
NetEgg: Programming Network Policies by Examples ∗

Yifei Yuan
University of Pennsylvania
yifeiy@cis.upenn.edu

Rajeev Alur
University of Pennsylvania
alur@cis.upenn.edu

Boon Thau Loo
University of Pennsylvania

boonloo@cis.upenn.edu

ABSTRACT
The emergence of programmable interfaces to network

controllers offers network operators the flexibility to imple-
ment a variety of policies. We propose NetEgg, a program-
ming framework that allows a network operator to specify
the desired functionality using example behaviors. Our syn-
thesis algorithm automatically infers the state that needs to
be maintained to exhibit the desired behaviors along with
the rules for processing network packets and updating the
state. We report on an initial prototype of NetEgg. Our
experiments evaluate the proposed framework based on the
number of examples needed to specify a variety of poli-
cies considered in the literature, the computational require-
ments of the synthesis algorithm to translate these examples
to programs , and the overhead introduced by the generated
implementation for processing packets. Our results show
that NetEgg can generate implementations that are consis-
tent with the example behaviors, and have performance com-
parable to equivalent imperative implementations.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Design; Languages; Management

1. INTRODUCTION
Recent emergence of software-defined networking (SDN)
provides a unified programming interface and offers the flex-
ibility for network operators to program network policies.
Major router vendors provide APIs to enable programmabil-
ity (either vendor specific or tied to OpenFlow), and cloud
orchestration systems such as OpenStack also comes with
package for service chaining and network virtualization.

However, a key challenge that has yet to be addressed is
providing an intuitive abstraction that allows network op-
erators to program their own protocols and policies, hence
∗This research was partially supported by NSF Expeditions in
Computing award CCF 1138996, AFOSR Young Investigator
award FA9550-12-1-0327 and NSF CNS-1218066.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HotNets-XIII, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9/14/10$15.00
http://dx.doi.org/10.1145/2670518.2673879 .

taking advantage of the new programming interface. In a
typical SDN network, centralized controller connects and
controls switches in the network using an SDN protocol.
A natural approach that has been proposed in recent years
uses high-level domain specific languages (e.g. Frenetic [3],
Pyretic [11], NetKAT [1], Maple [15], NetCore [10] ,declar-
ative networking [9]) that raise the level of abstraction and
make it easier to program controllers with orders of magni-
tude reduction in code sizes.

However, we argue that domain specific languages, while
useful, are perhaps not the most intuitive approach for net-
work operators, who often times are the consumers of router
solutions, and while are experts at configuring routers, may
not be trained to program them, particularly in domain spe-
cific languages that have higher learning curves.

In this paper, we investigate an alternative approach based
on synthesizing an implementation automatically from ex-
amples. Our proposed NetEgg is based on the observation
that network operators typically like to work out examples
using timing diagrams and topologies, when coming up with
new network configurations and designs. Typically, these
examples would be generalized into design documents, fol-
lowed by pseudocode and then finally implementation. Net-
Egg aims to facilitate the entire process, by generating im-
plementations directly from the examples themselves.

Specifically, this paper makes the following contributions:
Proof-of-concept design and implementation. We have
developed the NetEgg tool, that allows network operators
to specify network policies using example behaviors. In-
stead of implementing a network policy by programming,
the network operator simply specifies the desired network
policy using scenarios, which consist of examples of packet
traces, and corresponding actions to each packet.Given the
scenarios as input, NetEgg automatically generates a con-
troller program that is consistent with example behaviors,
including inferring the state that needs to implement the net-
work policy, interested fields associated with the state and
rules for processing packets and updating states.
Validation. We validate the NetEgg tool to synthesize SDN
programs that use the POX controller directly from exam-
ples. NetEgg is agnostic to the choice of SDN controllers,
and can also be used in non-SDN settings. We demonstrate
that NetEgg is able to synthesize network policies using a
small number of examples in less than 1 second. The syn-
thesised controller program has little overhead and achieves
comparable performance to equivalent imperative programs
implemented manually in POX.

1

2. ILLUSTRATIVE SCENARIO
 controller

S
Campus
Network

Internet
Port 1 Port 2

Figure 1: A stateful firewall example.

To illustrate the use of NetEgg, we consider the example of
a stateful firewall in Figure 1. In this example, we have an
SDN-enabled switch S that connects to the campus network
via port 1, and the Internet via port 2. The network oper-
ator wishes to configure the switch’s security policy as fol-
lows: (1) all outgoing campus network traffic is allowed to
go through, and (2) only selected trusted hosts in the Internet
are allowed send traffic to the campus network. A host in the
Internet is considered as trusted if some host in the campus
network has sent traffic to it before.

S S

send
drop

drop

S

send

send

<1,*,*>
<2,*,*>

<2,*,*>

<1,ip1,ip2>

Scenario 1 Scenario 2 Scenario 3

<2,ip2,ip1>

Figure 2: Three stateful firewall scenarios. In the scenar-
ios, we use a 3-tuple to denote a packet, with the fields be-
ing incoming port, source IP and destination IP address.
We use ∗ to denote wildcards.

Figure 2 shows three scenarios described by network op-
erators:
• First scenario. The network operator describes the case

where a packet arriving on port 1 should be sent out re-
gardless of the source and destination addresses.
• Second scenario. A packet arriving on port 2 is dropped

if there is no prior knowledge to indicate that a campus
host has ever contacted the sender.
• Third scenario. The first packet received by the switch

is from port 1, and its source/destination IP address is ip1
and ip2. Note that instead of specifying the concrete IP
addresses, the network operator uses symbolic constants.
A symbolic IP address represents any possible IP address.
When the second packet reaches the firewall on port 2,
it is sent to the campus network, since the host with ip2
received packets from the host with ip1 and thus is con-
sidered as a trusted host.
Given the scenarios in Figure 2, NetEgg generates the

program that implements the desired policy. The program
can be written as an SDN controller program, or compiled
into configuration changes on the switch itself. As part of
the program generation, NetEgg automatically generates the
data structures and code necessary to implement the policy
expressed by these scenarios.

3. NETEGG OVERVIEW
In this section, we first present an overview of the NetEgg
tool. For ease of presentation, we consider an implementa-
tion running on a centralized controller, rather than on the

switches. We also assume all packets are sent to the con-
troller for execution. We leave relaxation of the restriction
in future work.

From the input scenarios, NetEgg generates a policy table,
multiple state tables, and a controller program. This process
is highlighted in Figure 3. The network operator describes
scenarios about the desired network policy to NetEgg, which
tries to generate an SDN controller program consistent with
the behaviors described in the scenarios. The generated pro-
gram uses a set of state tables and a policy table. State ta-
bles allow the controller program to remember the history
of a policy execution, in between arrival of messages and
local events. The policy table dictates the actions for pro-
cessing incoming packets and updates to state tables for var-
ious cases. The controller program takes as input incoming
packets, looks up the policy table, which will determine state
table updates and actions to be applied to the packets.

Scenarios NetEgg

Generic SDN
Controller
Program

Network

State Tables Policy Table

Figure 3: Tool architecture.
Revisiting the firewall example from the previous section,

we first describe the tables that are generated by our tool,
before describing the controller program. We will describe
how these tables are generated by the tool in Section 5.

3.1 State Tables
In our example, the firewall needs to remember all the des-
tination hosts that have been contacted recently as trusted
hosts. Hence, the generated program maintains a state table
ST which stores a state for each IP address. NetEgg auto-
matically derives the fact that for a given IP address ipaddr,
the state of ipaddr in ST is either 0 or 1, indicating that
ipaddr is untrusted or trusted respectively. Initially, the pro-
gram assigns all states in the table to be 0. The program
accounts for three cases: 1) When it gets a packet from port
1, it sends the packet out, and moreover, it sets the state asso-
ciated with the destination IP to 1; 2) When it gets a packet
from port 2, it checks whether the state associated with the
source IP is 1. If so, the packet is allowed to get through; 3)
If the state associated with the source IP of the packet from
port 2 is 0, it is dropped.

3.2 Policy Tables
The above state table is manipulated by rules implementing
the desired policy. These rules are captured in a policy table,
as shown in Table 1 for the firewall example.

The policy table contains three rules, corresponding to
the three rows in the table. These three rules correspond
to the three cases in the program described above. Every
rule has four components: Match, Tests, Action and Up-

2

Match Tests Action Updates
port=1 - send ST (dstip):=1
port=2 ST (srcip)=1 send -
port=2 ST (srcip)=0 drop -

Table 1: The policy table for the stateful firewall.

dates. Match specifies the packet fields and corresponding
values that a packet should match. Tests check whether the
state associated with some fields in a state table is a certain
value. For example, ST (srcip)=1 in the second rule checks
whether the state associated with the source IP address of the
packet is 1 in ST . Action defines the action that is applied to
matched packets. Updates change the state associated with
some fields in a state table to a certain value. For example,
ST (dstip):=1 in the first rule changes the state associated
with the destination IP address of the packet to 1 in ST .

3.3 Generic Controller Program
With the policy table, a generic controller program is used
for processing incoming packets at the controller. The generic
controller program matches each incoming packet against
each rule in the policy table in order. A rule is matched,
if the packet fields match the Match and all Tests of the rule
are satisfied. The first matched rule applies Action to the
packet, and state tables are updated according to Updates.

Figure 4 shows an illustrative execution of an incoming
packet trace shown in subfigure (a). Initially, all entries in
the state table ST are 0, as shown in subfigure (b). When
the first packet p1 is received by the switch, it is matched
against each rule in Table 1 in order. The first matched rule
is the third rule, since p1 matches the Match (port=2) and
the state of the field srcip of p1 in ST is 0, satisfying the
Tests (ST (srcip)=0) in the rule. Therefore, the rule applies
the Action and drops p1. Since the third rule does not have
any Updates, the state table remains the same as in subfigure
(b). The second packet p2 in the trace matches the first rule,
since the rule specifies the Match without any Tests. The
program sends p2 through the firewall and also applies Up-
dates (ST (dstip):=1) of the rule. Thus, the entry indexed by
the dstip field of p2 in the state table ST is changed to 1, as
shown in subfigure (c). The third packet p3 is sent, since the
state of its source has been changed to 1 and it matches the
second rule. Finally, the state of the source of p4 is 0 and
thus it matches the third rule and gets dropped.

p2:<port=1, srcip=10.0.0.1, dstip=1.2.3.1>
p3:<port=2, srcip=1.2.3.1, dstip=10.0.0.2>
p4:<port=2, srcip=1.2.3.2, dstip=10.0.0.1>

p1:<port=2, srcip=1.2.3.1, dstip=10.0.0.2> IP State

1.2.3.1 0

1.2.3.2 0

IP State

1.2.3.1 1

1.2.3.2 0

(a) An example packet trace (b) The initial state table (c) The changed state table

IP State

1.2.3.1 1

1.2.3.2 0

Figure 4: An illustrative execution.

4. FORMAL DEFINITIONS
In this section, we provide a more formal definition of the
policy and state tables, which will allow us to describe how
the policy tables are generated for each set of scenarios in
the next section.

4.1 Scenarios
In our programming framework, variables and fields of pack-
ets are typed. Examples of base types we use are bool, enu-
merated types such as {0,1}, int[1..n] (integers 1 through
n), IP ADDR (set of IP addresses). We also use Act to de-
note the set of actions for processing packets, and in our
examples, Act equals {drop, send}. A packet-type con-
sists of a list of names of fields of the packet along with
their types. In our example, the packet-type consists of three
fields and is given by 〈port : int[1..2], srcip : IP ADDR,
dstip : IP ADDR〉. A (concrete) packet specifies a value for
each field of type corresponding to that field. A symbolic
value of a type T is either a concrete value of type T, ∗ repre-
senting wildcard value, or a variable x of type T. A symbolic
packet specifies a symbolic value for each field.

An event is a pair (sp, a), where sp is a symbolic packet
and a is an action in Act. A scenario is a finite sequence of
events. A scenario-based program is a finite set of scenarios.

With this notation, scenario 3 of Figure 2 corresponds to:
(〈port=1, srcip=ip1, dstip=ip2〉, send), (〈port=2, srcip=ip2,
dstip=ip1〉, send).

A scenario is called concrete if all the symbolic packets
appearing in the scenario have only concrete values. A (sym-
bolic) scenario can be viewed as a short-hand for a set of
concrete scenarios. This set is obtained by replacing each
wild-card by every possible value of the corresponding type,
and each variable by every possible value of the correspond-
ing type. Note that if the same variable appears in multi-
ple symbolic packets in a scenario, then it gets replaced by
the same value. Thus, the symbolic scenario 3 of Figure 2
corresponds to n2 concrete scenarios if the type IP ADDR
contains n distinct addresses.

4.2 State Tables
A d-dimensional state table ST is a key-value map of type
T1 × .. × Td → S, for some base types Ti and an enumer-
ated type S. We call S the state set, and state values for the
values in S. We use dim(ST) to denote the dimension of
ST . In our example, the only state table maintained is of
type IP ADDR→{0,1}, and its dimension is 1.

The operations we allow to a state table are tests and up-
dates. A test (update, resp.) of a state table ST of type T1×
..×Td → S is of the form ST (f1, .., fd)=s (ST (f1, .., fd):=s,
resp.), where fi is a packet field of type Ti and all fi’s are dif-
ferent, s ∈ S is a state value. In our example, ST (srcip)=0
is a test and ST (dstip):=1 is an update of ST with the field
srcip and dstip respectively.

To evaluate a state table, we define a valuation v of a state
table ST of type T1× ..× Td → S to be a function mapping
a key of type T1 × .. × Td to a state value in S. For ex-
ample, the initial valuation of the state table in our example
maps every IP address to 0. A test ST (f1, .., fd)=s is true
for a packet p under a valuation v iff v(p.f1, .., p.fd) = s,
where p.fi indicates the value of the field fi of p. An up-
date ST (f1, .., fd):=s for a packet p under a valuation v re-

3

turns a new valuation v′ such that v′(p.f1, .., p.fd) = s and
v′(k) = v(k) for other keys. In the example in Figure 4,
ST (srcip)=0 is true for p1 under the initial valuation (sub-
figure (b)) of ST . ST (dstip):=1 for p2 under the initial val-
uation returns the new valuation as shown in subfigure (c).

4.3 Policy Tables
Given a set of state tables T , a rule r = (ρ, α, a, β) based on
T has four components. ρ is of the form 〈f1 = m1, .., fk =
mk〉, where fi is a name of a packet field, and mi is either a
value for the field or a wildcard. A packet p matches 〈f1 =
m1, .., fk = mk〉 iff mi is wildcard or p.fi = mi, for i = 1
to k. a is an action in Act. α is a conjunction of tests and β
is a sequence of updates, where each test/update is of some
state table in T . The four components ρ, α, a, β correspond
to Match, Action, Tests, Updates in Table 1 respectively. As
an example, each of the last 3 rows in Table 1 is a rule based
on the corresponding state table. A policy table based on T
is an ordered list of rules, and every rule is based on T .

A valuation V of a set of state tables T is all the valuations
of each state table T . A packet p matches a rule (ρ, α, a, β)
under a valuation V iff p matches ρ and every test in α is
true for p under the corresponding valuation in V . Suppose
the first matched rule for a packet p under a valuation V is
r = (ρ, α, a, β). Then a will be executed on p and every
update in β will be executed. We denote the execution for

packet p as V p/a−−→PT V ′, with V ′ the new valuation.
Given a concrete scenario SC = (p1, a1), .., (pm, am), a

policy table PT is consistent with SC iff Vi−1
pi/ai−−−→PT Vi

for i = 1, ..,m, where V0 is the initial valuation in which
every valuation maps every key to an initial state value in S.
A policy table is consistent with a symbolic scenario iff it
is consistent with all concrete scenarios represented by the
symbolic scenario.

5. POLICY TABLE GENERATION
Given scenarios describing a stateful policy by the network
operator, the goal of NetEgg is to generate a controller pro-
gram consisting of a set of state tables and a policy table that
is consistent with the given scenarios. We refer to this as the
policy learning problem, formally defined as follows:
Policy learning problem. Given scenarios SC1, ..., SCn

and two natural numbers d and m, the policy learning prob-
lem seeks a set of state tables T and a policy table PT based
on T , such that (1) ∀ST ∈ T , if ST is of type T1× ..×Tt →
S, then t ≤ d and |S| ≤ m, (2) all state tables in T have dif-
ferent types and (3) PT is consistent with all scenarios SCi.

Note that the natural number d is the maximum dimension
of state tables and m is the maximum number of states that
are used by state tables. The second condition is a natural
assumption, since multiple state tables with the same type
can be merged into a single state table using a larger state
set. NetEgg generates a consistent controller program by
solving the policy learning problem repeatedly by increasing

the values of d andm. NetEgg also allows network operators
to provide values for d and m.

We first show the hardness of the policy learning problem.

THEOREM 1. The policy learning problem is NP-hard.

PROOF SKETCH. Reduce from 3SAT.
Now we present a synthesis algorithm to the policy learn-

ing problem. At a high level, the algorithm guesses a policy
table along with state tables within the space of all potential
consistent policy tables, and checks consistency against all
the scenarios for the guessed policy table. When terminat-
ing, the algorithm either returns a consistent policy table, or
reports no such policy table found.
Guessing a policy table. In order to be able to guess all pos-
sible consistent policy tables satisfying condition (1) and (2)
above, we generate a sketch of policy table for the input sce-
narios. A sketch of policy table covers all possible Matches
and Tests in order for every concrete packet to match a rule
in it, and we leave Action and state values in Updates as
?, meaning undetermined. With the sketch of policy table,
guessing a possible consistent policy table reduces to guess-
ing values for ? in the sketch of policy table.

As an example for the scenarios in Figure 2 when d is 1
andm is 2, the Match of a rule in the sketch of policy table is
either port=1 or port=2. Since we have no knowledge about
the state tables, we consider all state tables with dimension 1,
i.e. ST1 :int[1..2]→ {0,1} and ST2 :IP ADDR→ {0,1}.
Besides, we consider all possible state values a test can take.
Therefore, every rule has 3 tests ST1(port)=x∧ST2(srcip)=y
∧ST2(dstip)=z , and x, y, z taking state values from {0,1}.
The Action of every rule in the sketch of policy table is
represented as ?, meaning undetermined. The Updates of
every rule are represented as [ST1(port):=?, ST2(srcip):=?,
ST2(dstip):=?]1. Thus we generate 16 rules in total in the
sketch of policy table.

Algorithm 1 shows the algorithm for generating the sketch
of policy table, given the scenarios SC1, .., SCn and d, m.

It first generates the setM of all possible Matches (line 1).
Algorithm generate Matches generates a Match 〈f1=m1,..,
fk=mk〉 for each (symbolic) packet 〈f1=v1,..,fk=vk〉 appear-
ing in a scenario. If vi specifies a concrete value, it sets mi

to be the same value. If vi is ∗ or a variable, we set mi to be
∗, since mi needs to match a variety of concrete values.

Next, it generates all possible tuples of fields which can
be used in Tests (line 2). Algorithm generate field tuples
returns all t-tuples (f1, .., ft) of fields with t ≤ d.

Finally, Algorithm 1 generates a list of rules by combining
Matches and each conjunction of tests (line 3-12). For each
tuple in F , a state table of corresponding type is generated
(line 6-7). By ranging over all state values for all tuples in
F (line 3), the Tests of a rule is generated as a conjunction
1For ease of presentation, the Updates here do not cover the case
where one entry of ST2 is updated by ST2(dstip):=? and then
ST2(srcip):=? in the same rule. This can be achieved by adding
another update ST2(srcip):=? to the end of Updates and introduc-
ing an auxiliary value - for ?, meaning no change.

4

of tests of the corresponding state table ST and indexed by
a tuple in F (line 8). We leave the Action and state values in
Updates in rules as ?.
Algorithm 1 generate sketch([SCi], d,m)

1: M=generate Matches(SC1, .., SCn)
2: F=generate field tuples(d)
3: for all tuples of state values (v1, .., v|F |) s.t. vi ≤ m do
4: for all ρ in M do
5: for i-th tuple (f1,..,ft) in F do
6: let (T1, .., Tt) be the corresponding type
7: build a state table ST of type T1 × ..× Tt → S,

if no such table exists
8: α = α ∧ ST (f1,..,ft):=vi
9: append ST (f1,..,ft):=? to β

10: end for
11: add the rule (ρ, α, ?, β) to the sketch of policy table
12: end for
13: end for
Checking consistency. After guessing a policy table, we
need to check whether it is consistent with the input scenar-
ios. When all scenarios are concrete, we can simply simulate
the execution of the guessed policy table for every concrete
scenario. The challenge here is that with symbolic scenar-
ios, we need to ensure that every concrete scenario repre-
sented by a symbolic scenario is consistent with the pol-
icy table. Clearly, generating all concrete scenarios from
given symbolic scenarios is not feasible, since the range for
a field is unbounded in the worst case. To address this, we
make two assumptions. First, we assume that in a scenario
a variable only takes values different from every concrete
value of the corresponding type appeared in the scenario,
and variables of the same type in a scenario take different
values. With this assumption, instead of dealing with all
possible concrete scenarios, we can simply replace a vari-
able by any concrete value which is different from both ex-
isting concrete values in the scenarios and values for other
variables, since all these concrete values for the variable
serve as the same role in the scenarios. Second, for ev-
ery packet field, we assume that either all symbolic pack-
ets in all scenarios have wildcards in the field, or all sym-
bolic packets have non-wildcards in the field. With this as-
sumption, we can safely ignore all fields with wildcards in
both the Tests and Updates in a rule. Note that, these two
assumptions can be achieved by prepossessing the scenar-
ios. For example, the scenario 1 of Figure 2 can be trans-
lated to two scenarios: [〈port=1,srcip=ip1,dstip=ip1〉,send],
[〈port=1,srcip=ip1,dstip=ip2〉,send].

While we can simply enumerate values for ? in order to
guess a policy table, we optimize the process by checking
consistency whenever a new value is assigned to ? in the
sketch of policy table. If the check fails, we try the next
value for the same ?. When all values for a ? fail the con-
sistency check, we backtrack to last assigned ?. We omit the
discussion of other optimizations due to the limit of space.

There areO(|M |m|F |) rules in sketch of policy table, and

each rule has |F | + 1 undetermined values. Thus the worst
complexity of our algorithm is O(2|M |m

|F |(|F |+1) logm).

6. EVALUATION
To validate the NetEgg design, we have implemented a pro-
totype of NetEgg, and used it to generate POX controller im-
plementations. NetEgg itself is agnostic to the choice of the
controller – requiring only the implementation of the generic
controller program in Section 3.3 within any controllers.

Our experiments are carried out in a virtual machine run-
ning Ubuntu 12 (64-bit). The host machine has i7-3520M
2.90GHz processors and 8 GB memory.

6.1 Tool Generality
Our first evaluation criteria is on the generality of NetEgg to
support a range of network policies. We studied 6 different
policies considered in literature [12, 2]. In the experiment,
we manually validate that the synthesized program meets the
desired policy. Table 2 summarizes our results. We leave a
systematic evaluation as future work.

Policy # SC # EV Time d m

Stateful firewall (Host) 3 1.67 2 ms 1 2
Stateful firewall (TCP) 5 3.4 17 ms 2 3

Learning switch 3 3.33 9 ms 1 3
Flow affinity 4 2.5 16 ms 1 2
Resonance 5 4.6 180 ms 1 3

TCP handshake 4 2.75 6 ms 2 3

Table 2: Network policies generated from examples.# SC
is the number of scenarios, # EV is the average number
of events per scenarios, Time is the running time for the
synthesis algorithm, d is the maximum dimension of state
tables, m is the number of states in S.

Stateful firewall(Host). This is the motivating example we
have shown in Section 2.
Stateful firewall(TCP). The stateful firewall(TCP) is sim-
ilar to the stateful firewall in the motivating example, ex-
cept that it only allows incoming traffic from Internet in
an established TCP connection. The policy requires a 2-
dimension state table which maintains connection states for
each source-destination pair. When provided the knowledge
of the exact dimension of the table, we are able to generate
the policy with 5 scenarios and 17 events in total. In case
where no exact dimension provided, we are able to generate
the policy using 21 scenarios and 60 events in total, within
2.28 s. Additional scenarios are used to rule out programs
using small state tables, due to the fact that our heuristic
searches small state tables first.
Learning switch. The learning switch learns MAC-port map-
pings in the network. When a packet arrives, a learning
switch remembers its source MAC address with the associ-
ated incoming port. When the packet’s destination MAC is
associated with some port, the switch forward it to the port,
otherwise flood it. We can generate a learning switch with

5

2 ports using 3 scenarios with 10 events in total. Note that
our abstraction does not support MAC-port mappings, how-
ever, we can use the state of a MAC address to represent the
incoming port. Thus the policy needs 3 states for a MAC: 0
stands for no port learnt yet, 1(2 resp.) stands for the associ-
ated port is 1 (2 resp.). We plan to generalize our abstraction
to support arbitrary mappings in the future.
Flow affinity. We consider a simple policy that avoids con-
nection disruptions during load balancing. We consider the
case where a switch forwards traffic to servers that connect
to it. Initially the switch forwards traffic to server A. After
getting a signal of shifting traffic, the switch starts forward-
ing traffic from hosts, which never communicated with any
servers, to server B, while keeps forwarding traffic to server
A if the sender has communicated to it before. This policy
requires two state tables, a 1-dimension state table storing
states (communicated with server A or not) for every host,
and another 0-dimension state table (i.e. a single entry) stor-
ing states about whether the signal is received.
Resonance. We generated a simplified version of Reso-
nance [13] using 5 scenarios and 23 events. In our simplified
version, a host can be in one of the three states: Registered,
Authenticated, Operational. A host can transition from one
state to another when the associated server with current state
approves. Only the traffic from hosts in operational state is
allowed to enter the network.
TCP handshake. Our last example considers the state tran-
sition of three-way handshake of TCP. The desired policy
needs to maintain the TCP state for each connection, and
drops any packets that do not satisfy the TCP state transi-
tion. Like stateful firewall(TCP), we need a 2-dimension
state table to implement desired policy. With the knowledge
of the exact dimension, we can generate the desired policy
using 4 scenarios and 11 events in total. Without such infor-
mation, we are still able to generate the desired policy in 238
ms using 12 scenarios and 32 events in total.

We make the following observations from our experiments.
First, the number of scenarios are small (ranging from 3-5),
and each scenario has 3-5 events on average. NetEgg is able
to generate the policy table in only a small fraction of a sec-
ond. Moreover, we validate that the generated POX imple-
mentations are faithful to the example scenarios.

6.2 Performance Overhead
Our next goal is to evaluate the efficiency of generated pro-
grams. Recall that we have a generic SDN controller pro-
gram that is customized via the policy and state tables. Un-
like a carefully hand-crafted implementation, our program
may incur additional overhead.

To quantify this additional overhead, we conduct prelim-
inary evaluations using the learning switch example. For
comparison, we have implemented an equivalent imperative
version of learning switch in POX. In order to quantify only
the overhead of the implementation of the controller pro-
gram, we forward all traffic to the controller in both pro-

grams. We run a network with one switch and two hosts
in Mininet [8]. We use ping and iperf to test the latency
and throughput from one host to the other, respectively. Ta-
ble 3 presents the average latency over 100 pings and average
throughput over 10 executions of iperf.

Latency Throughput
NetEgg-LS 36.08ms 4.09Mbps

POX-LS 34.08ms 4.48Mbps

Table 3: Performance.
The results show that the performance of the automati-

cally generated implementation is comparable to the imper-
ative implementation with equivalent latency and through-
put. The overhead, introduced by rule matching, state tests
of incoming packets and updates to state tables, is relatively
negligible compared to other overheads in POX.

7. RELATED WORK
In addition to SDN DSLs described in Section 1, our work
is closely related to parallel work in the formal methods
community in programming by examples [6, 5, 7]. These
work typically implements finite-state reactive controllers
from specification of behaviors. A good example is recent
work done in Excel, whereby string transformation macros
can be generated from input/output examples [4]. [14] uses
both symbolic and concrete example to synthesize distributed
protocols.

8. DISCUSSION
In this paper, we provide an initial feasibility study into a
tool that automatically generates network policy implemen-
tations from examples. Our initial results are promising.
As immediate steps, we are exploring adapting these tech-
niques beyond SDN protocols, particularly protocols that in-
volve multiple switches/devices. In addition, our initial work
opens up a number of possible directions for us to explore
further. These include:

Programming environments. We plan to explore friendly
programming environments for network operators to interact
with NetEgg, which is able to detect and highlight inconsis-
tency appearing in the input scenarios. Moreover, we plan to
explore automatically generating scenarios for network op-
erators, improving the confidence for the synthesized pro-
gram. Third, we plan to explore automatic verification tools
that can check synthesized programs against high level prop-
erties. This suggests a possible refinement-based approach,
where an operator starts off with a high-level property they
have in mind, and NetEgg iterate through scenarios given by
the verification tool until the synthesized program is correct.

Distributing the synthesized implementation. Our cur-
rent strawman implementation requires that all traffic is sent
to the controller for processing, increasing the overhead due
to controller involvement. We are in the process of automat-
ically inferring flow table updates from synthesized actions
in the controller policy table to avoid this problem.

6

9. REFERENCES
[1] ANDERSON, C. J., FOSTER, N., GUHA, A.,

JEANNIN, J.-B., KOZEN, D., SCHLESINGER, C.,
AND WALKER, D. Netkat: Semantic foundations for
networks. In Proceedings of the 41st annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (2014), ACM, pp. 113–126.

[2] BALL, T., BJØRNER, N., GEMBER, A., ITZHAKY,
S., KARBYSHEV, A., SAGIV, M., SCHAPIRA, M.,
AND VALADARSKY, A. Vericon: towards verifying
controller programs in software-defined networks. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation (2014), ACM, p. 31.

[3] FOSTER, N., HARRISON, R., FREEDMAN, M. J.,
MONSANTO, C., REXFORD, J., STORY, A., AND
WALKER, D. Frenetic: A network programming
language. In ACM SIGPLAN Notices (2011), vol. 46,
ACM, pp. 279–291.

[4] GULWANI, S. Automating string processing in
spreadsheets using input-output examples. In ACM
SIGPLAN Notices (2011), vol. 46, ACM, pp. 317–330.

[5] HAREL, D. Can programming be liberated, period?
Computer 41, 1 (2008), 28–37.

[6] HAREL, D., AND MARELLY, R. Come, lets play:
Scenario-based programming using LSCs and the
Play-Engine, vol. 1. Springer, 2003.

[7] HAREL, D., MARRON, A., AND WEISS, G.
Behavioral programming. Communications of the
ACM 55, 7 (2012), 90–100.

[8] LANTZ, B., HELLER, B., AND MCKEOWN, N. A
network in a laptop: rapid prototyping for
software-defined networks. In HotNets (2010), ACM.

[9] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY,
D. E., HELLERSTEIN, J. M., MANIATIS, P.,
RAMAKRISHNAN, R., ROSCOE, T., AND STOICA., I.
Declarative Networking. In Communications of the
ACM (CACM) (2009).

[10] MONSANTO, C., FOSTER, N., HARRISON, R., AND
WALKER, D. A compiler and run-time system for
network programming languages. ACM SIGPLAN
Notices 47, 1 (2012), 217–230.

[11] MONSANTO, C., REICH, J., FOSTER, N., REXFORD,
J., WALKER, D., ET AL. Composing software defined
networks. In NSDI (2013), pp. 1–13.

[12] MOSHREF, M., BHARGAVA, A., GUPTA, A., YU,
M., AND GOVINDAN, R. Flow-level state transition as
a new switch primitive for sdn. In Proceedings of the
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN’14) (August 2014).

[13] NAYAK, A. K., REIMERS, A., FEAMSTER, N., AND
CLARK, R. Resonance: Dynamic access control for
enterprise networks. In Proceedings of the 1st ACM
Workshop on Research on Enterprise Networking
(New York, NY, USA, 2009), WREN ’09, ACM,
pp. 11–18.

[14] UDUPA, A., RAGHAVAN, A., DESHMUKH, J. V.,
MADOR-HAIM, S., MARTIN, M. M., AND ALUR, R.
Transit: specifying protocols with concolic snippets.
In ACM SIGPLAN Notices (2013), vol. 48, ACM,
pp. 287–296.

[15] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B.,
AND HUDAK, P. Maple: Simplifying sdn
programming using algorithmic policies. In
Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM (2013), ACM, pp. 87–98.

7

