗) be a point thatL maps to a point̂p = (t̂1, . . . , t̂n−1, t̂

∗), then coordi-
nates ofp andp̂ are related by the following equations:ti = t̂i+ t̂∗, for i = 1, . . . , n−1
andt∗ = t̂∗. We have seen an application ofL in Section 3.1. The properties of the par-
titions are given by the following lemmas. Due to the lack of space, we omit the proofs.

Lemma 1. Let Ra be ann-dimensional diagonal mesh partition of widtha. ThenL
transformsRa into ann-dimensional inverse diagonal mesh partition̂Ra of the same
width. The pre-image of anyl-dimensional region in̂Ra, for l = 0, . . . , n, is a (part of)
l-dimensional region inRa.

Lemma 2. Let R̂a be ann-dimensional inverse diagonal mesh partition with the vari-
ables(t1, . . . , tn−1, t

∗), then the projectionR′
a of R̂a on the subspaceRn−1

+ that corre-
sponds to the variables(t1, . . . , tn−1) is (n − 1)-dimensional diagonal mesh partition
of widtha.

Our interest in diagonal and inverse diagonal mesh partitions is justified by the follow-
ing example. Let us revisit the GSMPAs from Example 1. In Section 3.1 we have com-
putedpπ1

andfπ1(t1, t2, t3) and showed thatfπ1 had its support on cubes inR3
+. Now

we want to show that it is necessary to have diagonal constraints too. Consider the his-

tory π2, which is a successor ofπ1: π2 = π1
{e3}
−−−→ (q5, ∅, ∅). We want to computepπ2

.
Similarly to the formula forf̃π1(t2), we can writef̃π2(t1, t2) =

∫ +∞

0
fπ1(t1 + t3, t1 +

t3, t3) dt3. Evaluating this formula using, for example, MAPLE we will see that in two
regions(0 < t1 < 1, 0 < t2 < 1, t1 < t2) and(0 < t1 < 1, 0 < t2 < 1, t1 > t2),
f̃π2(t1, t2) is given by twodifferentexpolynomial expressions.

4.2 Expolynomial Expressions, Functions, and Distributions

We say that e(x1, . . . , xn) is an expolynomial expression if it is of the
form

∑r

k=1 ckxmk1

1 · · ·xmkn
n eλk1xk1+···+λknxkn , where ck, λk1, . . . , λkn ∈ R,

mk1, . . . , mkn ∈ N0 for all k = 1, . . . , r. By Expr(x1, . . . , xn) we denote the class of
all expolynomial expressions in the variablesx1, . . . , xn.



A functionfa(x1, . . . , xn) is amultidimensional expolynomial functionof width a
with finite support on a diagonal mesh partitionRa if there exists a mapMf : Ra →
Expr(x1, . . . , xn) such that if a point(x1, . . . , xn) ∈ r, r is a region inRa, then
f(x1, . . . , xn) = Mf(r)(x1 , . . . , xn).

Given an expolynomial functionf(x̄) = f(x1, . . . , xn) and anm-dimensional re-
gionr ∈ Ra, 1 ≤ m ≤ n, we want to define the integral off onr (denoted as

∫

r
f ). It

is easy to see that due to the region’s constraints, each point in r can be determined by
only m independent parametersȳ = (y1, . . . , ym), and we can express̄x as a function
of ȳ, i.e. xi = xi(ȳ) for i = 1, . . . , n. Thus we can define

∫

r
f as a multiple integral

∫

(x1(ȳ),...,xn(ȳ))∈r
f(ȳ) dȳ taken overm variables.

Definition 4. Multidimensional random variablēX = (X1, . . . , Xn) has anexpoly-
nomial region distribution(ERD) of widtha if there exists an expolynomial function
fa(x̄) = fa(x1, . . . , xn) ≥ 0 on Ra such that for all̄t = (t1, . . . , tn) ∈ R

n
+, Pr(X̄ <

t̄) = Pr(X1 < t1, . . . , Xn < tn) =
∑

r∈IRa

∫

r∩(x1(ȳ)<t1,...,xn(ȳ)<tn)
fa(ȳ) dȳ +

∑

(x1,...,xn)∈PRa
x1<t1,...,xn<tn

f(x1, . . . , xn), whereIRa
is the set of all regions of dimension one or

higher inRa, andPRa
is the set of all zero-dimensional regions (points).

We callfa(x̄) the pdf ofX̄. Note, that for every regionr ∈ Ra, Pr(X̄ ∈ r) =
∫

r
f .

Let us give a simple example. Consider two one-dimensional independent random
variables with ERDs given by their density functions:

f1(x) =

{

0, if x = 0 or x = 1
1, if 0 < x < 1

, f2(y) =

{

0, if y = 0
1/2, if 0 < y < 1 or y = 1

.

The first random variableX is uniformly distributed on(0, 1). The second random
variableY is uniformly distributed on(0, 1) and has a mass point aty = 1. Then the
random variableZ = XY is a two-dimensional random variable with the pdf

f3(x, y) =















0, if (x = i, y = j) or (x = i, 0 < y < 1), i, j = 0, 1
1/2, if (0 < x < 1, 0 < y < 1, x ∼ y),∼∈ {<, >}
1/2, if (y = 1, 0 < x < 1)
0, if (0 < x < 1, 0 < y < 1, x = y) or (y = 0, 0 < x < 1)

We see thatf3(x, y) is not zero in both full dimensional regions and in one mass region
(y = 1, 0 < x < 1).

5 Image Computation

In this section we will prove our main technical result.

Theorem 1. Let A be a GSMP, such that the firing time distributions of all events are
ERDs of widtha. Let π ∈ Π be a history ofA, fπ be the pdf of the ecv ofπ, π′ =

π
E∗

−−→ (ql′ ,Ol′ ,Nl′) be a successor ofπ, fπ′

be the pdf of the ecv ofπ′, andm′ be the
number of active events inql′ , then:

1. fπ′

is anm′-dimensional ERD of widtha;



2. givenfπ, fπ′

can be computed symbolically.

The theorem will follow from the steps described below.
To simplify complex expressions we will use a convenient shorthand notation. Sup-

pose thatB = {b1, . . . , bq} is a set of indices, then instead of writingf(xb1 , . . . , xbq
, y)

we will write fb∈B(xb, y). We will also slightly abuse notation by writingfb∈B(xb +
z, y) (wherez is a variable) instead of writingfb∈B(x̂b, y), x̂b = xb + z.

Suppose a non-negativen-dimensional random variableX with pdf f(x̄) is divided
into two random variablesX1 andX2, such thatX1 ∈ R

s
+ andX2 ∈ R

n−s
+ . Then the

pdf of X1 is fX1
(x̄1) =

∫ +∞

0 · · ·
∫ +∞

0 f(y1, . . . , ys, ys+1, . . . , yn) dys+1 · · · dyn. The
functionfX1

(x̄1) is called amarginal pdfof X .

Analysis offπ′

: Notice thatfπ′

can be written as

fπ′

e∈Ol′∪Nl′
(te) = f̌π′

e∈Ol′
(te)

∏

e∈Nl′

dens(e)(te),

wheref̌π′

e∈Ol′
(te) is the joint density function of the clock values of the events inOl′ .

Thus, obtaininǧfπ′

is sufficient for the construction offπ′

. It is also easy to see that if
f̌π′

is an expolynomial function of widtha, thenfπ′

is also an expolynomial function
of width a (but of a higher dimension).

Computation off̃π,e∗

: Let us pick any evente∗ ∈ E∗ and let(ql,Ol,Nl) be the last
tuple of π. Suppose thatA has followedπ and now is inql. Let G = {te ≥ te∗ |
e ∈ (Ol ∪ Nl) \ {e∗}} be a probabilistic event that the clock of the evente∗ expires
before or simultaneously with the other clocks andPr(G) be its probability. Then let
f̃π,e∗

e∈(Ol∪Nl)\{e∗}(t̂e) be the pdf of clock values of all events in(Ol ∪ Nl) \ {e∗} at the
moment whente∗ = 0, conditioned on occurrence ofG.

Let t̂e = te − te∗ and define

ge∈(Ol∪Nl)\{e∗}(t̂e, te∗) = fπ
e∈(Ol∪Nl)\{e∗}(t̂e + te∗ , te∗). (1)

Theng can be seen as the joint density function ofte∗ and thedifferencesbetween the
values of the other event clocks andte∗ (these differences may be positive or negative).

Now let g′
e∈(Ol∪Nl)\{e∗}(t̂e) =

∫ +∞

0
ge∈(Ol∪Nl)\{e∗}(t̂e, te∗) dte∗ be a marginal

pdf. Then, given the definition ofG that states that all differenceŝte should be non-
negative we obtain that

f̃π,e∗

e∈(Ol∪Nl)\{e∗}(t̂e) =
g′

e∈(Ol∪Nl)\{e∗}(t̂e)

Pr(G)
=

+∞
∫

0

ge∈(Ol∪Nl)\{e∗}(t̂e, te∗) dte∗

Pr(G)
(2)

If we know how to computeg′, it is easy to computePr(G). Sincef̃π,e∗

is a pdf
then if we integrate over all its variables we should obtain1. Hence, from (2):

Pr(G) =

∫ +∞

0

· · ·

∫ +∞

0

g′ei∈(Ol∪Nl)\{e∗}(t̂ei
) dt̂e1

· · ·dt̂em−1
,



wherem is the number of active events inql.
It remains to show how, givenfπ

e∈(Ol∪Nl)
(te), we can computeg′ and to examine

properties of this computation. Let us introduce a new variable t̂e∗ = te∗ , then from (1)
we see that to computeg from fπ we need to apply the linear transformationL from
Section 4.1. The expolynomial expressions are closed underlinear transformations, and
we also saw that diagonal mesh partitions are transformed into inverse diagonal mesh
partitions of the same width (Lemma 1). So we conclude thatg is an expolynomial
function on an inverse diagonal partition̂Rg

a.
Now we have to obtaing′ from g. First, notice that by Lemma 2,g′ is defined on a

diagonal partitionRg′

a of the dimension one less than̂Rg
a and of the same widtha. As in

the example of Section 3.1, at each regionr it is given as a sum of integrals of expolyno-
mial expressions of regions of̂Rg

a that are projected onr. These integrals can be com-
puted symbolically using the formula

∫

Dxmecx dx = D(1
c
xmecx−m

c

∫

xm−1ecx dx),
which can be easily derived by applying the integration by parts method. Thus,g′ (and
thereforef̃π,e∗

) are computable expolynomial functions of widtha.

Computation off̌π′

: First, we “integrate out” off̃π,e∗

all clocks that were cancelled
upon transition fromql to ql′ :

˜̃fπ,e∗

e∈Ol′
(te) =

∫ +∞

0

· · ·

∫ +∞

0

f̃π,e∗

e∈(Ol∪Nl)\{e∗}(te) dte1
· · · dtes

,

wheree1, . . . , es ∈ Ecancelled(q, E
∗, q′), thus ˜̃

fπ is a marginal pdf, and it easy to check
that it is also an expolynomial function of widtha.

We are almost done. It is left to extract from˜̃fπ,e∗

information that is pertinent only
to the transition that was caused by firing of the eventsE∗ and not to the transitions that
are triggered by the sets of events that properly containE∗. Let Ě∗ = E∗\{e∗}, then

we constructf̌π′ from ˜̃fπ,e∗

by extracting exactly those regions that have a constraint
of the formte = 0 if and only if e ∈ Ě∗. For example, ife∗ is the only event inE∗,

thenĚ∗ = ∅ and we obtainf̌π′ from ˜̃fπ,e∗

by setting to zero all regions that have a
constraintte = 0 for any evente. Similarly, if Ě∗ = {e1} then we extract all those
regions that are defined by the constraintte1

= 0 (and set to zero the expolynomial
expressions for regions that in addition tote1

= 0 have a constraintte′ = 0 for any
other evente′).

Note, thatf̌π′ constructed from˜̃
fπ,e∗

may no longer be a pdf, so we have to divide
it by a normalizing constant0 < H < 1, which is easily computable.

Computation ofpπ′|π: As a consequence of our previous computations, we obtain the
formula forpπ′|π:

pπ′|π = Pr(G) · H · next(ql, E
∗, ql′).

6 Illustrative Example

We are developing a tool called EHV (Event Horizon Verifier) that implements the
algorithm of Section 5. The tool is written in JAVA and relies on JSCIENCE open source
library for the symbolic computations.



As an application of our method we consider a queueing problem. The producer
generates messages and the consumer processes them. The messages that await process-
ing are stored in a buffer of capacityK (initially the buffer is empty). The interar-
rival time between successive messages is modeled by ERD with the pdf:f1(t) is p if
t ∈ (0, 1), is a(p) + b(p)x if t ∈ (1, 2), and0 otherwise, wherep ∈ (0, 1) is a parame-
ter. Withf1(t) we can model a situation when the interval between any two successive
messages are at most two time units, the probability that a message arrives during the
first time unit is uniform and the probability that a message would arrive during the
second time unit is “skewed” towards the end of the interval.

The time that the consumer needs to process a message is uniformly distributed on
(0, 1). It is also known that the producer can produce at mostN > K messages and we
want to find the probabilityPoverflow that the buffer exceeds its capacity.

Notice, that if the difference betweenN andK is small, thenPoverflow can also
be very small. Simulation techniques to estimate small probabilities are involved, they
require a large number of simulations and give only statistical guarantees. To the con-
trary, the running time of our method does not depend on the absolute value ofPoverflow,
and, in fact, performance improves if there are only a few paths that lead to the unsafe
locations.

The problem can be reduced to the bounded until problem for the GSMPB defined
as follows. The locations ofB are encoded with pairs(k, n), wherek = 0, . . . , K +1 is
the number of messages in the buffer andn = 0, . . . , N is the total number of messages
received so far. The location(0, 0) is the initial location. For anyn, the locations(K +
1, n) are “unsafe”, and all locations(k′, n′), such thatN −n′ ≤ K−k′ are destinations
(if B is in such a location then the buffer cannot overflow).B has two eventsep and
ec. For alln = 0, . . . , N − 1, the locations(0, n) haveep as their only active event and
upon firing of that eventB moves to the location(1, n + 1). Unsafe and destination
locations are absorbing, and all the other locations have both ep andec as their active
events. WhenB is in such a location(i, j), firing of ep or ec causes a transition to
(i + 1, j + 1) or (i − 1, j), respectively.

We performed experiments for some sets of parameters. The computer that we used
for our experiments was a Linux server equipped with dual Pentium III processors op-
erating at1400MHz and with2 GB of RAM. For each set of parameters we analyzed
all histories inΠuntil (the total number of them is in the “Dest. reached” column) and
all histories that end in an unsafe location (the “Unsafe reached” column). Below is the
summary of results.

Results
Parameter values:(K, N),p Poverflow Running timeDest. reachedUnsafe reached

(5, 11), 1/2 9.0897 × 10−4 1 min. 23 sec. 2380 1040
(7, 11), 1/2 7.5504 × 10−6 36 sec. 560 185
(7, 11), 1/5 4.1124 × 10−9 3 min. 7 sec. 560 185
(7, 11), 1/10 1.9335 × 10−11 3 min. 17 sec. 560 185
(30, 31), 1/10 1.2161 × 10−64 23 sec. 30 1
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