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Abstract—The reactive synthesis problem is to find a finite-
state controller that satisfies a given temporal-logic specification
regardless of how its environment behaves. Developing a for-
mal specification is a challenging and tedious task and initial
specifications are often unrealizable. In many cases, the source
of unrealizability is the lack of adequate assumptions on the
environment of the system. In this paper, we consider the problem
of automatically correcting an unrealizable specification given in
the generalized reactivity (1) fragment of linear temporal logic by
adding assumptions on the environment. When a temporal-logic
specification is unrealizable, the synthesis algorithm computes a
counter-strategy as a witness. Our algorithm then analyzes this
counter-strategy and synthesizes a set of candidate environment
assumptions that can be used to remove the counter-strategy
from the environment’s possible behaviors. We demonstrate the
applicability of our approach with several case studies.

I. INTRODUCTION

Automatically synthesizing a system from a high-level
specification is an ambitious goal in the design of reactive
systems. The synthesis problem is to find a system that satisfies
the specification regardless of how its environment behaves.
Therefore, it can be seen as a two-player game between
the environment and the system. The environment attempts
to violate the specification while the system tries to satisfy
it. A specification is unsatisfiable if there is no input and
output trace that satisfies the specification. A specification is
unrealizable if there is no system that can implement the spec-
ification. That is, the environment can behave in such a way
that no matter how the system reacts, the specification would
be violated. In this paper we consider specifications which
are satisfiable but unrealizable. We address the problem of
strengthening the constraints over the environment by adding
assumptions in order to achieve realizability.

Writing a correct and complete formal specification which
conforms to the (informal) design intent is a hard and tedious
task [4], [5]. Initial specifications are often incomplete and
unrealizable. Unrealizability of the specification is often due
to inadequate environment assumptions. In other words, as-
sumptions about the environment are too weak, leading to an
environment with too many behaviors that makes it impossible
for the system to satisfy the specification. Usually there is
only a rough and incomplete model of the environment in
the design phase; thus it is easy to miss assumptions on the
environment side. We would like to automatically find such
missing assumptions that can be added to the specification
and make it realizable. Computed assumptions can be used
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to give the user insight into the specification. They also
provide ways to correct the specification. In the context of
compositional synthesis [6], [9], derived assumptions based
on the components specifications can be used to construct
interface rules between the components.

An unrealizable specification cannot be executed or simu-
lated which makes its debugging a challenging task. Counter-
strategies are used to explain the reason for unrealizabilty
of linear temporal logic (LTL) specifications [5]. Intuitively,
a counter-strategy defines how the environment can react to
the outputs of the system in order to enforce the system to
violate the specification. Konighofer et al. in [5] show how
such a counter-strategy can be computed for an unrealizable
LTL specification. The requirement analysis tool RATSY [2]
implements their method for a fragment of LTL known as
generalized reactivity (1) (GR(1)). We also consider GR(1)
specifications in this paper because the realizability and synthe-
sis problems for GR(1) specifications can be solved efficiently
in polynomial time and GR(1) is expressive enough to be used
for interesting real-world problems [3], [12].

Counter-strategies can still be difficult to understand by
the user especially for larger systems. We propose a debug-
ging approach which uses the counter-strategies to strengthen
the assumptions on the environment in order to make the
specification realizable. For a given unrealizable specification,
our algorithm analyzes the counter-strategy and synthesizes a
set of candidate assumptions in the GR(1) form (see section
II). Any of the computed candidate assumptions, if added to
the specification, restricts the environment in such a way that
it cannot behave according to the counter-strategy—without
violating its assumptions—anymore. Thus we say the counter-
strategy is ruled out from the environment’s possible behaviors
by adding the candidate assumption to the specification.

The main flow for finding the missing environment as-
sumptions is as follows. If the specification is unrealizable,
a counter-strategy is computed for it. A set of patterns are
then synthesized by processing an abstraction of the counter-
strategy. Patterns are LTL formulas of special form that define
the structure for the candidate assumptions. We ask the user to
specify a set of variables to be used for generating candidates
for each pattern. The user can specify the set of variables which
she thinks contribute to unrealizability or are underspecified.
The variables are used along with patterns to generate the can-
didate assumptions. Any of the synthesized assumptions can
be added to the specification to rule out the counter-strategy.
The user can choose an assumption from the candidates in an
interactive way or our algorithm can automatically search for
it. The chosen assumption is then added to the specification



and the process is repeated with the new specification.

The contributions of this paper are as follows: We propose
algorithms to synthesize environment assumptions by directly
processing the counter-strategies. We give a counter-strategy
guided synthesis approach that finds the missing environment
assumptions. The suggested refinement can be validated by
the user to ensure compatibility with her design intent and
can be added to the specification to make it realizable. We
demonstrate our approach with examples and case studies.

The problem of correcting an unrealizable LTL specifica-
tion by constructing an additional environment assumption is
studied by Chatterjee et al. in [4]. They give an algorithm
for computing the assumption which only constrains the envi-
ronment and is as weak as possible. Their approach is more
general than ours as they consider general LTL specifications.
However, the synthesized assumption is a Büchi automaton
which might not translate to an LTL formula and can be
difficult for the user to understand (for an example, see Fig. 3
in [4]). Moreover, the resulting specification is not necessarily
compatible with the design intent [7]. Our approach generates
a set of assumptions in GR(1) form that can easily be validated
by the user and be used to make the specification realizable.

The closest work to ours is the work by Li et al. [7]
where they propose a template-based specification mining
approach to find additional assumptions on the environment
that can be used to rule out the counter-strategy. A template
is an LTL formula with at least one placeholder, ?b, that
can be instantiated by the Boolean variable b or its negation.
Templates are used to impose a particular structure on the
form of generated candidates and are engineered by the user
based on her knowledge of the environment. A set of candidate
assumptions is generated by enumerating all possible instanti-
ations of the defined templates. For a given counter-strategy,
their method finds an assumption from the set of candidate
assumptions which is satisfied by the counter-strategy. By
adding the negation of such an assumption to the specification,
they remove the behavior described by the counter-strategy
from the environment. Similar to their work, we consider
unrealizable GR(1) specifications and achieve realizability by
adding environment assumptions to the specification. But,
unlike them, we directly work on the counter-strategies to
synthesize a set of candidate assumptions that can be used
to rule out the counter-strategy. Similar to templates, patterns
impose structure on the assumptions. However, our method
synthesizes the patterns based on the counter-strategy and the
user does not need to manipulate them. We only require the
user to specify a subset of variables to be used in the search for
the missing assumptions. The user can specify a subset that she
thinks leads to the unrealizability. In our method, the maximum
number of generated assumptions for a given counter-strategy
is independent from what subset of variables is considered,
whereas increasing the size of the chosen subset of variables
in [7] will result in exponential growth in the number of
candidates, while only a small number of them might hold
over all runs of the counter-strategy (unlike our method).
Moreover, we compute the weakest environment assumptions
for the considered structure and given subset of variables. Our
work takes an initial step toward bridging the gap between
[4] and [7]. Our method synthesizes environment assumptions
that are simple formulas, making them easy to understand and

practical, and they also constrain the environment as weakly
as possible within their structure. We refer the reader to [7]
for a survey of related work.

II. PRELIMINARIES

Linear temporal logic (LTL) is a formal specification
language with two kinds of operators: logical connectives
(negation (¬), disjunction (∨), conjunction (∧) and implication
(→)) and temporal modal operators (next (©), always (2),
eventually (3) and until (U)). Given a set P of atomic
propositions, an LTL formula is defined inductively as follows:
1) any atomic proposition p ∈ P is an LTL formula. 2) if φ
and ψ are LTL formulas, then ¬φ, φ ∨ ψ, ©φ and φU ψ are
also LTL formulas. Other operators can be defined using the
following rules: φ ∧ ψ = ¬(¬φ ∨ ¬ψ), φ → ψ = ¬φ ∨ ψ,
3φ = TrueU φ and 2φ = ¬3¬φ. An LTL formula is
interpreted over infinite words ω ∈ (2P )ω . For an LTL formula
φ, we define its language L(φ) to be the set of infinite words
that satisfy φ, i.e., L(φ) =

{
ω ∈ (2P )ω | ω |= φ

}
.

A finite transition system (FTS) is a tuple T = 〈Q,Q0, δ〉
where Q is a finite set of states, Q0 ⊆ Q is the set of initial
states and δ ⊆ Q ×Q is the transition relation. An execution
or run of a FTS is an infinite sequence of states σ = q0q1q2...
where q0 ∈ Q0 and for any i ≥ 0, qi ∈ Q and (qi, qi+1) ∈
δ. The language of a FTS T is defined as the set L(T ) =
{ω ∈ Qω | ω is a run of T }, i.e., the set of (infinite) words
generated by the runs of T . We often consider a FTS as a
directed graph with a natural bijection between the states and
transitions of the FTS and vertices and edges of the graph,
respectively. Formally for a FTS T = 〈Q,Q0, δ〉, we define the
graph GT = 〈V,E〉 where each vi ∈ V corresponds to a unique
state qi ∈ Q, and (vi, vj) ∈ E if and only if (qi, qj) ∈ δ.

Let P be a set of atomic propositions, partitioned into input,
I, and output, O, propositions. A Moore transducer is a tuple
M = (S, s0, I,O, δ, γ), where S is the set of states, s0 ∈ S is
the initial state, I = 2I is the input alphabet, O = 2O is the
output alphabet, δ : S × I → S is the transition function and
γ : S → O is the state output function. A Mealy transducer is
similar, except that the state output function is γ : S × I →
O. For an infinite word ω ∈ Iω , a run of M is the infinite
sequence σ ∈ Sω such that σ0 = s0 and for all i ≥ 0 we have
σi+1 = δ(σi, ωi). The run σ on input word ω produces an
infinite word M(ω) ∈ (2P )ω such that M(ω)i = γ(σi)∪ωi for
all i ≥ 0. The language of M is the set L(M) = {M(ω) | ω ∈
Iω} of infinite words generated by runs of M .

An LTL formula φ is satisfiable if there exists an infinite
word ω ∈ (2P )ω such that ω |= φ. A Moore (Mealy)
transducer M satisfies an LTL formula φ, written as M |= φ, if
L(M) ⊆ L(φ). An LTL formula φ is Moore (Mealy) realizable
if there exists a Moore (Mealy, respectively) transducer M
such that M |= φ. The realizability problem asks whether
there exists such a transducer for a given LTL specification φ.

A two-player deterministic game graph is a tuple G =
(Q,Q0, E) where Q can be partitioned into two disjoint sets
Q1 and Q2. Q1 and Q2 are the sets of states of player 1 and
2, respectively. Q0 is the set of initial states. E = Q×Q is the
set of directed edges. Players take turns to play the game. At
each step, if the current state belongs to Q1, player 1 chooses
the next state. Otherwise player 2 makes a move. A play of



the game graph G is an infinite sequence σ = q0q1q2... of
states such that q0 ∈ Q0, and (qi, qi+1) ∈ E for all i ≥ 0.
We denote the set of all plays by Π. A strategy for player
i ∈ {1, 2} is a function αi : Q∗.Qi → Q that chooses the
next state given a finite sequence of states which ends at a
player i state. A strategy is memoryless if it is a function of
current state of the play, i.e., αi : Qi → Q. Given strategies
α1 and α2 for players and a state q ∈ Q, the outcome is
the play starting at q, and evolved according to α1 and α2.
Formally, outcome(q, α1, α2) = q0q1q2... where q0 = q, and
for all i ≥ 0 we have qi+1 = α1(q0q1...qi) if qi ∈ Q1 and
qi+1 = α2(q0q1...qi) if qi ∈ Q2. An objective for a player is
a set Φ ⊆ Π of plays. A strategy α1 for player 1 is winning
for some state q if for every strategy α2 of player 2, we have
outcome(q, α1, α2) ∈ Φ.

Given an LTL formula φ over P and a partitioning of
P into I and O, the synthesis problem is to find a Mealy
transducer M with input alphabet I = 2I and output alphabet
O = 2O that satisfies φ. This problem can be reduced to
computing winning strategies in game graphs. A deterministic
game graph G, and an objective Φ can be constructed such
that φ is realizable if and only if the system (player 1) has
a memoryless winning strategy from the initial state in G
[11]. Every memoryless winning strategy of the system can
be represented by a Mealy transducer that satisfies φ. If the
specification φ is unrealizable, then the environment (player
2) has a winning strategy. A counter-strategy for the synthesis
problem is a strategy for the environment that can falsify the
specification, no matter how the system plays. Formally, a
counter-strategy can be represented by a Moore transducer
Mc = (S′, s′0, I ′,O′, δ′, γ′) that satisfies ¬φ, where I ′ = O
and O′ = I are the input and output alphabet for Mc which
are generated by the system and the environment, respectively.

In this paper, we consider specifications of the form

φ = φe → φs, (1)

where φα for α ∈ {e, s} can be written as a conjunction of
the following parts:

• φαi : A Boolean formula over I if α = e and over I∪O
otherwise, characterizing the initial state.

• φαt : An LTL formula of the form
∧
i2ψi. Each

subformula 2ψi is either characterizing an invariant,
in which case ψi is a Boolean formula over I ∪O, or
it is characterizing a transition relation, in which case
ψi is a Boolean formula over expressions v and ©v′
where v ∈ I ∪O and, v′ ∈ I if α = e and v′ ∈ I ∪O
if α = s.

• φαg : A formula of the form
∧
i23Bi characterizing

fairness/liveness, where each Bi is a Boolean formula
over I ∪O.

For the specifications of the form in (1), known as GR(1)
formulas, Piterman et al. [10] show that the synthesis problem
can be solved in polynomial time. Intuitively, in (1), φe
characterizes the assumptions on the environment and φs
characterizes the correct behavior (guarantees) of the system.
Any correct implementation of the specification guarantees to
satisfy φs, provided that the environment satisfies φe.

For a given unrealizable specification φe → φs, we define
a refinement ψ =

∧
i ψi as a conjunction of a collection

of environment assumptions ψi in the GR(1) form such that
φe ∧ψ → φs is realizable. Intuitively it means that adding the
assumptions ψi to the specification results in a new specifica-
tion which is realizable. We say a refinement ψ is consistent
with the specification φe → φs if φe ∧ ψ is satisfiable. Note
that if φe ∧ ψ is not satisfiable, i.e., φe ∧ ψ = False, the
specification φe ∧ ψ → φs is trivially realizable [7], but
obviously ψ is not an interesting refinement.

III. PROBLEM STATEMENT AND OVERVIEW

A. Problem Statement

Given a specification φ = φe → φs in the GR(1) form
which is satisfiable but unrealizable, find a refinement ψ =∧
i ψi as a conjunction of environment assumptions ψi such

that φe ∧ ψ is satisfiable and φe ∧ ψ → φs is realizable.

B. Overview of the Method

We now give a high-level view of our method. Specification
refinements are constructed in two phases. First, given a
counter-strategy’s Moore machine Mc, we build an abstraction
which is a FTS Tc. The abstraction preserves the structure of
the counter-strategy (its states and transitions) while removing
the input and output details. The algorithm processes Tc and
synthesizes a set of LTL formulas in special forms, called
patterns, which hold over all runs of Tc. Our algorithm then
uses these patterns along with a subset of variables specified
by the user to generate a set of LTL formulas which hold
over all runs of Mc. We ask the user to specify a subset
of variables which she thinks contribute to the unrealizability
of the specification. This set can also be used to guide the
algorithm to generate formulas over the set of variables which
are underspecified. Using a smaller subset of variables leads
to simpler formulas that are easier for the user to understand.

The complement of the generated formulas form the set of
candidate assumptions that can be used to rule out the counter-
strategy from the environment’s possible behaviors. We remove
the candidates which are not consistent with the specification
in order to avoid a trivial solution False.

Any assumption from the set of generated candidates can
be used to rule out the counter-strategy. Our approach does
a breadth-first search over the candidates. If adding any of
the candidates makes the specification realizable, the algorithm
returns that candidate as a solution. Otherwise at each iteration,
the process is repeated for any of the new specifications
resulting from adding a candidate. The depth of the search
is controlled by the user. The search continues until either a
consistent refinement is found or the algorithm cannot find
one within the specified depth (hence the search algorithm is
sound, but not complete).

Example 1. Consider the following example borrowed from
[7] with the environment variables I = {r, c} and system
variables O = {g, v}. Here r, c, g and v stand for request,
clear, grant and valid signals respectively. We start with no
assumption, that is we only assume φe = True. Consider
the following system guarantees: φ1 = 2(r → ©3g), φ2 =
2((c ∨ g)→©¬g), φ3 = 2(c→ ¬v) and φ4 = 23(g ∧ v).
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Fig. 1: (a) A counter-strategy produced by RATSY for the
specification of Example 1 with the additional assumption
23(¬r). c = True is constant in all states. (b) The abstract
finite transition system for the counter-strategy of part (a).

Let φs be the conjunction of these formulas. φ1 requires that
every request must be granted eventually starting from the next
step by setting signal g to high. φ2 says that if clear or grant
signal is high, then grant must be low at the next step. φ3 says
if clear is high, then the valid signal must be low. Finally, φ4
says that system must issue a valid grant infinitely often.

The specification φe → φs is unrealizable. A simple
counter-strategy is for the environment to keep r and c high
at all times. Then, by φ3, v needs to be always low and
thus φ4 cannot be satisfied by any system. RATSY produces
this counter-strategy which is then fed to our algorithm. An
example candidate found by our algorithm to rule out this
counter-strategy is the assumption ψ = 23(¬r). Adding ψ to
the specification prevents the environment from always keeping
r high, thus the environment cannot use the counter-strategy
anymore. However, the specification φe ∧ ψ → φs is still
unrealizable. RATSY produces the counter-strategy shown in
Figure 1(a) for the new specification. The new counter-strategy
keeps the c high all the times. The value of r is changed
depending on the state of the counter-strategy as shown in
Figure 1(a). The top block in each state of Figure 1(a) is
the name of the state. RATSY produces additional information,
shown in middle blocks, on how the counter-strategy enforces
the system to violate the specification. We do not use this
information in the current version of the algorithm.

The following formulas are examples of consistent re-
finements produced by our algorithm for the specification
φe → φs:

• ψ1 = 2(¬r ∨ ¬c) ∧2(r ∨ ¬c)
• ψ2 = 2(r →©¬c) ∧2(¬r →©¬c)
• ψ3 = 23(¬r) ∧2(¬c ∨ r) ∧2(¬r →©¬c))

Assumptions in both of the refinements ψ1 and ψ2 imply
2(¬c), that is, adding them requires the environment to keep
the signal c always low. Although adding these assumptions
make the specification realizable, it may not conform to the
design intent. Refinement ψ3 does not restrict c like ψ1 and
ψ2, and only assumes that the environment sets the signal r
to low infinitely often and that, when the request signal is low,
the clear signal should be low at the same and the next step.

IV. SPECIFICATION REFINEMENT

Algorithm 1 finds environment assumptions that can be
added to the specification to make it realizable. It gets as input
the initial unrealizable specification φ = φe → φs, the set P of

subsets of variables to be used in generated assumptions and
the maximum depth α of the search. It outputs a consistent
refinement ψ, if it can find one within the specified depth.

For an unrealizable specification, a counter-strategy is
computed as a Moore transducer using the techniques in [5],
[2]. The counter-strategy is then fed to the GeneratePatterns
procedure which constructs a set of patterns and is detailed
in Section IV-C. Procedure GenerateCandidates, described
in Section IV-A, produces a set of candidate assumptions in
the form of GR(1) formulas using patterns and the set P
of variables. Algorithm 1 runs a breadth-first search to find
a consistent refinement. Each node of the search tree is a
generated candidate assumption, while the root of the tree
corresponds to the assumption True (i.e., no assumption). Each
path of the search tree starting from the root corresponds to a
candidate refinement as conjunction of candidate assumptions
of the nodes visited along the path. When a node is visited
during the search, its corresponding candidate refinement is
added to the specification. If the new specification is consistent
and realizable, the refinement is returned by the algorithm.
Otherwise, if the depth of the current node is less than the
maximum specified, a set of candidate assumptions are gen-
erated based on the counter-strategy for the new specification
and the search tree expands.

In Algorithm 1, the queue CandidatesQ keeps the candi-
date refinements which are found during the search. At each
iteration, a candidate refinement ψ is removed from the head of
the queue. The procedure Consistent checks if ψ is consistent
with the specification φ. If it is, the algorithm checks the
realizability of the new specification φnew = φe ∧ ψ → φs
using the procedure Realizable [3], [2]. If φnew is realizable, ψ
is returned as a suggested refinement. Otherwise, if the depth of
the search for reaching the candidate refinement ψ is less than
α, a new set of candidate assumptions are generated using the
counter-strategy computed for φnew. Algorithm 1 keeps track
of the number of counter-strategies produced along the path
to reach a candidate refinement in order to compute its depth
(Depth(ψ)). Each new candidate assumption ψnew results in a
new candidate refinement ψ∧ψnew which is added to the end
of the queue for future processing . The algorithm terminates
when either a consistent refinement ψ is found, or there is no
more candidates in the queue to be processed.

A. Generating Candidates

Consider the Moore transducer Mc = (S, s0, I,O, δ, γ)
of a counter-strategy, where I = 2O and O = 2I , and O
and I are the set of the system and environment variables,
respectively. Given Mc, we construct a finite transition system
Tc = 〈Q, {q0} , δ〉 which preserves the structure of the Mc

while removing all details about its input and output. More
formally, for each state si ∈ S, Tc has a corresponding state
qi ∈ Q, and q0 ∈ Q is the state corresponding to s0 ∈ S.
There exists a transition (qi, qj) ∈ δ if and only if there exists
y ∈ I such that δ(si, y) = sj . It is easy to see that any run of
Tc corresponds to a run of Mc and vice versa.

By processing the abstract FTS Tc of the counter-strategy,
we synthesize a set of patterns which are LTL formulas of
the form 32ψ1, 3ψ2 and 3(ψ3 ∧ ©ψ4) that hold over all
runs of Tc. Each ψi for i ∈ {1, 2, 3, 4} is a disjunction of
a subset of states of Tc, i.e., ψi =

∨
q∈Qi

q where Qi ⊆ Q.



Algorithm 1: Specification Refinement
Input: φ = φe → φs, initial specification
Input: P , set of subsets of variables to be used in

patterns
Input: α, maximum depth of the search
Output: ψ, additional assumptions such that

φe ∧ ψ → φs is realizable
1 Mc := CounterStrategy(φ);
2 Patterns := GeneratePatterns(Mc);
3 CandidatesQ := GenerateCandidates(Patterns,P );
4 while CandidatesQ is not Empty do
5 ψ := CandidatesQ.DeQueue;
6 if Consistent(φ,ψ) then
7 φnew = φe ∧ ψ → φs;
8 if Realizable(φnew) then
9 return ψ;

10 else
11 if Depth(ψ) < α then
12 Mc := CounterStrategy(φnew);
13 Patterns := GeneratePatterns(Mc);
14 newCandidates :=

GenerateCandidates(Patterns,P ) ;
15 foreach ψnew ∈ newCandidates do
16 CandidatesQ.EnQueue(ψ ∧ ψnew);
17 return No refinement was found;

The complements of these formulas, 23¬ψ1 (liveness), 2¬ψ2

(safety), and 2(ψ3 → ©¬ψ4) (transition), respectively, are
of the desired GR(1) form and provide the structure for
the candidate assumptions that can be used to rule out the
counter-strategy. Note that similar to [7], we do not synthesize
assumptions characterizing the initial state because they are
easy to specify in practice. Besides, it is simple to discover
them from the counter-strategy. Patterns are generated using
simple graph search algorithms explained in Section IV-C.

Example 2. Figure 1(b) shows the abstract FTS for the
counter-strategy of Figure 1(a). For this FTS our algo-
rithm produces the set of patterns 32(q1 ∨ q2 ∨ q3),
3q0,3q1,3q2,3q3, and 3(q0 ∧©q1), 3(q1 ∧©q2),3(q2 ∧
©q3),3(q3 ∧ ©q1). Any run of Tc satisfies all of the above
formulas. For example Tc |= 3qi for i ∈ {0, 1, 2, 3}, meaning
that any run of the Tc will eventually visit state qi. The formula
3(q1 ∧ ©q2) means that any run of Tc will eventually visit
state q1 and then state q2 at the next step. Also any run of Tc
satisfies 32(q1 ∨ q2 ∨ q3), meaning that any run of Tc will
eventually reach and stay in the set of states {q1, q2, q3}.

As we mentioned previously, each state qi ∈ Q of the FTS
Tc corresponds to a state si ∈ S of the Moore transducer
Mc of the counter-strategy. Also recall that each run of Tc
corresponds to a run of Mc. Mc, at any state si ∈ S, outputs
the propositional formula Vsi = γ(si) which is a valuation
over all environment variables. Formally, for any state si ∈ S
of Mc, we have Vsi = `i1 ∧ `i2 ∧ ... ∧ `in where each `ij is a
literal over the environment variable xj ∈ I . We call Vsi the
state predicate of si and also qi. We replace the states in the
patterns with their corresponding state predicates to get a set
of formulas which hold over all runs of the counter-strategy.

Example 3. Consider the counter-strategy shown in Figure

1(a). The state predicates are VS0 = VS1 = VS3 = c ∧ r
and VS2 = c∧¬r, where S0, S1, S2 and S3 are the states of
Mc. Using the patterns obtained in Example 2 and replacing
the states with their corresponding state predicates, we obtain
LTL formulas which hold over all runs of Mc. For example,
the pattern 32(q1 ∨ q2 ∨ q3) gives us the formula 32((c ∧
r) ∨ (c ∧ ¬r)) = 32c. Replacing q2 with VS2 in the pattern
3q2 leads to 3(c ∧ ¬r). Similarly, the pattern 3(q1 ∧©q2)
gives 3((c ∧ r) ∧©(c ∧ ¬r)).

The structure of the state predicates and patterns is such
that any subset of the environment variables can be used along
with the patterns to generate candidates and the resulting for-
mulas still hold over all runs of the counter-strategy. Algorithm
1 gets the set P = {P1, P2, P3, P4} as input, where each Pi
is a subset of environment variables that should be used in
the corresponding ψi for generating the candidate assumptions
from the patterns of the form 32ψ1, 3ψ2 and 3(ψ3∧©ψ4).

Example 4. Assume that the designer specifies P1 = {r},
P2 = {c}, P3 = {r, c} and P4 = {c}. Then the pattern
32(q1 ∨ q2 ∨ q3) results in 32(r∨¬r∨ r) = 32True. From
3q2 we obtain 3c, and 3(q1∧©q2) leads to 3((c∧r)∧©c).
Note that using a smaller subset of variables leads to simpler
formulas (and sometimes trivial as in 32(True)). However,
this simplicity may result in assumptions which put more
constraints on the environment as we will show later.

The complement of the generated formulas form the set of
candidate assumptions that can be used to rule out the counter-
strategy. For instance, formulas 23(¬r ∧ r) = 23(False),
2(¬c), 2((c ∧ r) → ©(¬c)) and 2((c ∧ ¬r) → ©(¬c)) are
the candidate assumptions computed based on the user input
in Example 4. Note that there might be repetitive formulas
among the generated candidates. We remove the repeated
formulas in order to prevent the process from checking the
same assumption repeatedly. We also use some techniques to
simplify the synthesized assumptions (see [1]).

B. Removing the Restrictive Formulas

Given two non-equivalent formulas φ1 and φ2 we say φ1
is stronger than φ2 if φ1 → φ2 holds. Assume ψ1 and ψ2 are
two formulas that hold over all runs of the counter-strategy
computed for the specification φe → φs, and that ψ1 → ψ2.
Note that ¬ψ2 → ¬ψ1 also holds, that is ¬ψ1 is a weaker
assumption compared to ¬ψ2. Adding either ¬ψ1 or ¬ψ2 to
the environment assumptions φe rules out the counter-strategy.
However, adding the stronger assumption ¬ψ2 restricts the
environment more than adding ¬ψ1. That is, φe ∧ ¬ψ2 puts
more constraints on the environment compared to φe ∧ ¬ψ1.

As an example, consider the counter-strategy Mc shown in
Figure 1(a). Both ψ1 = 3(c∧¬r) and ψ2 = 3(c) hold over all
runs of Mc. Moreover, ψ1 → ψ2. Consider the corresponding
assumptions ¬ψ1 = 2(¬c∨r) and ¬ψ2 = 2(¬c). Adding ¬ψ2

restricts the environment more than adding ¬ψ1. ¬ψ2 requires
the environment to keep the signal c always low, whereas in
case of ¬ψ1, the environment is free to assign additional values
to its variables. It only prevents the environment from setting
c to high and r to low at the same time.

We construct patterns which are strongest formulas of
their specified form that hold over all runs of the counter-



strategy. Therefore, the generated candidate assumptions are
the weakest formulas that can be constructed for the given
structure and the user specified subset of variables.

C. Synthesizing Patterns

In this section we show how certain types of patterns can be
synthesized using the abstract FTS Tc of the counter-strategy.
A pattern P , is an LTL formula φP which holds over all runs
of the FTS Tc, i.e., Tc |= φP . We are interested in patterns
of the form 32ψ, 3ψ and 3(ψ1 ∧©ψ2). The complements
of these patterns are of the GR(1) form and, after replacing
states with their corresponding state predicates, will yield to
candidate assumptions for removing the counter-strategy.

1) Patterns of the Form 3ψ: For a FTS Tc = 〈Q, {q0} , δ〉,
we define a configuration C ⊆ Q as a subset of states of
Tc. We say a configuration C is an eventually configuration
if for any run σ of Tc there exists a state q ∈ C and
a time step i ≥ 0 such that σi = q. That is, any run
of Tc eventually visits a state from the configuration C. It
follows that if C is an eventually configuration for Tc, then
Tc |= 3

∨
q∈C q. We say an eventually configuration C is

minimal if there exists no C ′ ⊂ C such that C ′ is an eventually
configuration. Note that removing any state q ∈ C from
a minimal eventually configuration leads to a configuration
which is not an eventually configuration.

Algorithm 2 constructs eventually patterns which corre-
spond to the minimal eventually configurations of Tc with
size less than or equal to β. The larger configurations lead
to larger formulas which are hard for the user to parse. The
user can specify the value of β. Heuristics can also be used
to automatically set β based on the properties of Tc, e.g.
the maximum outdegree of the vertices in the correspond-
ing directed graph GTc , where the outdegree of a vertex is
the number of its outgoing edges. In Algorithm 2, the set
3Configurations keeps the minimal eventually configurations
discovered so far. Algorithm 2 initializes the sets Patterns and
3Configurations to {3q0} and {q0}, respectively. Note that
3q0 holds over all runs of Tc. The algorithm then checks
each possible configuration Q′ ⊆ Q − {q0} with size less
than or equal to β in a non-decreasing order of |Q′| to find
minimal eventually configurations. Without loss of generality
we assume that all states in Tc have outgoing edges1. At each
iteration, a configuration Q′ is chosen. Algorithm 2 checks
if there is a minimal eventually configuration Q′′ which is
already discovered and Q′′ ⊂ Q′. If such Q′′ exists, Q′ is not
minimal. Otherwise, the algorithm checks if it is an eventually
configuration by first removing all the states in Q′ and their
corresponding incoming and outgoing transitions from Tc to
obtain another FTS T ′c . Now, if there is an infinite run from q0
in T ′c , then there is a run in Tc that does not visit any state in
Q′. Otherwise, Q′ is a minimal eventually configuration and
is added to 3Configurations. The corresponding formula ψ =
3
∨
q∈Q′ q is also added to the set of eventually patterns. Note

that checking if there exists an infinite run in T ′c can be done by
considering T ′c as a graph and checking if there is a reachable
cycle from q0, which can be done in linear time in number

1A transition from any state with no outgoing transition can be added to a
dummy state with a self loop. Patterns which include the dummy state will
be removed.

Algorithm 2: Generating 3ψ patterns
Input: Finite state transition system Tc = 〈Q, {q0} , δ〉
Input: β, maximum number of states in generated

patterns
Output: a set of patterns of the form 3ψ where

Tc |= 3ψ
1 Patterns := {3q0};
2 3Configurations := {q0};
3 foreach Q′ ⊆ Q− {q0} with non-decreasing order of
|Q′| where |Q′| ≤ β do

4 if 6 ∃Q′′ ∈ 3Configurations s.t. Q′′ ⊆ Q′ then
5 Let T ′c = 〈Q−Q′, {q0} , δ′〉 where

δ′ = {(q, q′) ∈ δ|q 6∈ Q′ ∧ q′ 6∈ Q′};
6 if there is no infinite run from q0 in T ′c then
7 Add Q′ to 3Configurations;
8 Let ψ = 3

∨
qi∈Q′ qi;

9 Add ψ to Patterns;
10 return Patterns;

of states and transitions of Tc. Therefore, the algorithm is of
complexity O(|Q|β(|Q|+ |δ|)).

Example 5. Consider the FTS shown in Figure 2. Algorithm 2
starts at initial configuration {q0} and generates the formula
3q0. None of {q1}, {q2} or {q3} is an eventually configura-
tion. For example for configuration {q1}, there exists the run
σ = q0, (q3)ω which never visits q1. Configurations {q1, q3}
and {q2, q3} are minimal eventually configurations. For exam-
ple removing {q1, q3} will lead to a FTS with no infinite run
(no cycle is reachable from q0 in the corresponding graph).
It is easy to see that configuration {q1, q2} is not an eventu-
ally configuration. Configuration {q1, q2, q3} is not minimal,
although it is an eventually configuration. Thus Algorithm 2
returns the set of patterns {3q0,3(q1 ∨ q3),3(q2 ∨ q3)}.

2) Patterns of the Form 32ψ: To compute formulas of
the form 32ψ which hold over all runs of the FTS Tc =
〈Q, {q0} , δ〉 of the counter-strategy, we view Tc as a graph
and separate its states into two groups: Qcycle ⊆ Q, the set of
states that are part of a cycle in Tc (including the cycle from
one node to itself), and Q′ = Q − Qcycle. Without loss of
generality we assume that any state q ∈ Q is reachable from
q0. Therefore, any state q ∈ Qcycle belongs to a reachable
strongly connected component C of Tc. Also for any strongly
connected component C of Tc , there exists a run σ of Tc which
reaches states in C and keeps cycling there forever. Hence, the
formula ψ1 = 32

∨
q∈C q holds over the run σ. Indeed ψ1 is

the minimal formula of disjunctive form which holds over all
runs that can reach the strongly connected component C. That
is, by removing any of the states from ψ1, one can find a
run σ′ which can reach the strongly connected component C
and visit the removed state, falsifying the resulted formula.
Therefore, eventually for any execution of Tc, the state of the
system will always be in one of the states q ∈ Qcycle. Thus
the formula ψ = 32

∨
q∈Qcycle q is the minimal formula of

the form eventually always which holds over all runs of Tc.

To partition the states of the Tc into Qcycle and Q′

we use Tarjan’s algorithm for computing strongly connected
components of the graph. Thus the algorithm is of linear time
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Fig. 2: A non-deterministic finite state transition system Tc

complexity in number of states and transitions of Tc.
Example 6. Consider the non-deterministic FTS shown in
Figure 2. It has three strongly connected components: {q0},
{q1, q2} and {q3}. Only the latter two components include
a cycle inside them, that is Qcycle = {q1, q2, q3}. Thus,
the pattern ψ = 32(q1 ∨ q2 ∨ q3) is generated. Note that
the possible runs of the system are σ1 = q0, (q1, q2)ω and
σ2 = q0, (q3)ω . The generated pattern ψ holds over both of
these runs. Observe that removing any of the states in ψ will
result in a formula which is not satisfied by Tc any more.

3) Patterns of the Form 3(ψ1 ∧©ψ2): To generate candi-
dates of the form 3(ψ1 ∧©ψ2), first note that 3(ψ1 ∧©ψ2)
holds only if 3ψ1 holds. Therefore, a set of eventually patterns
3ψ1 is first computed using Algorithm 2. Then for each for-
mula 3ψ1, the pattern 3(ψ1∧©

∨
q∈Next(ψ1)

q) is generated,
where Next(ψ1) is the set of states that can be reached in
one step from the configuration specified by ψ1. Formally,
Next(ψ1) = {qi ∈ Q | ∃qj ∈ C s.t. (qj , qi) ∈ δ} and C is
the configuration represented by ψ1 =

∨
q∈C q. The most

expensive part of this procedure is computing the eventually
patterns, therefore its complexity is the same as Algorithm 2.
Algorithms for computing 32ψ and 3(ψ1 ∧ ©ψ2) patterns
can be found in the technical report [1].

Example 7. Consider the FTS shown in Figure 2. Given the
set of eventually formulas produced in Example 5, patterns
3(q0 ∧©(q1 ∨ q3)), 3((q1 ∨ q3) ∧©(q2 ∨ q3)) and 3((q2 ∨
q3) ∧©(q1 ∨ q3)) are generated.

The procedures described for producing patterns, lead to
assumptions which only include environment variables, and
are enough for resolving unrealizability in our case studies.
However, in general, GR(1) assumptions can also include the
system variables. The procedures can be easily extended to the
general case (see [1]).

The following theorem states that the procedures described
in this section, generate the strongest patterns of the specified
forms. Its proof can be found in [1]. Removing the weaker
patterns leads to shorter formulas which are easier for the
user to understand. It also decreases the number of generated
candidates at each step. More importantly, it leads to weaker
assumptions on the environment that can be used to rule out
the counter-strategy. If the restriction imposed by any of these
candidates is not enough to make the specification realizable,
the method analyzes the counter-strategy computed for the
new specification to find assumptions that can restrict the
environment more. This way the counter-strategies guide the
method to synthesize assumptions that can be used to achieve
realizability.

Theorem 1. For any formula of the form 3ψ,32ψ, or 3(ψ1∧
©ψ2) which hold over all runs of a given FTS Tc, there is an
equivalent or stronger formula of the same form synthesized
by the algorithms described in Section IV-C.

V. CASE STUDIES

We now present two case studies. We use RATSY to
generate counter-strategies and Cadence SMV model checker
[8] to check the consistency of the generated candidates. In
our experiments, we set α in Algorithm 1 to two, and β
in Algorithm 2 to the maximum outdegree of the vertices
of the counter-strategy’s abstract directed graph. We slightly
change Algorithm 1 to find all possible refinements within the
specified depth.

A. Lift Controller

We borrow the lift controller example from [3]. Consider
a lift controller serving three floors. Assume that the lift has
three buttons, denoted by the Boolean variables b1, b2 and
b3, which are controlled by the environment. The location of
the lift is represented using Boolean variables f1, f2 and f3
controlled by the system. The lift may be requested on each
floor by pressing the corresponding button. We assume that
(1) once a request is made, it cannot be withdrawn, (2) once
the request is fulfilled it is removed, and (3) initially there
are no requests. Formally, the specification of the environment
is φe = φeinit ∧ φe11 ∧ φ

e
12 ∧ φ

e
13 ∧ φ

e
21 ∧ φ

e
22 ∧ φ

e
23 , where

φeinit = (¬b1 ∧ ¬b2 ∧ ¬b3), φe1i = 2(bi ∧ fi → ©¬bi), and
φe2i = 2(bi ∧ ¬fi →©bi) for 1 ≤ i ≤ 3.

The lift initially starts on the first floor. We expect the lift
to be only on one of the floors at each step. It can move at most
one floor at each time step. We want the system to eventually
fulfill all the requests. Formally the specification of the system
is given as φs = φsinit ∧ φs1

∧
i φ

s
2,i ∧ φs3

∧
j φ

s
4,j ∧ φs5, where

• φsinit = f1 ∧ ¬f2 ∧ ¬f3,

• φs1 = 2(¬(f1 ∧ f2) ∧ ¬(f2 ∧ f3) ∧ ¬(f1 ∧ f3)),

• φs2,i = 2(fi →©(fi−1 ∨ fi ∨ fi+1)),

• φs3 = 2((f1 ∧©f2) ∨ (f2 ∧©f3)→ (b1 ∨ b2 ∨ b3)),
and

• φs4,j = 23(bj → fj).

The requirement φs3 says that the lift moves up one floor
only if some button is pressed. The specification φ = φe → φs
is realizable. Now assume that the designer wants to ensure
that all floors are infinitely often visited; thus she adds the
guarantees

∧
j φ

s
5,j where φs5,j = 23(fj) to the set of system

requirements. The specification φ′ = φe → φs
∧
j φ

s
5,j is not

realizable. A counter-strategy for the environment is to always
keep all bi’s low. We run our algorithms with the set of all the
environment variables {b1, b2, b3} for all assumption forms.
The algorithm generates the refinements ψ1 = 23(b1 ∨ b2 ∨
b3) and ψ2 = 2((¬b1 ∧ ¬b2 ∧ ¬b3) → ©(b1 ∨ b2 ∨ b3)).
Refinement ψ1 requires that the environment infinitely often
presses a button. Refinement ψ2 is another suggestion which
requires the environment to make a request after any inactive
turn. Refinement ψ1 seems to be more reasonable and the user
can add it to the specification to make it realizable.

Only one counter-strategy is processed during the search
for finding refinements and three candidate assumptions are
generated overall, where one of the candidates is inconsistent
with φ′ and the two others are refinements ψ1 and ψ2. Thus, the
search terminates after checking the generated assumptions at



first level. Only 0.6 percent of total computation time was spent
on generating candidate assumptions from the counter-strategy.
Note that to generate ψ1 using the template-based method in
[7], the user needs to specify a template with three variables
which leads to 23 = 8 candidate assumptions, although only
one of them is satisfied by the counter-strategy.

B. AMBA AHB

ARM’s Advanced Microcontroller Bus Architecture
(AMBA) defines the Advanced High-Performance Bus (AHB)
which is an on-chip communication protocol. Up to 16 masters
and 16 slaves can be connected to the bus. The masters start
the communication (read or write) with a slave and the slave
responds to the request. Multiple masters can request the bus
at the same time, but the bus can only be accessed by one
master at a time. A bus access can be a single transfer or a
burst, which consists of multiple number of transfers. A bus
access can be locked, which means it cannot be interrupted.
Access to the bus is controlled by the arbiter. More details
of the protocol can be found in [3]. We use the specification
given by one of RATSY’s example files (amba02.rat). There
are four environment signals:

• HBUSREQ[i]: Master i requests access to the bus.

• HLOCK[i]: Master i requests a locked access to the bus.
This signal is raised in combination with HBUSREQ[i].

• HBURST[1 : 0]: Type of transfer. Can be SINGLE (a
single transfer), BURST4 (a four-transfer), or INCR
(unspecified length burst).

• HREADY: Raised if the slave has finished processing
the data. The bus owner can change and transfers can
start only when HREADY is high.

The first three signals are controlled by the masters and
the last one is controlled by the slaves. The specification of
amba02.rat consists of one master and two slaves. For our
experiment, we remove the fairness assumption 23HREADY
from the specification. The new specification is unrealizable.
We run our algorithm with the sets of variables {HREADY},
{HREADY, HBUSREQ[0], HBUSREQ[1], HLOCK[0], HLOCK[1]},
{HREADY} and {HBUSREQ[0], HBUSREQ[1]} to be used in
liveness, safety, left and right hand side of transition
assumptions, respectively. Some of the refinements
generated by our method are: ψ1 = 23HREADY,
ψ2 = 2(HREADY∨¬HBUSREQ[0]∨¬HLOCK[0]∨¬HBUSREQ[1]∨
¬HLOCK[1]) ∧ 23HREADY, and ψ3 = 2(HREADY →
©¬HBUSREQ[0]) ∧ 2(¬HREADY → ©¬HBUSREQ[0]). Note
that although ψ2 is a consistent refinement, it includes ψ1

as a subformula and it is more restrictive. The refinement
ψ3 implies that HBUSREQ[0] must always be low from the
second step on. Among these suggested refinements, ψ1

appears to be the best option. Our method only processes
one counter-strategy with five states and generates five
candidate assumptions to find the first refinement ψ1. To find
all refinements within the depth two, overall five counter-
strategies are processed by our method during the search,
where the largest counter-strategy had 25 states. The number
of assumptions generated for each counter-strategy during the
search is less than nine. 28.6 percent of total computation
time was spent on generating candidate assumptions from the
counter-strategies.

VI. CONCLUSION AND FUTURE WORK

We presented a counter-strategy guided approach for
adding environment assumptions to an unrealizable specifica-
tions in order to achieve realizability. We gave algorithms for
synthesizing weakest assumptions of certain forms (based on
“patterns”) that can be used to rule out the counter-strategy.

We chose to apply explicit-state graph search algorithms
on the counter-strategy because the available tools for solving
games output the counter-strategy as a graph in an explicit
form. Symbolic analysis of the counter-strategy may be de-
sirable for scalability, but the key challenge for this is to de-
velop algorithms for solving games that can produce counter-
examples in compact symbolic form. Synthesizing symbolic
patterns is one of the future directions.

Counter-strategies provide useful information for explain-
ing reasons for unrealizability. However, there can be multiple
ways to rule out a counter-strategy. We plan to investigate how
the multiplicity of the candidates generated by our method can
be used to synthesize better assumptions. Furthermore, our
method asks the user for subsets of variables to be used in
generating candidates. The choice of the subsets can signif-
icantly impact how fast the algorithm can find a refinement.
Automatically finding good subsets of variables that contribute
to the unrealizability problem is another future direction. Syn-
thesizing environment assumptions for more general settings,
and using the method for synthesizing interfaces between
components in context of compositional synthesis are subject
to our current work.
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