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Model checking is emerging as a practical tool for detecting logical errors in early stages of system
design. We investigate the model checking of sequential hierarchical (nested) systems, i.e., �nite-
state machines whose states themselves can be other machines. This nesting ability is common
in various software design methodologies and is available in several commercial modeling tools.
The straightforward way to analyze a hierarchical machine is to 
atten it (thus, incurring an
exponential blow up) and apply a model checking tool on the resulting ordinary FSM. We show
that this 
attening can be avoided. We develop algorithms for verifying linear-time requirements
whose complexity is polynomial in the size of the hierarchical machine. We address also the
veri�cation of branching-time requirements and provide e�cient algorithms and matching lower
bounds.
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Specifying and Verifying and Reasoning about Programs|mechanical veri�cation; speci�cation
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1. INTRODUCTION

Finite-state machines (FSMs) are widely used in the modeling of systems in various
areas. Descriptions using FSMs are useful to represent the 
ow of control (as
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opposed to data manipulation) and are amenable to formal analysis such as model
checking. In the simplest setting, an FSM consists of a labeled graph whose vertices
correspond to system states and edges correspond to system transitions. In practice,
to describe complex systems using FSMs, several extensions are useful. We focus on
hierarchical FSMs (or, nested FSMs) in which vertices of an FSM can be ordinary
states or superstates which are FSMs themselves.
The notion of hierarchical FSMs was popularized by the introduction of Stat-

echarts [Harel 1987], and exists in many related speci�cation formalisms such as
Modecharts [Jahanian and Mok 1987] and RSML [Leveson et al. 1994]. It is a
central component of various object-oriented software development methodologies
developed in recent years, such as OMT [Rumabaugh et al. 1991], ROOM [Selic
et al. 1994], and the Uni�ed Modeling Language (UML [Booch et al. 1997]). Hierar-
chical modeling is commonly available also in commercial computer-aided software
engineering tools such as Statemate (by i-Logix), ObjecTime Developer (by Objec-
Time), and RationalRose (by Rational).

The nesting capability is useful also in formalisms and tools for the requirements
and testing phases of the software development cycle. On the requirements side, it
is used to specify scenarios (or use cases [Jacobson 1992]) in a structured manner.
For instance, the new ITU standard Z.120 (MSC'96) for message sequence charts
[Rudolph et al. 1996] formalizes scenarios of distributed systems in terms of hier-
archical graphs built from basic MSCs. FSMs are also used to model systems for
the purpose of test generation, and again the nesting capability is useful to model
large systems. For example, Teradyne's commercial tool TestMaster [Apfelbaum
1995] is based on a hierarchical FSM model, and so is an internal Lucent test tool
developed over many years for the testing of a large enterprise switch. Although
these models are primarily developed for test generation, they can be used also for
formal analysis. This is useful for systems with informal and incomplete require-
ments and design documentation, as is often the case, and especially for software
that was developed and evolved over a long period of time, when the test models
are updated for continued regression testing as the system evolves.

As a simple example of a hierarchical FSM, consider a speci�cation of a digital
clock. The top-level machine consists of a cycle though 24 superstates, one per
hour of the day. Each such state, in turn, is a hierarchical state machine consisting
of a cycle containing 60 superstates counting minutes, each of which, in turn, is
an (ordinary) state machine consisting of a cycle counting seconds. As illustrated
by this example, hierarchical state machines have two descriptive advantages over
ordinary FSMs. First, superstates o�er a convenient structuring mechanism that
allows us to specify systems in a stepwise re�nement manner, and to view them at
di�erent levels of granularity. Such structuring is particularly essential for specify-
ing large FSMs via a graphical interface. Second, by allowing sharing of component
FSMs (for instance, the 24 superstates of the top-level FSM of digital clock are
mapped to the same hierarchical FSM corresponding to an hour), we need to spec-
ify components only once and then can reuse them in di�erent contexts, leading to
modularity and succinct system representations. In fact, as shown in a recent pa-
per [Alur et al. 1999], there is an exponential gap between ordinary and hierarchical
FSMs as generators of regular languages.

In this paper, we consider algorithms for model checking when the description
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is given as a hierarchical state machine. Model checking is emerging as a practical
method for automated debugging of complex reactive systems such as embedded
controllers and network protocols (see [Clarke and Kurshan 1996] and [Clarke and
Wing 1996] for surveys). Commercial tools for veri�cation of hardware systems
have appeared in the market in the last two years (e.g. FormalCheck, marketed
originally by Lucent, and now by Cadence). On the software side, model check-
ers such as Spin [Holzmann 1997] have been shown to be useful in the design and
analysis of software in telecommunication and other areas. In model checking, a
high-level description of a system is compared against a logical correctness require-
ment to discover inconsistencies [Clarke and Emerson 1981; Queille and Sifakis
1982]. Given a hierarchical FSM, one can obtain an ordinary FSM by 
attening it,
that is, by recursively substituting each superstate with its associated FSM. Such a

attening, however, can cause a blow-up, particularly when there is a lot of sharing.
For instance, the hierarchical description of the digital clock has 24+60+60 = 144
vertices, while the 
attened description has 24 � 60 � 60 = 86; 400 vertices.1 Thus,
if we �rst 
atten the machine, and then employ the existing model-checking algo-
rithms, the worst-case complexity would be exponential in the original description
of the structure. Our results establish that such a 
attening is unnecessary by
providing polynomial-time algorithms.
In this paper we consider only sequential hierarchical machines. To capture

the full range of modeling features of design languages such as Statecharts, we
would have to consider two additional, orthogonal extensions of FSMs: (1) multiple
FSMs operating in parallel and communicating with each other, and (2) extended
FSMs whose transitions involve reading and writing of variables. The impact of
both these extensions on the analysis problems has been well understood: both
the extensions, by themselves, cost an exponential, leading to the so-called state-
explosion problem. By considering sequential hierarchical machines, we can focus
on the impact of hierarchy on the analysis problems. It should be noted that the
models used in testing and hierarchical MSCs are sequential, and the model we use
is representative of such models.
Our �rst result concerns the invariant veri�cation problem, that is, the problem

of establishing that all reachable states are included within the region of states
satisfying the speci�ed invariant. Invariant veri�cation is the most common model
checking problem in practice, and can model safety requirements such as mutual
exclusion and absence of deadlocks. We show, that even though some FSM may
appear repeatedly in di�erent contexts, it needs to be searched just once. We give
a depth-�rst search algorithm that performs the reachability analysis with time
complexity linear in the size of the hierarchical structure. While reachability is in
Nlogspace for ordinary FSMs, we establish that reachability problem for hierarchical
FSMs is P-complete.
Our second veri�cation problem concerns veri�cation of linear-time requirements

[Pnueli 1977; Vardi and Wolper 1986] such as eventual reception. The commonly
used formalisms for specifying requirements of system behaviors are automata and

1Alternatively, we can model the system as a collection of three communicating FSMs, one corre-
sponding to the hours, one for the minutes, and one for the seconds. Analysis, then, would require
constructing the product of these three machines, leading to the same blow-up.
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linear temporal logic. In the automata-theoretic formulation, we are given a hier-
archical FSM K and a B�uchi automaton A that accepts undesirable behaviors, and
we wish to check whether or not the languages of K and A have a nonempty inter-
section. We show that this problem can be solved in time O(jKj � jAj3) (if K were
an ordinary FSM, this complexity would be O(jKj � jAj)). When the linear-time
speci�cation is given by a formula ' of (propositional) linear temporal logic (LTL),
using the known translations from LTL to B�uchi automata [Vardi and Wolper 1986],
we get an algorithm for LTL model checking with time complexity O(jKj �8j'j). We
note that usually the formulas � and automata A that specify correctness proper-
ties are very small (few temporal operators or states), while the system model K
is very large.

Our third veri�cation problem concerns branching-time requirements speci�ed in
the logic CTL [Clarke and Emerson 1981; Queille and Sifakis 1982]. The logic CTL
can express both existential and universal path properties. For model checking
of CTL, due to nesting of quanti�ers, it is necessary to compute all the states
that satisfy a particular subformula, and the fact that the same FSM can appear
in di�erent contexts has a greater impact on the resulting veri�cation problem.
In fact, the complexity depends on the number of exit-nodes of an FSM (exit-
nodes of a hierarchical FSM K are the states that are connected directly to the
states of a higher-level hierarchical FSM in which K is embedded; some systems
restrict to one exit-node, while other systems allow multiple exit-nodes). We give
an algorithm for verifying that a hierarchical FSM K satis�es a CTL formula '
with time complexity O(jKj � 2j'jd), where each of the machines has at most d exit-
nodes. We prove matching lower bounds by establishing that (1) the problem is
Pspace-complete in the size of the formula for single-exit machines, and (2) there
is a �xed CTL formula for which the problem is Pspace-complete in the size of the
machine, when multiple exits are allowed.

1.1 RELATED WORK

Model checking for ordinary �nite-state machines was �rst introduced in [Clarke
and Emerson 1981], and has been studied extensively since then. The complexity of
analysis of concurrent �nite-state machines is also well understood (see, for instance,
[Drusinsky and Harel 1994]); concurrency makes the analysis problem exponentially
harder. The standard way of applying model checking to hierarchical state machines
is by translating them to ordinary state machines by 
attening. There have been
some attempts to develop heuristics based on the hierarchical structure in symbolic
model checking, for example, for choosing variable ordering or for exploiting locality
of variables [Chan et al. 1998; Behrmann et al. 1999; Alur et al. 2000; Ball and
Rajamani 2000]. However, there has been no systematic study of the impact of
hierarchical descriptions with sharing on the analysis problem. It is worth noting
that hierarchical FSMs can be viewed as a special case of pushdown automata,
where the size of the stack is bounded a priori by a constant. Model checking of
pushdown automata is known to be decidable, both for linear-time and branching-
time requirements in Exptime [Burkart and Ste�en 1992; Boujjani et al. 1997].
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K1

K2 K2

try1 try2

ack

K2

success
ok

start
fail

ok

send wait

timeout

ok

fail

abort
fail

Fig. 1. A sample hierarchical structure.

2. HIERARCHICAL STATE MACHINES

There are many variants of �nite-state machines. We choose to present our results
in terms of Kripke structures due to their prevalent use in the model checking
literature [Clarke and Emerson 1981]. Analogous results hold for the other variants
of FSMs such as Mealy- and Moore-type FSMs where inputs and/or outputs occur
on the states or transitions.
Kripke structures are state-transition graphs whose states are labeled with atomic

propositions. Formally, given a �nite set P of atomic propositions, a (
at) Kripke
structure M over P consists of

(1) a �nite set W of states,

(2) an initial state in 2W ,

(3) a set R of transitions, where each transition is a pair of states, and

(4) a labeling function L that labels each state with a subset of P .

A hierarchical Kripke structure K over a set P of atomic propositions is a tuple
hK1; : : :Kni of structures, where each Ki has the following components:

(1) A �nite set Ni of nodes.

(2) A �nite set Bi of boxes (or supernodes). The sets Ni and Bi are all pairwise
disjoint.

(3) An initial node in i 2 Ni.

(4) A subset Oi of Ni, called exit-nodes.

(5) A labeling function Xi : Ni 7! 2P that labels each node with a subset of P .

(6) An indexing function Yi : Bi 7! fi + 1 : : : ng that maps each box of the ith
structure to an index greater than i. That is, if Yi(b) = j, for a box b of structure
Ki, then b can be viewed as a reference to the de�nition of the structure Kj .

(7) An edge relation Ei. Each edge in Ei is a pair (u; v) with source u and sink v:

|source u either is a node of Ki, or is a pair (w1; w2), where w1 is a box of Ki

with Yi(w1) = j and w2 is an exit-node of Kj

|sink v is either a node or a box of Ki.

ACM Transactions on Programming Languages and Systems Vol. ??, No. ??, ??.



6 � R. Alur and M. Yannakakis

The edges connect nodes and boxes with one another. Edges entering a box
implicitly connect to the unique entry-node of the structure associated with that
box. On the other hand, edges exiting a box need to explicitly specify the identity
of the exit-node among the possible exit-nodes of the structure associated with that
box. An example of a hierarchical Kripke structure is shown in Figure 1. The top-
level structure K1 has two boxes, try1 and try2, both of which are mapped to K2.
The structure K2 represents an attempt to send a message. The attempt fails if a
timeout occurs before the receipt of an acknowledgment, or if the acknowledgment
is not consistent with the message sent. In the structure K1, if the �rst attempt
fails, a second attempt is tried.
With each hierarchical structure, we can associate an ordinary 
at structure

by recursively substituting each box by the structure indexed by the box. Since
di�erent boxes can be associated with the same structure, each node can appear
in di�erent contexts. The expanded structure corresponding to the hierarchical
structure of Figure 1 is shown in Figure 2. The expanded 
at structure will be
denoted KF

1 . Note that each node of K2 appears twice in KF
1 : for instance, the

node send appears as (try1 ; send) and (try2 ; send). In general, a state of the
expanded structure is a vector whose last component is a node, and the remaining
components are boxes that specify the context.
Now we proceed to a formal de�nition of expansion of a hierarchical Kripke

structure K = hK1; : : :Kni. For each structure Ki,

(1) The set Wi of states of K
F
i is de�ned inductively:

|every node of Ki belongs to Wi

|if u is a box of Ki with Yi(u) = j, and v is a state of KF
j , then (u; v) belongs

to Wi.

(2) The set Ri of transitions of K
F
i is de�ned inductively:

|for (u; v) 2 Ei, if the sink v is a node then (u; v) 2 Ri, and if v is a box with
Yi(v) = j then (u; (v; inj)) 2 Ri

|if w is a box of Ki with Yi(w) = j, and (u; v) is a transition of KF
j , then

((w; u); (w; v)) belongs to Ri.

(3) The labeling function Li :Wi 7! 2P of KF
i is de�ned inductively:

|if w is a node of Ki, then Li(w) = Xi(w)
|if w = (u; v), where u is a box of Ki with Yi(u) = j, then Li(w) equals Lj(v).

The structure hWi; in i; Ri; Lii is a 
at Kripke structure over P , and is called the
expanded structure of Ki, denoted K

F
i . The structure K

F
1 is also denoted KF , the

expanded structure of K.
The size of Ki, denoted jKij, is the sum of jNij, jBij, and jEij. The size of K is

the sum of the sizes of Ki. The nesting depth of K, denoted nd(K), is the length
of the longest chain i1; i2; : : : ij of indices such that a box of Kil is mapped to il+1.
Observe that each state of the expanded structure is a vector of length at most the
nesting depth, and the size of the expanded structure KF can be exponential in
the nesting depth, and is O(jKjnd(K)).
Note that by our de�nition the last component of every state is a node, and the

propositional labeling of the last component determines the propositional labeling
of the entire state. This implies that the state assertions cannot refer to the context,
and this choice is important for the algorithms and the complexity bounds.
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start
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timeout fail wait

timeout
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send

ack ok

fail
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try1

try1

try1

try2 try2

try2

try2 try2

try2
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Fig. 2. The expanded structure.

Other variants of this de�nition are possible. First, we can allow multiple entry-
nodes in the de�nition. Such a structure can be captured by our de�nition by
replacing a structure with k entry-nodes with k structures, each with a single entry-
node. Note that each box within a structure also may need to be repeated k times,
and consequently, the blow-up in the total size due to the translation would be a
factor of k2 in the worst case. We allow explicitly multiple exit-nodes because the
number of exit-nodes dramatically a�ects the complexity of the analysis problems
to be studied (particularly, for branching time). Second, we can allow edges of the
form (u; v) where u is a box meaning that the edge may be taken whenever the
control is inside the box u. That is, for an edge (u; v), the expanded structure has
an edge from every state with �rst component u to v. Such a de�nition is useful
for modeling interrupts, and can be captured by our de�nition by introducing a
dummy exit-node. With these two extensions, the de�nition would closely resemble
the hierarchical state machines in UML-RT without the features of concurrency and
variables.
Finally, the basic (unnested) nodes of the hierarchical structure could themselves

be other types of objects; for example, they could be basic message sequence charts,
in which case the hierarchical structure speci�es a hierarchical (or high-level) MSC
[Holzmann et al. 1997; Rudolph et al. 1996]. In this case there is concurrency
within each basic MSC, but the hierarchical graph provides a global view of the
system. The propositions on the nodes re
ect properties for the basic objects (e.g.,
basic MSCs), from which we can infer properties of the executions of the whole
hierarchical system.

3. LINEAR-TIME PROPERTIES

3.1 Reachability

For a hierarchical structure K, a state v is reachable from state u if there is a
path from state u to state v in the expanded structure KF . The input to the
reachability problem consists of a hierarchical structure K, and a subset T � [iNi
of nodes, called the target region. Given (K;T ), the reachability problem is to
determine whether or not some state whose last component is in the target region
T is reachable from the top-level entry-node in1. The target region is usually
speci�ed implicitly, for instance, by a propositional formula over P . We assume,
that given a node u, the test u 2 T can be performed in O(1) time. The reachability
problem can be used to check whether a hierarchical structure satis�es an invariant.

3.1.1 Algorithm for Reachability. The reachability algorithm is shown in Fig-
ure 3. We assume that the sets of nodes and boxes of all the structures are disjoint.
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Input: A hierarchical structure K and a target region T .
Output: The answer to the reachability problem (K;T ).

visited : set of nodes and boxes, initially empty.

procedure DFS(u)
if u 2 T then

print (\Target is reachable");
break // terminate the execution of the entire algorithm

� ;
visited := visited [ fug;
if u 2 N then

foreach (u; v) 2 E do

if v 62 visited then DFS(v) �
od

else

i := Y (u);
if ini 62 visited then DFS(ini) � ;
foreach ((u; v); w) 2 E do

if v 2 visited and w 62 visited then DFS(w) �
od

�

end DFS .

DFS(in1);
print(\Target is not reachable").

Fig. 3. Reachability Algorithm.

We use N to denote [iNi, E to denote [iEi, etc. The algorithm performs a depth-
�rst search using the global data structure visited to store the nodes and boxes.
While processing a box b with Y (b) = i, the algorithm checks if the entry-node ini
of the ith structure was visited before. The �rst time the algorithm visits some box
b with index i, it searches the structure Ki by invoking DFS (ini). At the end of
this search, the set of exit-nodes of Ki that are reachable from in i will be stored
in the data structure visited . If the algorithm visits subsequently some other box
c with index i, it does not search Ki again, but simply uses the information stored
in visited to continue the search. It is easy to verify that Algorithm 3 invokes, for
every u 2 N [ B, DFS(u) at most once. The cost of processing a node or a box u
equals the number of edges with source u. Consequently, the running time of the
algorithm is linear in the size of the input structure.

Theorem 1. (Reachability). The depth-�rst search algorithm of Figure 3
correctly solves the reachability problem (K;T ) with time complexity O(jKj).

Proof. First note that for any structure Ki, if the depth-�rst search DFS(in i)
is invoked, then at the time of invocation, the set visited does not contain any node
or box of Ki. Second, the search DFS(in i) does not encounter any node or box of
a structure Kj with j < i. Now, we prove by backward induction on i that for each
Ki, when DFS (in i) is invoked, if a node in the target set is reachable from in i, the
routine terminates after printing \Target is reachable"; else the routine terminates
after inserting all the nodes reachable from in i in the set visited .
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The structure Kn has no boxes, and is like an ordinary Kripke structure. Since
visited contains no node ofKn when DFS(inn) is invoked, it behaves like a standard
depth-�rst search. By the correctness of the standard search, DFS(inn) either
aborts by encountering a node in the target set, or visits all the nodes reachable
from inn.
Now consider a structure Ki, with i < n, with a possibly nonempty set of boxes.

By the semantics of hierarchical structures, for the purpose of the search, Ki can be
viewed as an ordinary Kripke structure where each box b with index j is replaced
by the entry and exit-nodes of Kj , and edges that connect the entry-node with
every exit-node reachable from it. The routine DFS (in i) behaves like the standard
depth-�rst search on this structure.
Each structure is searched at most once. The running time follows from the fact

that the standard depth search requires time proportional to the number of nodes
and edges.

3.1.2 Complexity of Reachability. For 
at Kripke structures, deciding reacha-
bility between two states is in Nlogspace. For hierarchical structures, however,
the reachability problem becomes Ptime-hard even if we require a single exit for
every structure.

Theorem 2. (Reachability: Complexity). The reachability problem (K;T )
is Ptime-complete.

Proof. The proof is by reduction from the alternating reachability problem.
Consider an AND-OR graph, i.e., a graph with two disjoint sets VA and VO of
vertices, called AND and OR vertices, respectively, and a set E of edges. Given
a set T of target vertices, and an initial vertex v, consider the following 2-player
game. The initial game state is vertex v. Whenever the game state is an OR-vertex,
player-1 chooses the successor vertex by following an edge in E, and whenever the
game state is an AND-vertex, player-2 chooses the successor vertex by following an
edge in E. If the game state is a vertex in the target set, the player-1 wins, and
if the game continues forever, player-2 wins. The problem of determining whether
player-1 has a winning strategy is known to be Ptime-complete. Note that if player-
1 has a winning strategy, then it has a memoryless winning strategy that ensures
victory within at most n� 1 steps, where n is the total number of vertices.
Given an AND-OR graph and a target set, we construct a hierarchical Kripke

structure as follows. Without loss of generality, assume that each node has precisely
two successors. Suppose the graph has n vertices. Then for each 1 � i � n, and
each vertex u, we construct a hierarchical Kripke structure Ku;i. Each Ku;i has
two nodes, the entry-node inu;i, and the single exit-node outu;i.
The structures Ku;n have no boxes. If u is in the target set, then there is an edge

from inu;n to outu;n; otherwise there are no edges.
For i < n, the structures Ku;i are shown in Figure 4. If u is in the target set,

then there are no boxes, and an edge connecting the entry-node to the exit-node.
Otherwise, there are two boxes, mapped to Kv;i+1 and Kw;i+1, corresponding to
the two successors v and w of u. The edges are as shown in Figure 4: if u is an
OR-vertex, then the exit-node can be reached after visiting one of the boxes, while
for an AND-vertex, the exit-node can be reached only after visiting both the boxes.
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OR vertex u with successors v and w

Target vertex u

AND vertex u with successors v and w

Kv;i+1 Kw;i+1

Kv;i+1

Kw;i+1

inu;i
outu;i inu;i outu;i

outu;iinu;i

Fig. 4. Reduction from AND-OR reachability.

The correctness of the reduction is captured by the following claim: for each
1 � i � n, the exit-node of Ku;i can be reached from its entry-node i� the player-1
has a winning strategy to reach a target vertex starting from the vertex u in at most
n�i steps. This claim is proved by induction on i, and the proof is straightforward.
Consequently, existence of a winning strategy from an initial vertex u reduces to
reachability of outu;1 from inu;1.
Note that the size of each Ku;i is constant, and thus, the total size of the hierar-

chical structure is quadratic in the size of the input AND-OR graph.

3.2 Cycle Detection

The basic problem encountered during veri�cation of liveness requirements is to
check whether a speci�ed state can be reached repeatedly [Vardi and Wolper 1986;
Holzmann 1991]. As in the reachability problem, the input to the cycle-detection
problem consists of a hierarchical Kripke structure K, and a target region T � N .
Given (K;T ), the cycle-detection problem is to determine whether there exists a
state u whose last component is in the target region T such that (1) u is reachable
from the entry-node in1, and (2) u is reachable from itself.
The cycle-detection algorithm is shown in Figure 5. The algorithm involves two

searches, a primary and a secondary. The algorithm uses a global data structure
visitedP to store the states encountered during the primary search, and visitedS to
store the states encountered during the secondary search. The primary search is
performed by the procedure DFSP . When the search backtracks from a node in the
target region, it initiates a secondary search. The secondary search is performed
by the procedure DFSS , and it searches for a cycle. Since the stack stores a path
leading to the node or the box from which the secondary search was initiated, the
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Input: A hierarchical structure K and a target region T .
Output: The answer to the cycle-detection problem (K;T ).

visitedP ; visitedS: sets of nodes and boxes, initially empty
Stack : Stack of nodes and boxes, initially empty

procedure DFSP (u)
Push(u;Stack);
visitedP := visitedP [ fug;
if u 2 N then

foreach (u; v) 2 E do

if v 62 visitedP then DFSP (v) �
od ;
if u 2 T and u 62 visitedS then DFSS(u) �

else

i := Y (u);
if ini 62 visitedP then DFSP (ini) � ;
foreach ((u; v); w) 2 E do

if v 2 visitedP and w 62 visitedP then DFSP (w) � ;
if v 2 visitedS then

if w 2 Stack then

print(\Cycle found"); break
� ;
if w 62 visitedS then DFSS(w) � ;

� ;
od ;

� ;
Pop(Stack);

end DFSP .

procedure DFSS(u)
visitedS := visitedS [ fug;
if u 2 N then

foreach (u; v) 2 E do

if v 2 Stack then

print(\Cycle found");break
� ;
if v 62 visitedS then DFSS(v) �

od

else

i := Y (u);
foreach ((u; v); w) 2 E do

if v 2 visitedP then

if w 2 Stack then

print(\Cycle found"); break
� ;
if w 62 visitedS then DFSS(w) �

�

od

�

end DFSS.

DFSP (in1);
print(\Cycle not found").

Fig. 5. Cycle-detection algorithm.
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secondary search terminates with a positive response when it encounters a node or
a box on the stack. The interleaving of the two searches is similar to the cycle-
detection algorithm for ordinary Kripke structures [Courcoubetis et al. 1992], except
that we have both boxes and nodes here. When the primary search backtracks from
a box b, it invokes a secondary search from an exit-node v of the box b if there is a
path from the entry-node to v involving a node in the target region, equivalently,
when v has already been encountered during the secondary search.

Theorem 3. (Cycle detection). The nested depth-�rst search algorithm of
Figure 5 correctly solves the cycle-detection problem (K;T ) with time complexity
O(jKj).

Proof. Let us call a path/cycle to be a T -path/T -cycle if it contains a state
whose last component is in T . We establish, that for every i, if the primary search
DFSP (in i) is invoked by the algorithm of Figure 5, then

(1) If the expanded structure KF
i contains a T -cycle reachable from ini, then

DFSP (in i) detects such a cycle and terminates by printing \Cycle found."

(2) If the expanded structure KF
i does not contain a reachable T -cycle, then

DFSP (in i) terminates, and upon termination
(a) a node or a box of Ki belongs to visitedP i� it is reachable from ini in K

F
i ,

(b) a node or a box of Ki belongs to visitedS i� it is reachable from node ini
in KF

i along a T -path.

This claim is proved by induction on the index i from n down to 1.
First, consider the invocation DFSP (inn). At this point, the sets visitedP and

visitedS do not contain any node of Kn. Since Kn has no boxes, the primary search
behaves like a standard depth-�rst search. When the primary search from a node
u terminates, the stack contains a trajectory from inn to u. If u belongs to T , a
secondary search is initiated, and if this search encounters a node on the stack, we
can conclude that there is a cycle containing u.
The proof that if Kn has a reachable T -cycle, then DFSP (inn) detects it, is

similar to the proof in [Courcoubetis et al. 1992]. Let us order the nodes of Kn

according to the termination times of the primary search: if DFSP (u) terminates
before DFSP (v), then u gets a lower number than v. Suppose Kn contains a
reachable T -cycle. Let u0; : : : uk be the ordering of reachable nodes in T according
to our numbering. Let ui be the �rst node in this list that belongs to a cycle. Then,
no node of this cycle can be reachable from uj for j < i (else there will be a cycle
containing uj). Consequently, when the primary search from ui is over, the set
visitedS does not contain any node of the cycle, which guarantees that DFSS(ui)
will discover the cycle.
When Kn has no reachable T -cycle, DFSP is invoked from every node reachable

from inn, and all these nodes will be inserted in visitedP . The secondary search is
initiated from every reachable node in T , and visitedS will contain nodes that are
reachable from such nodes.
Now consider the claim for i < n. Again, when DFSP (in i) is invoked, the sets

visitedP and visitedS do not contain any elements of Ki. Whenever the primary
search is invoked from a node or a box of Ki, the stack contains a trajectory from
in i to that element. Since the claim holds for j > i, by de�nition of the hierarchical
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structure, a box b mapped to index j can be replaced by its entry-node, exit-nodes,
edges connecting the entry-node to those exit-nodes reachable from it. Furthermore,
if an exit-node v is in the set visitedS , Kj has a T -path from the entry-node to v.
It follows, that if the secondary search encounters a node on the stack, there is a
T -cycle, reachable from in i.
We proceed to establish, that if Ki has a reachable T -cycle, then DFSP (in i)

discovers it. The proof is quite similar as in the case of Kn except that now
we need to consider boxes also. Let us order the reachable boxes and nodes of
Ki according to the termination times of the primary search. Let u be the �rst
element in this ordering such that u is a node in T that belongs to a cycle, or u is
a box mapped to j such that there is a cycle that contains (u; inj) and some node
in T . If u is a node, then by an argument as in the base case, when DFSS(u) is
invoked, none of the elements in the cycle containing u are in visitedS , and hence,
DFSS(u) will discover the cycle. Suppose u is a box mapped to index j > i. If Kj

contains a reachable T -cycle, by induction hypothesis, DFSP (inj) should discover
it. Suppose that Kj does not contain a reachable T -cycle. Then the cycle contains
a T -path from inj to an exit-node v of Kj . There may be multiple choices of v,
and in that case, consider the least one according to their order in the list of edges
of the form ((u; v); w). By induction hypothesis, v will be in visitedS . Consider the
edge ((u; v); w) that participates in the cycle (if there are multiple choices for w,
consider the least one according to the order in the list of edges). Either w will be
on stack, or the call DFSS(w) will discover the cycle.
For complexity analysis observe, that for every u 2 N [ B, DFSP (u) is invoked

at most once, and DFSS(u) is invoked at most once. This gives linear-time com-
plexity.

Note that if all nodes of a hierarchical Kripke structure have self-loops then the
cycle-detection problem is the same as the reachability problem. Consequently, the
cycle-detection problem is also Ptime-hard, and thus, Ptime-complete.

3.3 Automata Emptiness

Let M = hW; in ; R; Li be a Kripke structure over proposition set P . For a state
w 2 W , a source-w trajectory of M is an in�nite sequence w0w1w2 : : : of states
in W such that w0 = w and wiRwi+1 for all i � 0. An initialized trajectory is a
source-in trajectory. The trace corresponding to the trajectory w0w1w2 : : : is the
in�nite sequence L(w0)L(w1) : : : over 2

P obtained by replacing each state with its
label. The language L(M) consists of all the traces corresponding to the initialized
trajectories of M .
A B�uchi automaton A over P consists of a Kripke structure M over P and a

set T of accepting states. An accepting trajectory of A is an initialized trajectory
w0w1w2 : : : ofM such that wi 2 T for in�nitely many i. The language L(A) consists
of all traces corresponding to accepting trajectories of A.
The input to the automata-emptiness problem consists of a hierarchical structure

K over P and an automaton A over P . Given (K;A), the automata-emptiness
problem is to determine whether the intersection L(A) \ L(KF ) is empty. This
is the automata-theoretic approach to veri�cation: if the automaton A accepts
undesirable or bad behaviors, checking emptiness of L(A) \ L(KF ) corresponds to
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:pp :p

Fig. 6. A sample B�uchi automaton.

ensuring that the model has no bad behaviors.
As an example, consider the 3-state automaton of Figure 6 over the single propo-

sition p. The only accepting state is the rightmost state, and thus any accepting run
must eventually keep cycling on this state. Thus, the language of the automaton
contains all in�nite words in which p is true only �nitely many times. If in�nite
repetition of the property p is the desired requirement, then the automaton cap-
tures all the bad behaviors (see [Vardi and Wolper 1986], [Kurshan 1994], [Thomas
1990], and [Holzmann 1991] for more details on !-automata and their role in formal
veri�cation).
We solve the automata-emptiness problem (K;A) by reduction to a cycle-detection

problem for the hierarchical structure obtained by constructing the product of K
with A as follows. Let K = hK1; : : :Kni with Ki = hNi; Bi; ini; Oi; Xi; Yi; Eii,
and let A = hW = fw1; : : : wmg; w1; R; L; Ti. The product structure K 
 A is the
hierarchical structure hK11; : : :K1m; : : :Kn1; : : :Knmi with nm structures. Each
structure Ki is repeated m times, one for every possible way of pairing its entry-
node with a state of A. Each structure Kij has the following components:

(1) A node of Kij is a pair (u;w), where u 2 Ni, w 2 W , and X(u) = L(w); the
label of (u;w) equals X(u).

(2) A box of Kij is a pair (b; w), where b 2 Bi and w 2 W ; the index of (b; w) is
m(i0 � 1) + j0 if Y (b) = i0 and w = wj0 .

(3) The entry-node of Kij is (in i; wj), and a node (u;w) is an exit-node of Kij if
u 2 Oi.

(4) Consider a transition (w; x) of A. While pairing it with the edges in Ei, there
are four cases to consider, depending on whether the edge connects a node to
a node, a node to a box, a box to a node, or a box to a box.
|For an edge (u; v) of Ki with u; v 2 Ni, X(u) = L(w), and X(v) = L(x),
there is an edge ((u;w); (v; x)) in Kij .

|For an edge (u; b) of Ki with u 2 Ni, b 2 Bi, X(u) = L(w), and X(inY (b)) =
L(x), there is an edge ((u;w); (b; x)) in Kij .

|For an edge ((b; u); v) of Ki with b 2 Bi, u 2 OY (b), v 2 Ni, X(u) = L(w),
and X(v) = L(x), for every y 2 W , there is an edge (((b; y); (u;w)); (v; x))
in Kij .

|For an edge ((b; u); c) of Ki with b; c 2 Bi, u 2 OY (b), X(u) = L(w), and
X(inY (c)) = L(x), for every y 2 W , there is an edge (((b; y); (u;w)); (c; x))
in Kij .

Note that if the propositional labeling of ini and wj is di�erent, then the entry-
node of Kij is not de�ned; the rules for edges ensure that a box mapped to such
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a structure is not reachable, and thus the structure Kij can be omitted. The
structures K12; : : :K1m are not reachable from the entry-node of K11, and hence
can also be omitted. The correctness of the product construction is captured by
the following lemma which says that some trace of KF is accepted by A i� there is
a reachable cycle in K 
A containing a node of the form (u;w) with w 2 T .

Lemma 4. (Product Construction). The intersection L(KF ) \ L(A) is
nonempty i� the answer to the cycle-detection question (K 
A;N � T ) is YES.

Proof. The �rst step is to establish that the 
attening of K 
A is isomorphic
to the product of KF and A. This follows directly from the de�nitions of 
attening
and the product. The lemma follows from the standard property of the product
construction: the language of the (ordinary) product of two automata is the inter-
section of their languages.

Hence, we can solve the automata-emptiness question using the cycle-detection
algorithm. Note that the algorithm allows us to explore the graph on-the-
y. That
is, we do not need to construct K 
 A explicitly in advance, but rather its nodes
and boxes can be generated on-the-
y when needed. In the construction of K 
A,
the number of structures gets multiplied by the number of states of A. Within
each structure, each node and box in the original hierarchical structure gets paired
with a state of A in the worst case, and within each box each exit-node gets paired
with a state of A. Consequently, the total number of edges in the structure Kij is
bounded by the product of the number of edges in Ki, the number of edges in A,
and the number of states in A. This leads to the following bound:

Theorem 5. (Automata Emptiness). The automata emptiness question (K;A)
can be solved by reduction to the cycle-detection problem in time O(a2 � jAj � jKj),
where a is the number of states in A.

3.4 Linear Temporal Logic

Requirements of trace-sets can be speci�ed using the temporal logic LTL [Pnueli
1977; Manna and Pnueli 1991]. For instance, the requirement that \p should be
repeated in�nitely often" is speci�ed by the LTL-formula 23 p. A formula ' of
LTL over propositions P is interpreted over an in�nite sequence over 2P . A hierar-
chical structure K satis�es a formula ', written K j= ', i� every trace in L(KF )
satis�es the formula '. The input to the LTL model-checking problem consists of
a hierarchical structure K and a formula ' of LTL. The model-checking problem
(K;') is to determine whether or not K satis�es '.
To solve the model-checking problem, we construct a B�uchi automaton A:' such

that the language L(A:') consists of precisely those traces that do not satisfy '.
This can be done using one of the known translations from LTL to B�uchi automata
[Lichtenstein and Pnueli 1985; Vardi and Wolper 1986]. The number of states of
A:' is O(2j'j). Then, the hierarchical structure K satis�es ' i� L(KF ) \ L(A:')
is empty. Thus, the model-checking problem reduces to the automata-emptiness
problem. The complexity of solving the automata-emptiness problem, together with
the cost of translating an LTL formula to a B�uchi automaton, yields the following.

Theorem 6. (LTL Model Checking). The LTL model-checking problem
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(K;') can be solved in time O(jKj � 8j'j).

An alternative approach to solve the LTL model-checking problem (K;') is to
search for an accepting cycle in the product of the expanded structure KF with
the automaton A:'. This product has jKj

nd(K) � 2j'j states, and each state of this
product can be represented in space O(jKj � j'j). Transitions of the product can be
computed e�ciently using standard techniques, and consequently the search can
be performed in space O(jKj � j'j). This gives a Pspace upper bound on the LTL
model-checking problem. It is known that the LTL model-checking problem for
ordinary Kripke structures is Pspace-hard. This leads to the following

Theorem 7. (LTL Complexity). The LTL model-checking problem (K;') is
Pspace-complete.

4. BRANCHING-TIME PROPERTIES

Now we turn our attention to verifying requirements speci�ed in the branching-time
temporal logic CTL [Clarke and Emerson 1981]. Branching-time logics provide
quanti�cation over computations of the system allowing speci�cation of require-
ments such as \along some computation, eventually p" and \along all computations,
eventually p." Formally, given a set P of propositions, the set of CTL formulas is
de�ned inductively by the grammar

' := p j :' j ' ^ ' j 9
 ' j 92' j ' 9U'

where p 2 P . For a Kripke structure M = (W; in ; R; L) and a state w 2 W , the
satisfaction relation w j= ' is de�ned below:

w j= p i� p 2 L(w);
w j= :' i� w 6j= ';
w j= ' ^  i� w j= ' and w j=  ;
w j= 9
 ' i� there exists a state u with wRu and u j= ';
w j= 92' i� there exists a source-w trajectory w0w1 : : : such that

wi j= ' for all i � 0;
w j= ' 9U i� there exists a source-w trajectory w0w1 : : : such that

wk j=  for some k � 0, and wi j= ' for all 0 � i < k.

Many additional temporal operators can be de�ned as derived connectives. Some
standard derived operators include 93 (along some trajectory, eventually  ) for
(true 9U ), 82 ( holds in all reachables states) for :93: , and 8
 ( holds
in all successor states) for :9
 : .
The Kripke structure M satis�es the formula ', written M j= ', i� in j= '. A

hierarchical Kripke structure K satis�es the CTL formula ' i� KF j= '. The CTL
model-checking problem is to decide, given a hierarchical Kripke structure K and a
CTL formula ', whether K satis�es '.

4.1 Single-Exit Case

First, we consider the case when every structure has a single exit-node. In this case,
the edges from boxes need not specify the exit-node of the structure associated with
the box, and we assume that each Ei is a binary relation over Ni [Bi. We will use
out i to denote the unique exit-node of Ki.
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Input: A hierarchical structure K and a CTL formula '.
Output: The answer to the model-checking problem (K;').

sub(') := list of subformulas of ' in increasing order of size.
foreach  2 sub(') do
case  :
 2 P : skip;
 = :�:
foreach u 2 N do

if � 62 X(u) then X(u) := X(u) [ f g �
od ;

 =  1 ^  2:
foreach u 2 N do

if  1 2 X(u) and  2 2 X(u) then X(u) := X(u) [ f g �
od ;

 = 9
 �: K := CheckNext(K;�);
 =  1 9U 2: K := CheckUntil(K; 1;  2)
 = 92�: K := CheckAlways(K;�);

od

if ' 2 X(in1) then print (\' satis�ed") else print (\' not satis�ed") �.

Fig. 7. CTL model checking.

4.1.1 Model-Checking Algorithm. The main loop of the model-checking algo-
rithm is shown in Figure 7. At the beginning, for each node u, the labeling set
X(u) is initialized to contain the atomic propositions that are true at the node u.
The algorithm considers subformulas of ' starting with the innermost subformulas,
and extends the label X(u), at each node u, with the subformulas that are satis�ed
at u. A node can appear in multiple contexts, and whether it satis�es a subformula
can depend on the context. Consequently, the algorithm repeatedly transforms the
hierarchical structure K, and is designed to maintain the following property:

After the algorithm processes a subformula  , if a node u is labeled with
 then in the current expanded structure KF , every state with the last
component u satis�es  , and if a node u is not labeled with  then in
KF , no state with the last component u satis�es  .

At the end, if the entry-node of the �rst structure is labeled with ', then the original
structure satis�es '. Processing of atomic propositions and subformulas of the
form :� and  1 ^  2 is straightforward. Handling of temporal operators requires
modifying the structure; each subformula can double the number of structures. We
will consider the cases corresponding to the temporal operators.

4.1.2 CheckNext: Processing of 9
. To illustrate the ideas, �rst consider a hi-
erarchical structure K = hK1;K2i. Consider a formula  = 9
 p for an atomic
proposition p. We wish to compute the set of nodes at which  is satis�ed. Consider
a node u of K2. Multiple boxes of K1 may be mapped to K2, and hence, u may
appear in multiple contexts in the expanded structure (i.e., there may be multiple
states whose last component is u). If u is not the exit-node, then the successors
of u do not depend on the context. Hence, the truth of  is identical in all states
corresponding to u, and can be determined from the successors of u within K2:  
holds at u if some successor node of u is labeled with p. If u is the exit-node of
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K2, then the truth of  may depend on the context. For instance, the truth of 9

abort at the exit-node fail of the structure K2 of Figure 1 is di�erent in the two
instances; the formula is false in (try1 ; fail ) and is true in (try2 ; fail ). In this case,
we need to create two copies of K2: K

0
2 and K1

2 . The superscript indicates whether
or not the exit-node of K2 has some successor that satis�es p and is outside K2.
The exit-node of K1

2 is labeled with  . The exit-node of K0
2 is labeled with  only

if it has a successor within K2 that satis�es p. The mapping of boxes of K1 must be
consistent with the intended meaning: a box of K1 which has a successor satisfying
p is mapped to K1

2 and to K0
2 otherwise.

Now we proceed to de�ne the computation of CheckNext for the general case.
The input to CheckNext is a hierarchical structure K and a subformula �. Let
K = hK1; : : :Kni where each Ki = hNi; Bi; in i; out i; Xi; Yi; Eii. Assume that the
nodes of K are already labeled with the formula �, and let  = 9
 �. For
u 2 Ni [Bi, de�ne u j=i  if either (i) there exists a node v of Ki with (u; v) 2 Ei
and � 2 Xi(v), or (ii) there exists a box b of Ki with index k such that (u; b) 2 Ei
and � 2 X(ink). Thus, u j=i  means that u has a �-successor within Ki or
substructures nested within Ki. For a given u, whether u j=i  holds can be
determined simply by examining the edges out of u.
CheckNext(K;�) returns a hierarchical structure K 0 = hK0

1 ;K
1
1 ; : : :K

0
n;K

1
ni by

replacing eachKi with two structuresK
0
i = hNi; Bi; ini; out i; X

0
i ; Y

0
i ; Eii andK

1
i =

hNi; Bi; in i; out i; X
1
i ; Y

0
i ; Eii, where the revised mapping Y 0

i of boxes to indices is
de�ned as follows:

For a box b of Ki with Yi(b) = j, if b j=i  then Y 0
i (b) = 2j, and

otherwise, Y 0
i (b) = 2j � 1.

The revised labeling functions X0
i and X1

i that extend Xi to include labeling of
nodes with  are de�ned as follows:

(1) For a node u of K0
i , if u j=i  then  2 X0

i (u), and otherwise,  62 X0
i (u).

(2) For a node u of K1
i , if u j=i  or if u is the exit-node of Ki, then  2 X1

i (u),
and otherwise,  62 X1

i (u).

Observe that if the exit-node out i j=i  then K0
i and K1

i are identical, and in this
case, we can delete one of them (i.e., there is no need to create two instances).

4.1.3 CheckUntil: Processing of 9U . Whether a node u of a structure Ki sat-
is�es the until-formula  =  1 9U 2 may depend on what happens after exiting
Ki, and thus, di�erent occurrences may assign di�erent truth values to  1 9U 2,
requiring splitting of each structure into two. The input to CheckUntil consists of
a hierarchical structure K and formulas  1 and  2. Let K = hK1; : : :Kni, where
each Ki = hNi; Bi; ini; out i; Xi; Yi; Eii. The computation proceeds in two phases.
In the �rst phase, we partition the index-set f1; : : : ng into three sets, YES, NO,

and MAYBE, with the following interpretation. An index i belongs to YES when
the entry-node in i satis�es the until-formula  within the expanded structure KF

i .
Then, in KF , every occurrence of the entry-node ini satis�es  . Now consider an
index i that does not belong to YES. It belongs to MAYBE if within KF

i there
is a �nite trajectory from in i to exiti that contains only states labeled with  1.
In this case, it is possible that for some occurrences of KF

i in KF , the entry-node
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YES:= ;; NO:= ;; MAYBE:= ;;
for i = n downto 1 do
if ini j=i ( 1 _MAYBE) 9U( 2 _YES)
then YES := YES [ fig
else

if ini j=i ( 1 _MAYBE) 9U(out i ^  1)
then MAYBE :=MAYBE [ fig
else NO := NO [ fig
�

�

od

Fig. 8. First phase of CheckUntil.

satis�es  depending on whether or not the corresponding exit-node satis�es  .
In the last case, the index i belongs to NO, and in every occurrence of KF

i , the
entry-node does not satisfy the formula  . This happens when upon entering KF

i ,
a trajectory is guaranteed to encounter a node violating : 1 before visiting a node
satisfying  2 or the exit-node of Ki.
To express the computation succinctly, de�ne the satisfaction relation j=i that

considers the structure Ki to be an ordinary structure over vertices Ni [ Bi. In
this interpretation, a box is considered like an ordinary vertex, which is labeled
with YES, NO, orMAYBE, according to the characterization of the index that it
is mapped to. In addition, we modify the de�nition of the satisfaction so that an
9U-formula can be satis�ed along a �nite trajectory. For example,

u j=i ( 1 _MAYBE) 9U( 2 _YES);

for a node or a box u of the structure Ki, translates to the requirement that there
exists a �nite path v0v1 : : : vk of vertices vl 2 Ni [Bi such that

(1) v0 equals u,

(2) vk j=i ( 2 _ YES) meaning that if vk is a box such that Yi(vk) = j then
j 2 YES, and if vk is a node then  2 2 Xi(vk), and

(3) for 0 � l < k, vl j=i ( 1 _MAYBE) meaning that if vl is a box such that
Yi(vl) = j then j 2MAYBE, and if vl is a node then  1 2 Xi(vl).

The desired partitioning is computed by the procedure of Figure 8. The com-
putation for each index i can be performed by a simple depth-�rst search over the
nodes and boxes of Ki starting at the node ini in time jKij.
For example, consider the hierarchical structure shown in Figure 9. The atomic

propositions are p and q, and each node is labeled with the atomic propositions true
at that node. The structure K1 has two boxes both of which are mapped to the
structure K2. The formula of interest is p 9U q. In the �rst phase, we �rst consider
the structure K2, and conclude that it corresponds to the case MAYBE, since
there is a path from its entry-node to exit-node that visits only the nodes satisfying
p. Then, we process the structure K1. At this step, the boxes are considered as
vertices labeled with MAYBE (see Figure 10). Since the entry-node satis�es the
formula (p_MAYBE) 9U(q_YES), we conclude that the structureK1 corresponds
to the case YES. Thus, after executing the algorithm of Figure 8, the setMAYBE
contains the index 2, and the set YES contains the index 1.
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K2
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p

q
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Fig. 9. Example for illustrating checking of 9U formulas.

p
p; out1

qMAYBE

MAYBE

Fig. 10. Illustration of phase 1 of CheckUntil.

In the second phase, the new hierarchical structure K 0 along with the labeling
of  is constructed. To obtain K 0, each structure Ki is split into two: K

0
i and K1

i .
A box b that is previously mapped to Ki will be mapped to K1

i if there is a path
starting at b that satis�es  , and otherwise to K0

i . Consequently, nodes within K
1
i

can satisfy  along a path that exits Ki, while nodes within K
0
i can satisfy  only if

they satisfy it within Ki. The new structure K 0 = hK0
1 ;K

1
1 ; : : :K

0
n;K

1
ni is obtained

by replacing each Ki of K with two structures K0
i = hNi; Bi; in i; out i; X

0
i ; Y

0
i ; Eii

and K1
i = hNi; Bi; ini; out i; X

1
i ; Y

1
i ; Eii, where the new components are de�ned as

follows:

(1) For the indexing of boxes of K0
i , consider a box b with Yi(b) = j.

If b j=i 9
[( 1_MAYBE) 9U( 2_YES)] then Y
0
i (b) = 2j, else Y 0

i (b) = 2j�1.

(2) For the indexing of boxes of K1
i , consider a box b with Yi(b) = j.

If b j=i 9
 [( 1 _MAYBE) 9U( 2 _YES_ (out i ^ 1))], then Y
1
i (b) = 2j, else

Y 1
i (b) = 2j � 1.

(3) For labeling of a node u of K0
i , if u j=i ( 1 _MAYBE) 9U( 2 _ YES) then

X0
i (u) equals Xi(u) with  added to it; else it equals Xi(u).

(4) For labeling of a node u of K1
i , if u j=i ( 1 _MAYBE) 9U( 2 _YES_ (out i ^

 1)), then X
1
i (u) equals Xi(u) with  added to it; else it equals Xi(u).

The hierarchical structureK 0 computed by the phase 2 on the example of Figure 9
is shown in Figure 11. Each of the structures K1 and K2 are split into two. In
K0

2 , the exit-node is assumed not to satisfy p 9Uq, while in K1
2 , the exit-node is

assumed to satisfy p 9Uq, and the truth of p 9Uq at other nodes is determined based
on these assumptions. In particular, the entry-node of K1

2 is labeled with p 9Uq,
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K1
1

K1
2

K1
2

K0
1

K0
2
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p; p9Uq

q; p9Uq

p; p9Uq

q; p9Uq

p; p9Uq

p; p9Uq

q; p9Uq

p
p

q; p9Uq

p

p; p9Uq

Fig. 11. Illustration of phase 2 of CheckUntil.

as it satis�es (p _MAYBE) 9U(q _ YES _ (out2 ^ p)) (see rule (4) above). The
labeling of nodes with p 9Uq in the two copies of K1 is determined analogously.
The mapping of boxes to structures is determined according to rules 1 and 2 above.
For the upper box, the formula p 9Uq holds upon exit in K1, and hence in both the
copies K0

1 and K1
1 , the upper box gets mapped to K1

2 . For the lower box, the truth
of the formula p 9Uq upon exit coincides with its truth at the exit-node of K1, and
hence, the lower box is mapped to K0

2 in K0
1 and to K1

2 in K1
1 .

The construction of K 0 is immediate if we have computed, for each Ki, the sets

fu 2 Ni [ Bi j u j=i ( 1 _MAYBE) 9U( 2 _YES)g

and

fu 2 Ni [ Bi j u j=i ( 1 _MAYBE) 9U( 2 _YES _ (out i ^  1))g:

Since the nodes of Ki are already labeled with  1 and  2, and the boxes are labeled
with YES, MAYBE, or NO, these two sets can be computed in time O(jKj), as
in the standard labeling algorithm of CTL [Clarke and Emerson 1981].

4.1.4 CheckAlways: Processing of 92. Finally, we consider the processing of
subformulas of the type 92�. The input to CheckAlways is a hierarchical structure
K and a formula �. Let K = hK1; : : :Kni with Ki = hNi; Bi; ini; out i; Xi; Yi; Eii,
and let  = 92�. The computation proceeds in two phases as in case of CheckUntil.
The �rst phase partitions the index-set f1; : : : ng into three sets, YES, NO, and

MAYBE, with the following interpretation. An index i belongs to YES when the
entry-node in i satis�es the always-formula  within the expanded-structure KF

i .
An index i, that does not belong to YES, belongs to MAYBE if within KF

i there
is a (�nite) trajectory from ini to out i that contains only states labeled with �.
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YES:= ;; NO:= ;; MAYBE:= ;;
for i = n downto 1 do
if ini j=i [ (� _MAYBE) 9U YES ] _ 92(� _MAYBE)
then YES := YES [ fig
else

if ini j=i (� _MAYBE) 9U(out i ^ �)
then MAYBE :=MAYBE [ fig
else NO := NO [ fig
�

�

od .

Fig. 12. First phase of CheckAlways.

Remaining indices belong to NO. As before, de�ne the satisfaction relation j=i that
considers the structure Ki to be an ordinary structure over vertices Ni [ Bi. The
desired partitioning is computed by the procedure of Figure 12.
In the second phase, we construct two copies of each Ki. Nodes within K

1
i can

satisfy  along a path that exits Ki, while nodes within K
0
i can satisfy  only if

they satisfy it within Ki. The new structure K 0 = hK0
1 ;K

1
1 ; : : :K

0
n;K

1
ni is obtained

by replacing each Ki of K with two structures K0
i = hNi; Bi; in i; out i; X

0
i ; Y

0
i ; Eii

and K1
i = hNi; Bi; ini; out i; X

1
i ; Y

1
i ; Eii, where the new components are de�ned as

follows:

(1) For the indexing of boxes of K0
i , consider a box b with Yi(b) = j.

If b j=i 9
 [(� _MAYBE) 9U YES _ 92(� _MAYBE)], then Y 0
i (b) = 2j;

else Y 0
i (b) = 2j � 1.

(2) For the indexing of boxes of K1
i , consider a box b with Yi(b) = j.

If b j=i 9
 [(� _MAYBE) 9U(YES _ (out i ^ �)) _ 92(� _MAYBE)], then
Y 1
i (b) = 2j; else Y 1

i (b) = 2j � 1.

(3) For labeling of a node u of K0
i , if u j=i 9
 [(�_MAYBE) 9U YES _ 92(�_

MAYBE)], then X0
i (u) equals Xi(u) with  added to it; else it equals Xi(u).

(4) For labeling of a node u of K1
i , if u j=i 9
 [(� _MAYBE) 9U(YES _ (out i ^

�)) _ 92(� _MAYBE)], then X1
i (u) equals Xi(u) with  added to it; else it

equals Xi(u).

The structure K 0 can be computed from K in time O(jKj) using the standard CTL
model-checking algorithm. This leads us to the following theorem:

Theorem 8. (CTL Model Checking: Single Exit). The algorithm of Fig-
ure 7 solves the CTL model-checking problem (K;'), for a single-exit hierarchical
structure K, in time O(jKj � 2j'j).

Proof. For correctness, let K be the structure after processing of the subfor-
mula  . We claim, that for every node u that is reachable from the entry-node of
the top-level structure of K , if u is labeled with  then in the expanded struc-
ture KF

 every reachable state with the last component u satis�es  , and if u is
not labeled with  then no reachable state with the last component u satis�es  .
This can be established by induction on the length of  from the de�nitions of the
temporal operators and the constructions in the algorithm. Note that the restric-
tion to reachable states is needed. For instance, while processing an until-formula
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 =  1 9U 2, the nodes in the copy K1
i are labeled assuming that  is satis�ed

upon exit. The consistency of this assumption is veri�ed for any box mapped to
K1
i . If no box is mapped to K1

i , then there may be inconsistency, but in this case,
nodes in K1

i are not reachable from the top-level entry-node.
A CTL-formula ' has at most j'j subformulas. Processing of each subformula

requires time linear in the size of the current structure, as discussed in di�erent
cases. Processing each temporal subformula at worst doubles the size of the current
structure. This leads to the complexity bound of O(jKj �2j'j), where jKj is the size
of the input structure.

4.1.5 Lower Bound. It is known that deciding whether a 
at Kripke structure
M satis�es a CTL formula ' can be solved in space O(j'j � log jM j) [Bernholtz
et al. 1994]. For a hierarchical structure K, the size of the expanded structure KF

is O(jKjnd(K)). The expanded structure need not be constructed explicitly. Each
state of the expanded structure can be represented in space O(nd (K) � jKj). The
number of successors of a state of KF is only polynomial in the size of K: the
number of successors of an expanded state whose last component is the node x
of the structure Ki equals the number of successors of x if x is not an exit-node,
and is bounded by the product of the number of edges in K and the number of
boxes mapped to the index i, if x is an exit-node. The successors of any state of
the expanded structure can be computed in space polynomial in the size of K. It
follows that the space-e�cient algorithm of [Bernholtz et al. 1994] requires space
polynomial in the size of K, and consequently, CTL model checking for hierarchical
structures is in Pspace. We now establish a Pspace lower bound for the case of
single-exit structures.

Theorem 9. (CTL Complexity: Single Exit). Model checking of CTL
formulas for single-exit hierarchical structures is Pspace-complete.

Proof. We establish Pspace-hardness by reduction from quanti�ed boolean
formulas. Consider a quanti�ed formula � = Q1x1:Q2x2: : : : Qnxn: (x1; : : : xn),
where  is a boolean formula over the boolean variables x1; : : : xn, and each Qi is
a quanti�er (universal or existential). Determining the truth of � is Pspace-hard.
Given such a formula �, we construct a formula �0 of CTL, and a hierarchical
structure K such that K j= �0 i� � is true.
The formula �0 is de�ned to be the CTL-formula

Q1
 :Q2 
 : : : : Qn
 : (93x1; 93x2 : : :93xn):

That is, in the inside formula  , we replace each occurrence of the proposition xi
by the formula 93xi, and in the quanti�er pre�x, we replace 8xi by 8
 and 9xi
by 9
. The construction of the hierarchical structure K is illustrated in Figure 13.
For i = 1; : : : n, the structure Ki has one entry-node, one exit-node, and two boxes,
bi;0 and bi;1, both mapped to Ki+1. The structure Kn+1 has a single node. The
entry-node ofKi has two successors. Intuitively, choosing bi;1 corresponds to setting
xi to true, and the formula 93xi will be true at every subsequent node until Ki is
exited. On the other hand, choosing bi;0 corresponds to setting xi to false, and the
formula 93xi will be false at every subsequent node. Since we de�ne our semantics
with respect to only in�nite trajectories, we add a self-loop on the exit-node of the
structure K1.
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Ki

bi;1
Ki+1

Ki+1
bi;0

Kn+1xi

Fig. 13. Construction for Pspace complexity of Theorem 9.

More precisely, observe that the node of Kn+1 appears in 2n contexts. Each
context is given by a tuple (b1;j1 ; b2;j2 ; : : : bn;jn), where each ji can be 0 or 1. In
this context the node satis�es the formula  (93x1; 93x2 : : : 93xn) i�  evaluates to
true under the interpretation that assigns each variable xi to the value ji. For i < n,
the entry-node of each structure Ki+1 appears in 2i contexts, where each context
given by (b1;j1 ; : : : bi;ji) with each jk being 0 or 1. In this context, the entry-node
satis�es the formula Qi
 : : : : Qn
 : (93x1; 93x2 : : : 93xn) i� Qixi: : : :Qnxn: 
evaluates to true under the interpretation that assigns each free variable xk, for
k < i, to the truth value jk. This claim can be proved by induction.

4.2 Multiple-Exit Case

Now consider the case when the hierarchical structure K has multiple exits. The
model-checking algorithm is similar to the algorithm for the single-exit case, except
now more splitting may be required. For instance consider a structure Ki with 2
exit-nodes u and v, and a formula  = 9
 p. For di�erent boxes mapped to Ki,
whether the exit-node u satis�es  can vary, and similarly, whether the exit-node v
satis�es  can vary. Consequently, we need to split Ki into four copies, depending
whether both, only u, only v, or none, have a  -successor outside Ki. In general,
if there are d exit-nodes, processing of a single temporal subformula can generate
2d copies of each structure in the worst case. The modi�cations required to the
algorithm of Section 4.1 are left to the reader.

Theorem 10. (CTL Model Checking). The CTL model-checking problem
(K;') can be solved in time O(jKj � 2j'jd), where each structure of K has at most
d exit-nodes.

The alternative approach of applying known model-checking procedures to the ex-
panded structure gives a time bound of O(j'j � jKjnd(K)), or alternatively, a Pspace
bound. Note that in practice the size of the system (structure) K is orders of mag-
nitude greater than the size of the formula �; thus it is much preferable to have the
formula size in the exponent than to have the structure. In fact, typically formulas
to be checked are quite small in size. The next result states that the lower bound
of Pspace applies even for some small �xed CTL formula. This suggests that the
appearance of the number d of exit-nodes in the exponent in the running time of
Theorem 10 is unavoidable, and CTL model checking becomes indeed harder with
multiple exit-nodes.

Theorem 11. (CTL Complexity). The structure-complexity of CTL model
checking for hierarchical structures is Pspace-complete.
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Fig. 14. Construction for Pspace complexity of Theorem 11.

Proof. We again establish Pspace-hardness by reduction from quanti�ed boolean
formulas. Consider a quanti�ed formula � = Q1x1:Q2x2: : : : Qnxn: (x1; : : : xn),
where  is a boolean formula over the boolean variables x1; : : : xn, and each Qi is
a quanti�er (universal or existential). We assume that  is in conjunctive normal
form, where each conjunct has 3 literals. That is,  =  1 ^ � � � ^  k, where each
 j = lj1_lj2_lj3 such that each of the literals lj1; lj2; lj3 is either a boolean variable
or its negation.
We build a hierarchical structure with n+1 substructures over 3 propositions p,

q, and r (see Figure 14). The �rst n structures correspond to the n quanti�ers and
variables, while the last substructure Kn+1 encodes the clauses of the formula  .
For i = 1; : : : n, each structure Ki has an entry-node, two boxes mapped to Ki+1

(they are named bi;0 and bi;1 and correspond to setting variable xi to 0 and to 1
respectively), one sink node, one exit-node called out, and 2(i� 1) additional exit-
nodes corresponding to the variables x1; : : : xi�1 and their negations �x1; : : : �xi�1.
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p

p; q

p; q

out

x1

�x1

p

p; q

x3

�x3

x2

�x2

Fig. 15. Example of substructure Kn+1.

The entry-node and the exit-node out are labeled with (i.e. satisfy) p, while the
sink node is labeled with r; the literal nodes xj and �xj , j = 1; : : : ; i � 1 are not
labeled with any proposition.

The edges of Ki, i = 1; : : : n, are as shown in Figure 14, and depend on whether
the quanti�er Qi is universal or existential. The edges incident to the exit-nodes xj ,
�xj of the Ki+1 boxes bi;0, bi;1 are the same in the two cases: for each j = 1; : : : ; i�1,
the exit-node xj (respectively, �xj) of each of the two Ki+1 boxes has an edge to the
exit-node xj (respectively, �xj) of Ki. The exit-nodes �xi of box bi;0 and xi of bi;1
have edges to the sink node (the node labeled r in the �gure), while the exit-nodes
xi of bi;0 and �xi of box bi;1 have no outgoing edges. The other edges depend on the
quanti�er. If Qi is an existential quanti�er, then the entry-node of Ki has edges
to the entries of both boxes bi;0 and bi;1 and the exit-nodes out of both boxes have
edges to the exit-node out of Ki. If Qi is a universal quanti�er, then the entry-node
of Ki has an edge only to the entry-node of bi;0, the exit-node out of bi;0 has an
edge to the entry-node of bi;1 and the exit-node out of bi;1 has an edge to the exit
node out of Ki. In addition, the sink nodes labeled r of all Ki, and the exit-node
out of structure K1 have a self-loop (not shown in Figure 14).

The bottom structure Kn+1 has an entry-node, a series of k nodes corresponding
to the clauses  j of  , an exit-node out, and 2n exit-nodes corresponding to all
possible literals (variables and their negations). The entry-node and the exit-node
out are labeled p, and the clause-nodes are labeled with p as well as q; the literal
nodes are not labeled with any proposition. There is an edge from the entry-node
to the �rst clause node and an edge from the last clause node to the out node.
Furthermore, each node corresponding to a clause  j has three edges connecting it
to the exit-nodes corresponding to its 3 literals lj1, lj2, and lj3. In Figure 15 we
show an example of the substructure Kn+1 for the formula  = (x1 _ x2 _ x3) ^
(x1 _ �x2 _ �x3) ^ (�x1 _ x2 _ x3).
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Now consider the CTL formula

 0 = 92 [ p ^ ( q ! 9
 (:p ^ 93 r ) ) ]:

We claim that the entry-node of K1 satis�es  0 i� the given quanti�ed formula
� holds. In words, the CTL formula states that there is a path � (starting from
the entry-node of K1) each of whose nodes satis�es p, and each node of the path
that is labeled q has a successor which does not satisfy p and which can reach
a node labeled r. Note that the only nodes labeled p are the entry-nodes of the
substructures, the exits nodes out, and the nodes of Kn+1 corresponding to the
clauses. Thus, a path �, along which p holds continuously, exits each structure
Ki at the exit-node marked out . Each structure Ki has two occurrences of Ki+1:
one box bi;0 corresponding to setting xi to false, and one box bi;1 corresponding
to setting xi to true. The edges connecting out nodes ensure, that when xi is
universally quanti�ed, both boxes must be entered by the path �, and when xi is
existentially quanti�ed, only one box is entered.
Suppose that the given quanti�ed formula � is true. Then the required path �

starts at the entry-node of K1 and can be formed incrementally as follows. Assume
that the path � is at the entry-node of an instance of Ki. Note that this instance
is nested inside boxes corresponding to the substructures Kt, with t < i. Let this
context of nested boxes be represented by the sequence (b1;j1 ; : : : ; bi�1;ji�1

) where
each jt is either 0 or 1. Suppose �rst that i � n, i.e., Ki corresponds to a variable
xi with quanti�er Qi. If Qi is an existential quanti�er, then choose a value for the
variable xi, given the values bt for the variables xt, for t < i, appropriately to satisfy
the quanti�ed formula �, and let the path � proceed to the corresponding box bi;0
or bi;1 of Ki, exit at the out node of that box, and proceed to exit the structure
Ki at the out node. If Qi is a universal quanti�er, then the path � proceeds to the
box bi;0, exits at its out node, proceeds to box bi;1, exits at its out node, and then
proceeds to exitKi at the out node. Suppose that i = n+1, i.e., � enters an instance
of the structure Kn+1 in the context (b1;j1 ; : : : bn;jn); then the context corresponds
to an assignment for the variables that satis�es the formula  (from our choices
in the path above for the existentially quanti�ed variables). The path � traverses
all the nodes that correspond to the clauses and exits the structure from node out.
Clearly, all the nodes of the constructed path � satisfy p. The only nodes labeled q
are the clause nodes in Kn+1. Since the variable assignment corresponding to the
context satis�es all the clauses, each clause node has a successor l corresponding
to a true literal, i.e., either the literal l is xi and the context includes box bi;1 (i.e.,
ji = 1) or the literal l is �xi and the context includes box bi;0. This successor node l
satis�es :p and can reach a node labeled r, by exiting each structure Ka, for a � i

at the exit-point corresponding to the same literal l = xi or �xi; note, that because
of the truth value of the variable xi, the exit-node of the box bi;ji has an edge to
the sink node of Ki that is labeled r.
Conversely, suppose that the CTL formula  0 is satis�ed. That is, there is an

in�nite path � all whose nodes satisfy p and every node labeled q has a successor
that satis�es :p ^ 93r. Since all nodes of � satisfy p, the path exits every box at
the node out, and within structureKn+1 it traverses the nodes corresponding to the
clauses. By the construction, whenever the path enters Ki, i � n, for an existential
(respectively, universal) quanti�er, it traverses one (respectively, both) of the boxes
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Ordinary Structure M Hierarchical Structure K

Reachability O(jM j) O(jKj)

Automata-emptiness O(jM j � jAj) O(jKj � jAj3)

LTL model checking O(jM j � 2j'j) O(jKj � 8j'j)

CTL model checking O(jM j � j'j) O(jKj � 2j'jd)

Table I. Summary of results.

corresponding to a truth assignment for xi. Consider the traversal of the path �
through an occurrence of the structure Kn+1 in the context (b1;j1 ; : : : bn;jn), where
each ji is either 0 or 1 denoting the assignment to xi. The proposition q holds at
nodes corresponding to the clauses  j . Each such node must satisfy 9
(:p^93r),
i.e., it has a successor which satis�es :p and 93r. Hence the successor must be
an exit-node corresponding to a literal l = xi or �xi of the clause. Since the node
can reach a node labeled r, the literal l must be true in the context: note that the
path following this literal node of Kn+1 is completely forced; it goes through the
corresponding literal exit-node l of the structures Ka, for a � i. If literal l was not
true in the assignment corresponding to the context then the exit-node l of the Ki

would not have any outgoing edge and thus would not reach r. It follows that the
given quanti�ed formula � is true.

5. CONCLUSIONS

In this paper, we have established that veri�cation of hierarchical machines can
be done without 
attening them �rst. Among the three popular extensions of
state machines, communicating state machines, extended state machines, and hi-
erarchical state machines, it is already known that the �rst two o�er exponential
succinctness at an exponential cost, but as our results show, hierarchical speci�-
cations o�er exponential succinctness at a minimal price. We presented e�cient
algorithms, and matching lower bounds, for the model-checking problem for all the
commonly used speci�cation formalisms. Our results are summarized in Table I.
For hierarchical structures, model checking of branching-time formulas seems more
expensive than model checking of linear-time formulas. This di�erence is intuitively
due to the di�erent complexities of the local and global model-checking problems.
In local model checking, we want to check whether some (or all) paths starting at
a speci�ed state (e.g., an initial state) satisfy a linear-time property, while in the
global model checking, we want to compute all (reachable) states such that some
(or all) paths starting at that state satisfy a linear-time property. For ordinary
state machines, both local and global variants can be solved in time linear in the
size of the structure (even though the local, or on-the-
y, algorithms for checking
linear-time properties are preferred in practice). For hierarchical structures, the lo-
cal variant can be solved e�ciently by our algorithm that avoids repeated analysis
of a shared substructure. The global variant is more expensive, as it requires split-
ting of a substructure because the satisfaction of formulas can vary from context to
context. CTL model checking requires solving the global problem repeatedly, due
to the nesting of path quanti�ers in the formula.
Our results can be useful more generally in the analysis of hierarchical structures

other than hierarchical state machines, i.e., in the analysis of structures that are
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de�ned hierarchically where the basic (unnested) nodes are other types of objects
rather than simple states. From the given properties of the basic objects, our
algorithms can be used to infer e�ciently the properties of the hierarchical structure
and of its executions. For example, a hierarchical MSC (HMSC) is just like a
hierarchical state machine except that the basic objects are basic message sequence
charts instead of states. It is shown in [Alur and Yannakakis 1999] how to use
the algorithms of this paper to check, without 
attening, an HMSC for properties
such as boundedness of message bu�ers, divergence of processes, and for general
LTL properties under a certain choice of semantics for the concatenation of message
sequence charts; we refer the reader to [Alur and Yannakakis 1999] for more details.
In this paper, we have presented results about hierarchical structures in the

absence of variables and concurrency. In the presence of variables, our algorithms
can be adopted in a natural way by augmenting nodes with the values of the
variables. In particular, suppose we have an extended hierarchical structureK with
k boolean variables, and the edges have guards and assignments that read/write
these variables. Then, we can construct a hierarchical structure of size at most
8k � jKj: a blow-up of 2k is immediate, as a node must be considered in combination
with di�erent values of the variables, and the additional blow-up arises from the
facts that a box can be entered in 2k possible ways, and translation from multi-
entry case to single-entry case causes a factor quadratic in the number of entry-
nodes. Thus, reachability problems for an extended hierarchical structure K with
k boolean variables can be solved in O(8k � jKj) (in contrast, reachability problems
for an extended ordinary structure M with k boolean variables can be solved in
O(2k � jM j)). In presence of concurrency, our algorithms are applicable in the
case when one of the communicating systems is modeled as a hierarchical state
machine and the rest are modeled as ordinary state machines, using the product
construction of Section 3.3. If two or more systems are modeled as hierarchical
machines, as recent results indicate [Alur et al. 1999], in the worst case, there is no
better strategy than taking the product of 
attened machines.
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