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Abstract. We present a formal model for concurrent systems. The model represents synchronous and asyn-
chronous components in a uniform framework that supports compositional (assume-guarantee) and hierarchical
(stepwise-refinement) design and verification. While synchronous models are based on a notion of atomic compu-
tation step, and asynchronous models remove that notion by introducing stuttering, our model is based on a flexible
notion of what constitutes a computation step: by applying an abstraction operator to a system, arbitrarily many
consecutive steps can be collapsed into a single step. The abstraction operator, which may turn an asynchronous
system into a synchronous one, allows us to describe systems at various levels of temporal detail. For describing
systems at various levels of spatial detail, we use a hiding operator that may turn a synchronous system into
an asynchronous one. We illustrate the model with diverse examples from synchronous circuits, asynchronous
shared-memory programs, and synchronous message-passing protocols.
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1. Introduction

We introduce a new formal model for reactive computation. Our target application is
hardware-software codesign and verification. This application requires (1) an ability to de-
scribe and compose modules with different synchrony assumptions, (2) an ability to describe
and compose modules at different levels of abstraction, and (3) an ability to decompose
verification tasks into subtasks of lower complexity. Our model formalizes heterogeneous
systems that are built from synchronous and asynchronous hardware and software compo-
nents, and provides assume-guarantee and abstraction principles for reasoning about such
systems. The salient features of our model arescalability along both the space and time
axes, andinterdefinabilityof synchronous and asynchronous behavior.

Scalability. Scalability along the space axis means that spatial implementation details
of a module, such as internal variables and wires, can be hidden from outside observers.
Scalability along the time axis means that temporal implementation details, such as internal
computation steps and delays, can be hidden from outside observers.

∗A preliminary version of this paper appeared in theProceedings of the 11th IEEE Symposium on Logic in
Computer Science(LICS), pp. 207–218, 1996.
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Example. A 64-bit adder can be implemented either by using two 32-bit adders in parallel,
or by using a single 32-bit adder twice for each 64-bit addition, first for the lower-order
bits and then for the higher-order bits. The first implementation decomposes the 64-bit
adder spatially, by splitting it into two components; the second implementation decom-
poses the 64-bit adder temporally, by splitting each computation step into two micro-steps.
Both implementations are presented in Section 5. More generally, spatial scaling provides
components at different levels of detail, such as gates, ALUs, and processors; and temporal
scaling provides computation steps at different levels of detail, such as gate operations,
arithmetic operations, and processor instructions.

While spatial scalability is a standard feature of concurrency models, the concept of
temporal scalability is inspired by the notion of multiform time in synchronous program-
ming languages [14], and by the notion of action refinement in process algebras [26]. In
verification, temporal scaling is usually performed in an informal, manual manner under
the umbrella buzzword of “abstraction.” We introduce temporal scaling as a modeling
primitive, callednext, that supports the formal construction and the automatic analysis of
temporal abstractions. IfP is a module, andx is an output variable ofP, then the more
abstract moduleQ= (next x for P) combines as many computation steps ofP into a
single computation step ofQ as are required to change the outputx. For example, ifP is
a gate-level description of a processor, and the toggling ofx signals the completion of an
instruction, thenQ is an instruction-level description of the processor.

Interdefinability. In fully synchronous behavior, concurrent modules proceed in lock-step
and respond to mutual inputs by simultaneous outputs. In fully asynchronous behavior, con-
current modules proceed by interleaving and respond to inputs by eventual outputs. Interde-
finability means that after hiding spatial information, a collection of synchronous modules
can appear asynchronous to outside observers; and after hiding temporal information, a
collection of asynchronous modules can appear synchronous.

Example. Consider a transducer that accepts integers as input and computes the corre-
sponding squares as output. At an abstract level, the transducer may proceed synchronously,
in discrete rounds, accepting one integer per round and computing one square per round;
or it may proceed asynchronously, accepting a stream of integers and computing an arbi-
trarily delayed stream of squares. The (a)synchrony of the abstract transducer, however, is
independent of whether a concrete implementation of the transducer employs synchronous
modules or asynchronous modules or both. For example, a distributed asynchronous trans-
ducer can be implemented using synchronous communication on hidden channels; and a
synchronous transducer can be implemented using delay-insensitive circuitry whose inter-
nal computation steps and delays are hidden.

Overview. The paper defines the formalism of reactive modules. Definitions are usually
preceded by motivating thoughts, and succeeded by illustrative examples as well as pro-
perties that ensure the soundness of the definitions. The bulk of the paper discusses safety
aspects of reactive modules. Fair reactive modules are defined in Section 7.
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2. Definition of reactive modules

A discrete reactive system is a collection of variables that, over time, change their values
in a sequence of rounds. We model discrete reactive systems that may interact with each
other by mathematical objects that are calledreactive modules(or modules, for short).

Variables vs. events.A moduleP has a finite set of typed variables, denotedXP. A stateof
P is a valuation for the variables inXP. Events, such as clock ticks, are modeled by toggling
boolean variables. For example, the event that is represented by the boolean variabletick
occurs whenever the module proceeds from a states to a statet such thats[tick] 6= t [tick].1

System vs. environment.The moduleP represents a system that interacts with an envi-
ronment. Some of the variables inXP are updated by the system, and the other variables in
XP are updated by the environment. Hence, the setXP is partitioned into two sets: the set
ctrXP of controlled variables, and the setextlXP of external variables.

States vs. observations.Not all controlled variables of the moduleP are visible to the
environment. Hence, the setctrXP is partitioned further into two sets: the setprivXP of
private variables, and the setintf XP of interface variables. The interface variables and the
external variables are visible to the environment, and therefore calledobservable. The set
of observable variables ofP is denotedobsXP. An observationof P is a valuation for the
variables inobsXP. The various classes of module variables and their relationships are
summarized in Table 1. The distinction between private, interface, and external variables is
similar to the distinction between internal, output, and input events in the formalism of I/O
automata [21].

Asynchrony vs. synchrony.During the execution of the moduleP the variables inXP

change their values in a sequence of rounds. Various models of reactivity propose different
ways in which the variables are updated in a single round.

Pure asynchrony(interleaving [10, 17, 20, 22]): Either the system performs an update, or
the environment performs an update. Interleaving models usually distinguish only be-
tween private variables, which can be updated by the system alone, and shared variables,
which can be updated by both the system and the environment. This is a natural style
for modeling asynchronous communication via a shared memory.

Table 1. Module variables.

privXP intf XP extlXP

ctrXP

obsXP

XP
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Observable asynchrony(I/O automata [21]): Either the system updates the controlled vari-
ables, or the environment updates the external variables and the system updates the private
variables in response. This is a natural style for modeling asynchronous communication
via events or messages.

Atomic synchrony(Mealy machines [18, 23]; CSPrendezvous [16, 24]): The system and
the environment simultaneously update variables in an interdependent fashion. This is
a natural style for modeling synchronous communication via events or messages.

Nonatomic synchrony(synchronous programming languages [7–9, 14]): Each round
(macro-step) consists of several subrounds (micro-steps), and the system and the en-
vironment take turns in executing micro-steps to update variables. This is a natural style
for modeling when a computation of arbitrary duration can be synchronized with a single
event.

The first two options lead to nonblocking communication, as the system puts no con-
straints on what the environment can do, nor on the speed at which the environment performs
its updates. Nonblocking communication supports compositional reasoning with respect to
a trace semantics. However, the inherently asynchronous nature of the communication
in these two options render them unsatisfactory for modeling intrinsically synchronous
systems such as hardware. The third option leads to the possibility of deadlocks in commu-
nication, and the fourth option may lead to the possibility of nonterminating computation
within a single round. Both prospects raise difficulties for achieving a compositional trace
semantics.

We use the power of nonatomic synchrony, but restrict it to ensure nonblocking commu-
nication. First, each variable is updated in exactly one subround of each round. Second,
the controlled variables of a module are partitioned into groups calledatoms, and the vari-
ables within a group are updated simultaneously, in the same subround. Third, the atoms
are partially ordered. If atomA precedes atomB in the partial order, then in each round,
the A-subround must precede theB-subround, and the updated values of the variables
controlled byB may depend on the updated values of the variables controlled byA.

Our approach is related to recent compilers for synchronous languages, such as ESTEREL

[8], which perform compile-time safety checks to reject programs that may lead at run-time
to nonterminating computations with a round. However, while ESTERELis a programming
language for reactive systems, reactive modules is a modeling language. This has led us
to many choices different from synchronous languages. For example, reactive modules
support both explicit state and nondeterminism, which is convenient for describing high-
level or incomplete designs, and can be used for modeling asynchronous processes that
proceed at independent speeds. The envisioned scenario is the one in which a variety of
different programming languages are translated into reactive modules, and verification is
then performed on the resulting modules.

Latched vs. updated values.In each round, every variablex has two values. The value of
x at the beginning of the round is called thelatched value, and the value ofx at the end of the
round is called theupdated value. We use unprimed symbols, such asx, to refer to latched
values, and primed symbols, such asx′, to refer to the corresponding updated values. Given
a setX of unprimed symbols, we writeX′ for the set of corresponding primed symbols.
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Initial vs. update actions. The moduleP proceeds in a sequence of rounds. The first round
is aninitialization round, during which the variables inXP are initialized. Each subsequent
round is anupdate round, during which the variables inXP are updated. The initialization
and updating of variables are specified by actions. Given two setsX andY of variables,
anaction from X to Y is a binary relation between the valuations forX and the valuations
for Y. The actionα from X to Y is executableif for every valuations for X, the number
of valuationst for Y with (s, t)∈α is nonzero and finite. Executable actions are enabled
in all states and ensure finitely branching nondeterminism.

Atoms vs. modules.The controlled variables of a moduleP are partitioned into atoms;
that is, every controlled variable ofP is controlled by one and only one atom ofP. The
initialization round and all update rounds consist of several subrounds, one for the envi-
ronment and one for each atom. For each atomA, in the A-subround of the initialization
round, all variables controlled byA are initialized simultaneously, as defined by an initial
action. In theA-subround of each update round, all variables controlled byA are updated
simultaneously, as defined by an update action.

Definition 1[Atom]. Let X be a finite set of typed variables. AnX-atom Aconsists of
a declaration and a body. The atom declaration consists of a setctrXA⊆ X of controlled
variables, a setreadXA⊆ X of read variables, and a setwaitXA⊆ X\ctrXA of awaited
variables. The atom body consists of an executableinitial action InitA from waitX′A to
ctrX′A and an executableupdate action UpdateA from readXA∪waitX′A to ctrX′A.

In the initialization round, the initial action of the atomA assigns initial values to the
controlled variables as a nondeterministic function of the initial values of the awaited
variables. In each update round, the update action ofA assigns updated values to the
controlled variables as a nondeterministic function of the latched values of the read variables
and the updated values of the awaited variables. Hence, in each round, theA-subround can
take place only after all awaited variables have already been updated. The variabley awaits
the variablex, written yÂA x, if y∈ ctrXA andx ∈waitXA. Now, we can define reactive
modules.

Definition 2[Module]. A (reactive) module Pconsists of a declaration and a body. The
module declaration is a finite setXP of typed variables that is partitioned as shown in
Table 1. The module body is a setAP of XP-atoms such that (1)(

⋃
A∈AP

ctrXA)= ctrXP;
(2) for all atoms A and B in AP, ctrXA∩ ctrXB=∅; and (3) the transitive closure
ÂP = (

⋃
A∈AP

ÂA)
+ is asymmetric.

The first two conditions ensure that the atoms ofP control precisely the variables in
ctrXP, and that each variable inctrXP is controlled by precisely one atom. The third
condition ensures that the await dependencies among the variables inXP are acyclic. A
linear orderA0, . . . , Ak−1 of the atoms inAP is consistentif for all 0≤ i < j < k, the
awaited variables ofAi are disjoint from the controlled variables ofAj . The asymmetry of
ÂP ensures that there exists a consistent order of the atoms inAP.
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Module execution. When executing the moduleP, in each round, first the external vari-
ables are assigned arbitrary values of the correct types, and then the atoms inAP are
executed in an arbitrary consistent orderA0, . . . , Ak−1. Specifically, in the initialization
round, after the external variables have been initialized, the initial action ofA0 is followed
by the initial action ofA1 etc.; and in each update round, after the external variables have
been updated, the update action ofA0 is followed by the update action ofA1 etc. In this
manner, all awaited values are available when they are needed during the execution, and
thus every round can be completed ink+ 1 subrounds—one subround for the environment
followed by one subround for each atom. Moreover, all nondeterminism in the completion
of a round is caused by the nondeterminism of the environment and by the nondeterminism
of individual atoms, not by the order of the atoms.

3. Examples of reactive modules

The syntax we use for specifying modules will be comprehensible once a few conventions
are explained. Variable declarations are indicated by keywords such asawaits, for the
awaited variables of an atom, orprivate, for the private variables of a module. The initial
and update actions of atoms are specified by the keywordsinit andupdate, followed by
nondeterministic guarded commands. The combined keywordinit update indicates that
the guarded command that follows specifies both the initial and update actions. If several
guards of a guarded command are true, then one of the corresponding assignments is chosen
nondeterministically; if none of the guards are true, then all controlled variables obtain their
default values. In the initialization round, the default initial value of a variable is chosen
nondeterministically (this is legal only if the variable has finite type). In each update round,
the default updated value of a variable is equal to the latched value of the variable (i.e., the
value of the variable stays unchanged). The default values are also invoked if a controlled
variable does not appear on the left-hand side of an assignment, or if the initial command
is omitted altogether.

3.1. Synchronous circuits

Synchronous circuits are built from logic gates and memory cells that are driven by a
sequence of clock ticks. Each logic gate computes a boolean value once per clock cycle,
and each memory cell stores a boolean value from one clock cycle to the next. We model
each logic gate and each memory cell as a reactive module so that every update round
represents a clock cycle. All sequential circuits can be constructed from the building blocks
shown in figure 1.

The moduleNot models a synchronousNOT gate, which takes a boolean input and
produces a boolean output. The input is modeled as an external variable,in, because it is
modified by the environment and visible to the gate. The output is modeled as an interface
variable,out, because it is modified by the gate and visible to the environment. In the
initialization round, theNOT gate waits for the input value to be initialized before computing
the initial output value, by negating the initial input value. In each update round, theNOT
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Figure 1. SynchronousNOT gate,AND gate, and latch.

gate waits for the input value to be updated before computing the next output value, by
negating the updated input value.

The moduleAnd models a synchronousAND gate that produces the boolean outputout
as a function of the two boolean inputsin1 and in2. In each round, the interface variable
out is initialized or updated after both external variablesin1 andin2 have been initialized or
updated.

The synchronous latchLatch takes the two boolean inputssetandreset, produces the
boolean outputout, and maintains the private bitstate. In each update round, the latch copies
its state to the interface variableout, without waiting for the updated values of the external



14 ALUR AND HENZINGER

variables. In a later subround, after both external variables have been updated, the latch
updates its state: if both updated external variables are low, thenstatestays unchanged; if
only set is high, thenstategoes to 1; if onlyresetis high, thenstategoes to 0; if both are
high, thenstategoes to an arbitrary value. In the initialization round, the output of the latch
is arbitrary, and the state of the latch is initialized after both inputs have been initialized. If
both inputs are initially low, then the initial state of the latch is arbitrary, but equal to the
initial output.

History-free variables in verification. Given a moduleP, a variablex of P is history-free
if x is not read by any atom ofP. Then, the update commands ofP can refer only to the
updated valuex′ and not to the latched valuex. In synchronous circuits, all variables that
represent wires are history-free. Specifically, all variables of figure 1 except for the latch
state,state, are history-free. In each round, the possible updated values of a history-free
variablex depend only on the latched values of variables that are not history-free, and on the
updated values of variables other thanx. In this way, history-free variables are analogous
to the combinational variables of hardware description languages, the selection variables
of COSPAN [18], and the pointwise functions of dataflow languages. Hence, during the
verification of a module by explicit search through the state space, the values of history-free
variables can be omitted from the search stack. Similarly, during the symbolic verification
of a module, the history-free variables can be eliminated using existential quantification in
each image-computation step.

3.2. Asynchronous shared-memory programs

As an example of a concurrent program consisting of processes that communicate through
read-shared variables, we consider a mutual-exclusion protocol, which ensures that no two
processes simultaneously access a common resource. The modulesP1 and P2 of figure 2
model the two processes of Peterson’s solution to the mutual-exclusion problem for shared
variables. Each processPi has a program counterpci and a flagxi , both of which can be
observed by the other process. The program counter indicates whether a process is outside its
critical section (pci = outCS), requesting the critical section (pci = reqCS), or occupying the
critical section (pci = inCS). In each update round, a process looks at the latched values of
all variables and, nondeterministically, either updates its controlled variables or sleeps (i.e.,
leaves the controlled variables unchanged), without waiting to see what the other process
does. Note that each process may sleep for arbitrarily many rounds: nondeterminism is used
to ensure that there is no relationship between the execution speeds of the two processes.

Interleaving. Unlike in interleaving models, both processes may modify their variables
in the same round. While Peterson’s protocol ensures mutual exclusion even under these
weaker conditions, if one were to insist on the interleaving assumption, one would add a
third module that, in each update round, nondeterministically schedules either or none of
the two processes. The modeling of interleaving by a scheduler module introduces only
history-free variables, and thus, does not increase the search space during verification.
Alternatively, one could describe the complete protocol as a single module containing a
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Figure 2. Asynchronous mutual-exclusion protocol.

single atom whose update action is the union of the update actions of the atoms of figure 2.
The guarded command that specifies a union of actions consists simply of the union of
all guarded assignments of the individual actions. This style of describing asynchronous
programs as an unstructured collection of guarded assignments is pursued in formalisms
such as UNITY [10] and MURØ [12].

Write-shared variables. The original formulation of Peterson’s protocol uses a single
write-shared boolean variablex, whose value always corresponds to the value of the pred-
icate x1= x2 in our formulation. If one were to insist on modelingx as a write-shared
variable, one would add a third module with the interface variablex and awaited external
variables such asPi setsx to 0, which is a boolean interface variable of thei th process
that indicates when the process wants to setx to 0. Since all of these variables with the
exception ofx are history-free, the modeling does not increase the search space during
verification. This style of describing write-shared memory makes explicit what happens
when several processes write simultaneously to the same location.
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Figure 3. Synchronous message-passing protocol.

3.3. Synchronous message-passing protocols

The modulesSenderandReceiverof figure 3 communicate via events in order to transmit
a stream of messages. We writex :E to declarex to be a boolean variable that is used
for modeling events. To issue an event represented byx, we writex!, which stands for the
assignmentx′ :=¬x. To check if an event represented byx is present, we writex?, which
stands for the predicatex′ 6= x.

The private variablepcof the sender indicates if it is producing a message (pc= produce),
or attempting to send a message (pc= send). The private variablepcof the receiver indicates
if it is waiting to receive a message (pc= receive), or consuming a message (pc= consume).
Messages are produced by the atomAProd, which requires an unknown number of rounds
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to produce a message. Once a message is produced, the eventdoneP is issued, and the
message is shown asmsgP (the actual value of message is chosen nondeterministically
from the finite typeM). Once a message has been produced, the sender is ready to send
the message, andpc is updated. When ready to send a message, the sender sleeps until the
receiver becomes ready to receive, and when ready to receive a message, the receiver sleeps
until the sender transmits a message.

The synchronization of both agents is achieved by two-way handshaking in three sub-
rounds within a single update round. The first subround belongs to the receiver. If the receiver
is ready to receive a message, it issues the interface eventreadyto signal its readiness to
the sender. The second subround belongs to the sender. If the sender sees the external event
readyand is ready to send a message, it issues the interface eventtransmitto signal a trans-
mission. The third subround belongs to the receiver. If the receiver sees the external event
transmit, it copies the message from the external variablemsgS to the private variablemsgR.
The sender goes on to wait for the production of another message, and the receiver goes on
to consumemsgR. Messages are consumed by the atomACons, which requires an unknown
number of rounds to consume a message. Once a message is consumed, the eventdoneC is
issued, the consumed message is shown asmsgC, and the receiver waits to receive another
message.

Event variables in verification. Like history-free variables, event variables are also used
only for interaction within a round, and their actual values at the beginning of a round are
immaterial. In a sense, the values of event variables behave like labels on the transitions
of a state-transition graph, unlike the values of other variables, which behave like labels
on the states. Consequently, during explicit verification, the values of event variables can
be omitted from the search stack, and during symbolic verification, event variables can be
eliminated using existential quantification.

4. Semantics of reactive modules

The execution of a module results in a trace of observations. Reactive modules are related
via a trace semantics: roughly speaking, one moduleimplements(or refines) another module
if all possible traces of the former, more detailed module are also possible traces of the latter,
more abstract module.

4.1. The trace language of a module

Let P be a reactive module. As indicated earlier, a state ofP is a valuation for the setXP

of module variables. We write6P for the set of states ofP.
A states of the moduleP is initial if it can be obtained by executing all initial actions of

P in a consistent order: for each atomA∈AP, (s′[waitX′A], s′[ctrX′A])∈ Init A.2 We write
Init P for the set of initial states of the moduleP. The setInit P is nonempty. In fact, for
every valuationse for the external variables ofP, there is a nonzero but finite number of
initial statess with s[extlXP]= se. This is because all initial actions are executable.
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For two statess and t of P, the statet is a successorof s, written s→P t , if t can be
obtained froms by executing all update actions ofP in a consistent order: for each atom
A∈AP, (s[readXA] ∪ t ′[waitX′A], t ′[ctrX′A])∈UpdateA. The binary relation→P over the
state space6P is called thetransition relationof the moduleP. The transition relation→P

is serial (i.e., every state has at least one successor). In fact, for every states of P, and for
every valuationte for the external variables ofP, there is a nonzero and finite number of
statest with s→P t andt [extlXP]= te. This is because all update actions are executable. In
other words, a module does not constrain the behavior of the external variables and interacts
with its environment in a nonblocking way.

In this way, the moduleP defines a state-transition graph with the state space6P, the
initial statesInit P, and the transition relation→P. The initialized paths of this graph are
called the trajectories of the module: atrajectory of P is a finite sequences0, . . . , sn

of states ofP such that (1) the first states0 is initial and (2) for all 0≤ i < n, the state
si+1 is a successor ofsi . A states of P is reachableif there is a trajectory ofP whose last
state iss. If s̄= s0, . . . , sn is a trajectory ofP, then the corresponding sequences̄[obsXP]=
s0[obsXP], . . . , sn[obsXP] of observations is called atraceof P. Thus, a trace records the
sequence of observations that may result from executing the module for finitely many steps.
The trace languageof the moduleP, denotedL P, is the set of traces ofP. By definition,
every prefix of a trajectory is also a trajectory, and hence, every prefix of a trace is also a
trace. Since the set of initial states is nonempty, and the transition relation is serial, every
trajectory of a module, and hence also every trace, can be extended.

Proposition 1. For every module P, the trace language LP is prefix-closed and contains
traces of arbitrary length.

It follows that a module cannot deadlock. In modeling, therefore, a deadlock situation
must be represented by a special state with a single outgoing transition back to itself.

4.2. The implementation preorder between modules

The semantics of the moduleP consists of the trace languageL P, as well as all information
that is necessary for describing the possible interactions ofP with the environment: the set
intf XP of interface variables, the setextlXP of external variables, and the await dependen-
ciesÂP ∩ (intf XP× obsXP) between interface variables and observable variables (there
cannot be any await dependencies between external variables and other variables).

Definition 3[Implementation]. The moduleP implementsthe moduleQ, written P¹ Q,
if the following conditions are met: (1) every interface variable ofQ is an interface variable
of P; (2) every external variable ofQ is an observable variable ofP; (3) for all observable
variablesx of Q and all interface variablesy of Q, if yÂQ x, thenyÂP x; and (4) ifs̄ is a
trace ofP, then the projection̄s[obsXQ] is a trace ofQ.

The first three conditions ensure that the compatibility constraints imposed byP on
its environment are at least as strong as those imposed byQ. The fourth condition is
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conventional trace containment. Intuitively, ifP¹ Q, then the moduleP is as detailed as
the moduleQ: the implementationP has possibly more interface and external variables than
the specificationQ; some external variables ofQ may be interface variables ofP, and
thus are more constrained inP; the implementationP has possibly more await dependencies
among its observable variables than the specificationQ; and P has possibly fewer traces
thanQ, and thus more constraints on its execution. It is easy to check that every module
P implements itself, and that if a moduleP implements another moduleQ, which, in turn,
implements a third moduleR, thenP also implementsR.

Proposition 2. The implementation relation¹ is a preorder on modules(i.e., reflexive
and transitive).

We write P∼= Q if P implementsQ and Q implementsP. It follows that∼= is an
equivalence relation on modules. Themeaningof a moduleP is the∼=-equivalence class
of P.

4.3. Special classes of atoms and modules

Combinational vs. sequential atoms.An atom A is combinationalif it has (1) no read
variables and (2) identical initial and update actions:readXA=∅, andInit A=UpdateA.
In each update round, the updated values of the controlled variables of a combinational
atom depend only on the updated values of other variables, and not on any latched values.
Furthermore, a combinational atom cannot distinguish between the initialization round and
later rounds. If an atom is not combinational, then it is calledsequential. For example, in
figure 1, the atoms of the modulesNot andAnd and the atom that controls the variable
stateof the moduleLatch are combinational; the atom that controls the variableout of
Latchis sequential. Note that a combinational atom may control some variables that are not
history-free, and an atom may be sequential despite controlling only history-free variables.
The two cases apply to the two atoms of the moduleLatch.

For further illustration of the difference between combinational and sequential atoms,
consider the following example. Given two variablesx andy of the same type, we wantx
to duplicate the behavior ofy. The combinational atom

ACombCopy:atom x awaits y
init update

[] true → x′ := y′

copiesy into x without delay, and ensures that bothx andy have the same value at the end
of each round. The sequential atom

ASeqCopy:atom x reads y
update

[] true → x′ := y
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copiesy into x with a delay of one round. In each update round,x is assigned the value
of y at the beginning of the round (the initial command is irrelevant for the purposes of this
example).

Lazy vs. eager atoms.An atomsleepsin an update round if the values of all controlled
variables stay unchanged. AnX-atom A is lazy if it may sleep in every update round: for
all valuationss andt for X, (s[readXA] ∪ t ′[waitX′A], s′[ctrX′A])∈UpdateA. A sufficient
syntactic condition for laziness is the presence of the guarded assignment “true →” in
the update command, which leaves the values of all controlled variables unchanged. For
example, the atoms of the modulesP1 andP2 from figure 2 are lazy. Typically, lazy atoms
are nondeterministic and sequential, with all controlled variables being read in order to keep
their values unchanged.

If an atom is not lazy, then it is calledeager. Both atomsACombCopy andASeqCopy
are eager. In the first case, all updates ofx follow immediately, within the same round, the
corresponding updates ofy; in the second case, the updates ofx are delayed by exactly one
round. By contrast, the lazy atom

ALazyCopy:atom x readsx awaits y
init update

[] true → x′ := y′

[] true →

copiesy intox at arbitrary times. In each update round, either the value ofx stays unchanged,
or it is set to the updated value ofy. Consequently, some values ofy may not be copied
into x.

Event-driven vs. round-driven atoms.In each update round, an atom can notice changes
in the values of awaited variables. If an awaited variable is also read, then the atom can
directly compare the latched value with the updated value. If an awaited variable is not read,
then the atom can remember the latched value from the previous round, by storing it in a
controlled variable, and still compare the latched value with the updated value. Therefore,
each change in the value of an awaited variable is an observable event. AnX-atom A is
event-drivenif it may sleep in every update round in which no observable event occurs; that
is, the atom may sleep whenever the values of all awaited variables stay unchanged: for
all valuationss for X, (s[readXA] ∪ s′[waitX′A], s′[ctrX′A])∈UpdateA. While the progress
of a lazy atom cannot be enforced at all, the progress of an event-driven atomA can be
enforced by other atoms that modify awaited variables. However, the progress of an event-
driven atom cannot be enforced solely by the expiration of rounds. Hence, if an atom is not
event-driven, then it is calledround-driven.

A sufficient syntactic condition for being event-driven is the presence of a conjunct of
the formx? in each guard of the update command. Second, every lazy atom is event-driven.
For example, all atoms of the modulesSenderandReceiverfrom figure 3 are event-driven.
Third, every combinational atom is event-driven. This is because if the awaited variables do
not change in an update round, then the combinational atom may compute the same values
for the controlled variables as in the previous round. For example, while the sequential
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atomASeqCopy is round-driven, the behavior of the combinational atomACombCopy can
be alternatively defined by the atom

AEventCopy:atom x readsx, y awaits y
init

[] true → x′ := y′

update
[] y′ 6= y → x′ := y′

because the value ofx needs to be modified only when the value ofy changes. This explicitly
event-driven specification of immediate copying, however, reads bothx and y, and is no
longer combinational (y is read to check if the value ofy changes, andx is read to keep the
value ofx unchanged).

Asynchronous vs. synchronous modules.A modulestuttersin an update round if the
values of all interface variables stay unchanged. Asynchronous modules are defined so that
they may stutter in every update round.

Definition 4[Asynchrony]. A moduleP is asynchronousif all interface variables ofP are
controlled by lazy atoms. Otherwise,P is asynchronousmodule.

It follows that the environment cannot enforce the observable progress of an asynchronous
module. While an asynchronous module can privately record all changes in the values of
external variables, all updates of interface variables proceed at a speed that is independent of
the environment speed. For example, the modulesP1 andP2 from figure 2 are asynchronous.

Round-insensitive vs. round-sensitive modules.A modulesleepsin an update round if the
values of all controlled variables stay unchanged, and the environmentstuttersin an update
round if the values of all external variables stay unchanged. Round-insensitive modules
are defined so that they may sleep in every update round in which the environment stutters.

Definition 5[Round-insensitivity]. A moduleP is round-insensitiveif all atoms ofP are
event-driven. Otherwise,P is around-sensitivemodule.

It follows that the trace language of a round-insensitive moduleP is closed under the
insertion of stutter steps: ifa0, . . . ,an is a trace ofP, then so are the observation sequences
a0, . . . ,ai ,ai , . . . ,an for all 0≤ i ≤ n. For example, the modulesSenderandReceiverfrom
figure 3 are round-insensitive.

Asynchrony and round-insensitivity are independent: a module may be synchronous
and round-sensitive, asynchronous and round-sensitive, synchronous and round-insensitive,
or asynchronous and round-insensitive. The difference between asynchrony and round-
insensitivity is illustrated by the three counters shown in figure 4. While the environment
cannot enforce observable progress of an asynchronous module, it can enforce obser-
vable progress of a round-insensitive module by modifying external variables. A round-
insensitive module, on the other hand, cannot count rounds, but only changes in the values
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Figure 4. Three counters.

of external variables. In our example, the round-sensitive synchronous counterRoundCount
is incremented in each round, the round-insensitive synchronous counterEventCountis
incremented with every occurrence of the external eventtick, and the round-insensitive
asynchronous counterAsyncCountis incremented nondeterministically.

5. Spatial operations on reactive modules

We create complex modules from simple modules using the three spatial operations of
variable renaming, parallel composition, and variable hiding, and the two temporal opera-
tions of round abstraction and triggering. Spatial operations manipulate the variables of a
module, leaving the underlying notion of round fixed; temporal operations manipulate what
happens during a round, leaving the variables fixed. We discuss the three spatial operations
in this section, and the two temporal operations in the next.
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All five operations f on modules are compositional in the sense that the equivalence
relation∼= is a congruence with respect tof : for all modulesP and Q, if P¹ Q, then
f (P)¹ f (Q). Thus, if we prove that moduleP is∼=-equivalent to moduleQ, thenP can
be substituted forQ in every context without affecting the meaning of the complex module.
Furthermore, in order to prove thatf (P) implements f (Q), it suffices to prove thatP
implementsQ. In this way, reasoning about complex modules can be reduced to reasoning
about simpler submodules.

5.1. Variable renaming

The renaming operation is useful for creating different instances of a module, and for
avoiding name conflicts. LetP be a module, and letx andy be two variables of the same
type such thaty is not inXP. Then the moduleP[x := y] results fromP by renamingx to y.
Henceforth, whenever we writeP[x := y], we assume thatx andy have the same type, and
thaty is not a module variable ofP. We make liberal use of notation such asP[x, y := y, x]
for P[x := z][ y := x][z := y]. We furthermore assume that for any two modules, a private
variable of one module is not a module variable of the other module. This can always be
achieved by renaming private variables, which does not change the meaning of a module.
It is obvious that the renaming operation is compositional: for all modulesP and Q, if
P¹ Q, thenP[x := y]¹ Q[x := y].

5.2. Parallel composition

The composition operation combines two modules into a single module whose behavior
captures the interaction between the two component modules. The two modulesP and
Q arecompatibleif (1) the interface variables ofP and Q are disjoint, and (2) the await
dependencies among the observable variables ofP andQ are acyclic—that is, the transitive
closure(ÂP ∪ ÂQ)

+ is asymmetric. It follows that ifP and R are compatible modules,
andP¹ Q, thenQ andR are also compatible.

Definition 6[Composition]. If P andQ are two compatible modules, then thecomposition
P‖Q is the module with the setprivXP‖Q= privXP∪ privXQ of private variables, the set
intf XP‖Q= intf XP∪ intf XQ of interface variables, the setextlXP‖Q= (extlXP ∪ extlXQ)\
intf XP‖Q of external variables, and the setAP‖Q=AP ∪AQ of atoms.

It is easy to check that for two compatible modulesP andQ, the compositionP‖Q is again
a module. The compositionP ‖ Q is asynchronous iff bothP andQ are asynchronous, and
P ‖ Q is round-insensitive iff bothP andQ are round-insensitive. Henceforth, whenever
we write P‖Q, we assume that the modulesP and Q are compatible. The composition
operation on modules is commutative and associative. We therefore omit parentheses when
writing P ‖ Q ‖ R.

Parallel composition behaves like language intersection. This is captured by the following
proposition, which asserts that the traces of a compound module are completely determined
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by the traces of the component modules. In particular, ifP andQ have identical observa-
tions, thenL P‖Q= L P ∩ L Q.

Proposition 3. Let P and Q be two compatible modules, and letā be a finite sequence
of observations of the compound module P‖ Q. Then, ā belongs to the language LP‖Q iff
the projectionā[obsXP] belongs to LP and the projection̄a[obsXQ] belongs to LQ.

It follows that, up to projection, the trace language of a compound module is a subset of
the trace language of each component. Hence, the composition of two modules creates a
module that is equally or more detailed than its components. This is captured by the first
part of the following proposition. The second part asserts that the composition operation is
compositional.

Proposition 4. Let P, Q, and R be three modules such that P and R are compatible.
Then(1) P ‖ R¹ P, and(2) P¹ Q implies P‖ R¹ Q ‖ R.

Proof: Part (1) follows from Proposition 3. For part (2), consider two modulesP andQ
such thatP¹ Q, and a moduleR that is compatible withP. Then R is also compatible
with Q. The definition of implementation has four conditions. The first three conditions
are immediate. The fourth condition is trace containment. Letā be a trace ofP ‖ R. By
Proposition 3, the projection̄a[obsXP] is a trace ofP, and the projection̄a[obsXR] is a
trace ofR. SinceP¹ Q, the projection̄a[obsXQ] is a trace ofQ. Again by Proposition 3,
the projectionā[obsXQ‖R] is a trace ofQ ‖ R. 2

It follows that, in order to prove that a complex compound moduleP1 ‖ P2 (with a large
state space) implements a simpler compound moduleQ1 ‖ Q2 (with a small state space),
it suffices to prove (1)P1 implementsQ1 and (2) P2 implementsQ2. We call this the
compositional proof rulefor reactive modules. It is valid, because parallel composition and
implementation behave like language intersection and language containment, respectively.

Assume-guarantee reasoning.While the compositional proof rule decomposes the veri-
fication task of proving implementation between compound modules into subtasks, it may
not always be applicable. In particular,P1 may not implementQ1 for all environments,
but only if the environment behaves likeP2, and vice versa. For such cases, an assume-
guarantee proof rule is needed [2, 4, 13, 25]. Theassume-guarantee proof rulefor reactive
modules asserts that in order to prove thatP1 ‖ P2 implementsQ1 ‖ Q2, it suffices to prove
(1) P1 ‖ Q2 implementsQ1, and (2)Q1 ‖ P2 implementsQ2. Both proof obligations (1)
and (2) typically involve smaller state spaces than the original proof obligation, because
the complex compound moduleP1 ‖ P2 usually has the largest state space involved. The
assume-guarantee proof rule is circular; unlike the compositional proof rule, it does not sim-
ply follow from the fact that parallel composition and implementation behave like language
intersection and language containment. Rather the proof of the validity of the assume-
guarantee proof rule proceeds by induction on the length of traces. For this, it is crucial
that every trace of a module can be extended.
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Proposition 5. Let P1 and P2 be two compatible modules, and let Q1 and Q2 be two
compatible modules such that every external variable of Q1 ‖ Q2 is an observable variable
of P1 ‖ P2. If P1 ‖ Q2¹ Q1 and Q1 ‖ P2¹ Q2, then P1 ‖ P2¹ Q1 ‖ Q2.

Proof: Consider four modulesP1, P2, Q1, andQ2 such that (1)P1 andP2 are compatible,
(2) Q1 and Q2 are compatible, (3) every external variable ofQ1‖Q2 is an observable
variable of P1 ‖ P2, (4) P1 ‖ Q2¹ Q1, and (5) Q1 ‖ P2¹ Q2. We wish to establish that
P1 ‖ P2¹ Q1 ‖ Q2. The definition of implementation has four conditions. Let us consider
these four proof obligations one by one.

Condition 1. every interface variable ofQ1 ‖ Q2 is an interface variable ofP1 ‖ P2. Let
x be an interface variable ofQ1 ‖ Q2. Without loss of generality, assume thatx is an
interface variable ofQ1. Assumption (4) implies thatx is an interface variable ofP1 ‖ Q2.
Assumption (2) implies thatx is not an interface variable ofQ2. It follows, from the
definition of parallel composition, thatx is an interface variable ofP1, and hence, of
P1 ‖ P2.

Condition 2. every external variable ofQ1 ‖ Q2 is an observable variable ofP1 ‖ P2. This
is assumption (3).

Condition 3. for all observable variablesx of Q1 ‖ Q2 and all interface variablesy of
Q1 ‖ Q2, if yÂQ1‖Q2 x, thenyÂP1‖P2 x. We show the stronger claim that for interface
variablesz1, . . . , zi of P1 ‖ P2, interface variablesy1, . . . , yj of P1 ‖ P2 or Q1 ‖ Q2, and
observable variablesx of Q1 ‖ Q2, if

y = z1 ÂP1‖P2 · · · zi ÂP1‖P2 y1 ÂR1 · · · yj ÂRj x,

whereRl ∈ {P1, P2, Q1, Q2} for all 1≤ l ≤ j , thenyÂP1‖P2 x. Condition (3) then follows
from the special case thati = 0, and hence,y= y1.

In the claim, since the relationÂP1‖P2 is acyclic by assumption (1), the variablesz1, . . . , zi

are all pairwise distinct. Therefore 0≤ i ≤ n, wheren is the number of interface variables of
P1 ‖ P2. We prove the claim by decreasing induction oni : consideri ∈ {0, . . . ,n}, assume as
induction hypothesis thati < n implies the claim holds fori + 1, and show the claim fori . If
j = 0, thenyÂP1‖P2 x by the transitivity ofÂP1‖P2. If j ≥ 1, then there are four possibilities
for R1. If R1∈ {P1, P2}, theny1 is an interface variable ofP1 ‖ P2. The acyclicity ofÂP1‖P2

implies thati < n, and the claim follows by induction hypothesis (choosezi+1= y1). If
R1= Q1, theny1 is an interface variable ofQ1, and, therefore, by assumption (2), it is not an
interface variable ofQ2. Sincey1ÂQ1 y2, from assumption (4) it follows thaty1ÂP1‖Q2 y2.
Sincey1 is not an interface variable ofQ2, it is an interface variable ofP1, and therefore
y1ÂP1 u1ÂR′1 · · ·ukÂR′k y2, for interface variablesu1, . . . ,uk of P1 ‖ Q2, andR′l ∈ {P1, Q2}
for all 1≤ l ≤ k. Again, the acyclicity ofÂP1‖P2 implies thati < n, and the claim follows
by induction hypothesis (choosezi+1= y1). The final case,R1= Q2, is symmetric to the
previous case.

Condition 4. if ā is a trace ofP1 ‖ P2, then the projection of̄a to the observable variables
of Q1 ‖ Q2 is a trace ofQ1 ‖ Q2. In the following, for simplicity we omit the explicit
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use of projections. For example, ifX is a superset ofobsXP and ā is a sequence of
valuations forX, when we refer tōa as a trace ofP, what we mean is that the projection
ā[obsXP] is a trace ofP.

We need to define some additional concepts. Given a moduleP, a setX of variables
is await-closedfor P if for all observable variablesx and y of P, if yÂP x and y∈ X,
thenx ∈ X. For an await-closed setX, the pair(ā, b) consisting of a tracēa of P and a
valuationb for X is anX-partial traceof P if there exists an observationc of P such that
(1) c[X ∩ obsXP]= b[obsXP], and (2)āc is a trace ofP. Thus, partial traces are obtained
by executing several complete rounds followed by a partial round, in which only some of
the atoms are executed. The following facts about partial traces follow from the definitions.

(A) If P¹ Q and X is an await-closed set of variables forP, thenX is an await-closed
set of variables forQ. If P¹ Q and(ā, b) is anX-partial trace ofP, then(ā, b) is an
X-partial trace ofQ. Thus, trace containment is equivalent to containment of partial
traces.

(B) The partial traces of a compound module are determined by the partial traces of the
component modules: for every await-closed setX for P ‖ Q, every sequencēa of
observations ofP ‖ Q, and every valuationb for X, the pair(ā, b) is anX-partial trace
of P ‖ Q iff it is an X-partial trace of bothP andQ.

(C) If (ā, b) is anX-partial trace ofP, andc is a valuation for a setY of variables ofP,
which is disjoint from bothX and intf XP, then(ā, b∪ c) is an(X ∪Y)-partial trace
of P. This property is due the nonblocking nature of modules.

Let X1, . . . , Xm be a partition ofobsXP1‖P2 into disjoint subsets such that (1) eachXi

either contains only external variables ofP1 ‖ P2, or contains only interface variables ofP1,
or contains only interface variables ofP2, and (2) ifyÂP1‖P2 x andy∈ Xi , thenx ∈ X j for
somej < i . DefineY0=∅, and for all 0≤ i <m, defineYi+1=Yi ∪ Xi . Each setYi is await-
closed forP1 ‖ P2. For all 0≤ i ≤m, let Li be the set ofYi -partial traces ofP1 ‖ P2, and
let L = ⋃0≤i≤m Li . We define the following order< on the partial traces inL: for i <m,
if (ā, b)∈ Li and(ā, c)∈ Li+1 andc[Yi ]= b, then(ā, b)< (ā, c); for i =m, if (ā, b)∈ Li ,
then (ā, b)< (āb, ∅). Clearly, the order< is well-founded. We prove by well-founded
induction with respect to< that for all 0≤ i ≤m, every partial trace inLi is a Yi -partial
trace ofQ1 ‖ Q2. Then, the casei = 0 implies that every trace ofP1 ‖ P2 is also a trace of
Q1 ‖ Q2.

Consider(ā, ∅) in L0. If ā is the empty trace, then(ā, ∅) is a trace of all modules.
Otherwise,ā= b̄c for some observation sequenceb̄ and observationc of P1 ‖ P2. Then
(b̄, c) is aYm-partial trace ofP1 ‖ P2, and(b̄, c)< (ā, ∅). By induction hypothesis,(b̄, c)
is aYm-partial trace ofQ1 ‖ Q2, and hence,(ā, ∅) is aY0-partial trace ofQ1 ‖ Q2.

Consider(ā, b) in Li+1 for some 0≤ i <m. Let c= b[Yi ]. Then (ā, c) is a Yi -partial
trace ofP1 ‖ P2, and(ā, c)< (ā, b). By induction hypothesis,(ā, c) is aYi -partial trace of
Q1 ‖ Q2. By fact (B) about partial traces,(ā, c) is a Yi -partial trace of bothQ1 and Q2.
ConsiderYi+1=Yi ∪ Xi . Without loss of generality, assume thatXi contains no interface
variables ofP2, and hence, by assumptions (2) and (5), no interface variables ofQ2. By
fact (C) about partial traces, theYi -partial trace(ā, c) of Q2 can be extended with any



REACTIVE MODULES 27

valuation for Xi . In particular,(ā, b) is a Yi+1-partial trace ofQ2. Since(ā, b)∈ Li+1,
by fact (B) about partial traces,(ā, b) is a Yi+1-partial trace ofP1, and therefore also of
P1 ‖ Q2. From assumption (4) and fact (A) about partial traces, it follows that(ā, b) is a
Yi+1-partial trace ofQ1. Hence by fact (B) about partial traces,(ā, b) is aYi+1-partial trace
of Q1 ‖ Q2. 2

5.3. Variable hiding

The hiding of interface variables allows us to construct module abstractions of varying
degrees of detail. For instance, after composing two modules, it may be appropriate to
convert some interface variables to private variables, so that they are used only for the
interaction of the component modules, and are no longer visible to the environment of the
compound module.

Definition 7[Hiding]. Given a moduleP and an interface variablex of P, by hiding x in
P we obtain the modulehide x in P, which has the setprivXP∪ {x} of private variables,
the setintf XP\{x} of interface variables, the setextlXP of external variables, and the set
AP of atoms.

Henceforth, whenever we writehide x in P, we assume thatx is an interface variable
of P. We writehide x1, x2 in P short for the modulehide x1 in (hide x2 in P), which
is identical to the modulehide x2 in (hide x1 in P). The hiding of a variable creates in
a module that is equally or less detailed, and the hiding operation is compositional. Both
facts are stated in the following proposition.

Proposition 6. For all modules P and Q, and every interface variable x of Q, we have
(1) Q¹ (hide x in Q), and(2) if P ¹ Q, then(hide x in P)¹ (hide x in Q).

From synchrony to asynchrony. Hiding preserves asynchrony, round-sensitivity, and
round-insensitivity, but not synchrony. Hence, hiding is useful for constructing asyn-
chronous modules from synchronous modules. Consider, for example, an asynchronous
moduleClock that nondeterministically issues the interface eventtick:

moduleClock
interface tick: E
atom tick readstick

update
[] true → tick!
[] true →

Then, given the synchronous counterEventCountfrom figure 4, we can implement the
asynchronous counterAsyncCountusing hiding:

AsyncCount∼= hide tick in (EventCount‖Clock)
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Figure 5. Asynchronous message-passing specification.

For a more elaborate example, recall the synchronous message-passing protocol from
figure 3:

moduleSendRec=Sender‖Receiver

After hiding the communication events, so that only the streams of produced messages
(msgP) and consumed messages (msgC) remain visible, we obtain an asynchronous module:

moduleSendRecImpl= hide ready, transmit,msgS in SendRec

The moduleSendRecImplimplements the asynchronous moduleSendRecSpecof figure 5,
which contains a single lazy atom:

SendRecImpl¹SendRecSpec

The moduleSendRecSpecspecifies the class of sliding-window protocols with window
size 2: the stream of consumed messages results from delaying the stream of produced
messages such that at any point, at most two produced messages have not yet been con-
sumed. If, as initially,pc= consahead, then the latest produced message has already been
consumed, so the consumer waits and the producer works on producing the next message;
if pc= in sync, then the consumer works on consuming the latest produced message, and
the producer works on producing the next message; ifpc= prod ahead, then the previously
produced message, which is stored inmsgW, has not yet been consumed, so the consumer
works on that message and the producer, constrained by the window size 2, waits. While
SendRecImplimplements the sliding-window specification using synchronous handshak-
ing, alternatively,SendRecSpeccould be implemented by sender and receiver processes
that communicate via asynchronous handshaking.
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Figure 6. Two definitions of a synchronousOR gate.

5.4. Spatial scaling

The three operations of renaming, composition, and hiding allow us to construct a space
hierarchy of modules. We illustrate this on the example of synchronous circuits.

Figure 6 shows two module definitions for a synchronousORgate. The moduleBehavOr
specifies the input-output behavior of anORgate similar to the definition of the synchronous
AND gate from figure 1. The moduleStructOrbuilds anOR gate from anAND gate and
three inverters. First, we rename the variables of the modules from figure 1 that define syn-
chronousAND andNOT gates in order to create three instances of aNOT gate and connect, for
example, the output of theAND gate with the input of the thirdNOT gate. Second, we com-
pose the four modules representing theAND gate and the threeNOT gates. Third, we hide
the variables that represent internal wires, for example, the wirez3 that connects the output
of theAND gate with the input of the thirdNOT gate. It is easy to check that the two modules
BehavOrandStructOrare∼=-equivalent; in particular, they have the same traces.

Using the definitions of synchronous gates and latches from figure 1, and the three
operations of renaming, composition, and hiding, we can build sequential circuits whose
clock cycles correspond to rounds. As an example, we design a three-bit binary counter.
The counter takes two boolean inputs, represented by the external variablesstart andinc,
for starting and incrementing the counter. The counter value ranges from 0 to 7, and is
represented by three bits. We do not make any assumption about the initial counter value.
A start command resets the counter value to 0 and overrides any increment command that is
issued in the same round. An increment command increases the counter value by 1. If the
counter value is 7, the increment command changes the counter value to 0. In each round,
the counter issues its value as output—the low bit on the interface variableout0, the middle
bit on the interface variableout1, and the high bit on the interface variableout2.
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Figure 7. Block diagram for a three-bit binary counter.

Figure 7 shows a possible design of the three-bit counter from three one-bit counters.
This design is defined by the moduleSync3BitCounterof figure 8 (for clarity, we some-
times annotate both component and compound modules with the names of the observable
variables). Note thatcarry0 waits for bothstart andinc, thatcarry1 waits forcarry0, and
thatcarry2 waits forcarry1. It follows that all three bits of the counter are updated within
a single round.

Combinational loops. By identifying each clock cycle with a round, we cannot model
combinational loops, which would result in cyclic await dependencies. Consider the module
UselessTransLatchfrom figure 9, which models a transparent latch: in each round in which
the control inputclk is true, the data inputin is without delay propagated to the outputout;
and in each round in which the inputclk is false, the outputoutstays unchanged. The module
IllegalLoopcomposes two transparent latches. Since in each round, the control inputs of the



REACTIVE MODULES 31

Figure 8. Three-bit binary counter.

Figure 9. Naive model of a transparent latch.

two latches are complementary, all data dependencies can be resolved dynamically, during
execution. Our definition of await dependencies, however, is static, and therefore value-
independent. Hence,IllegalLoopis not a legal module:latch1Â latch2 andlatch2Â latch1.
In the next section, we will present a legal model for this circuit. We will use several rounds
to model a single clock cycle, and then collapse these rounds into a single round.
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6. Temporal operations on reactive modules

Each module defines what happens during a round. The notion of round is global: when two
modules are composed, the rounds of both component modules are taken to overlap perfectly
in time, none being shorter or longer than the other. Throughout the operations of renaming,
composition, and hiding, the notion of round stays unchanged: a complex module has the
same round as each of its submodules. Sometimes it is convenient, however, to change
the notion of what constitutes a round. For example, what happens during a round of a
complex module may best be defined by what happens during several consecutive rounds
of a submodule. For this purpose, we introduce the operations of round abstraction and
triggering.

6.1. Round abstraction

In order to reduce the complexity of a system, it is often useful to combine several consecu-
tive rounds into a single, more abstract round. This can be done by applying the abstraction
operatornext. Intuitively, given a subsetY of the interface variables of a moduleP, the
modulenext Y for P collapses consecutive rounds ofP until one of the variables inY
changes its value. This is similar to the notion of sampling simulation for a complex sys-
tem: we want to observe the behavior of the moduleP only at those instances when the
value of some of the variables inY changes. As we compress several rounds into one, it
is assumed that an external variable that is read stays unchanged in all, except possibly the
last, rounds, and an external variable that is awaited stays unchanged in all, except possibly
the first, rounds.

Let P be a module, and letY⊆ intf XP be a subset of its interface variables. For two
statess andt of P, the statet is aY -successorof s if there exists a finite sequences0, . . . , sn

of states ofP such that the following three conditions are met:

1. s0= s; for all 0≤ i < n, the statesi+1 is a successor ofsi ; andsn= t .
2. For all 0< i < n, we havesi [Y]= s0[Y]; andsn[Y] 6= s0[Y].
3. For every external variablex of P, if some atom ofP readsx, then for all 0< i < n,

we havesi [x]= s0[x]; and if some atom ofP awaitsx, then for all 0< i < n, we have
si [x]= sn[x].

A round markerfor the moduleP is a (nonempty) setY of interface variables ofP such
that for every reachable states of P, and every valuationte for the external variables ofP,
there is a nonzero and finite number ofY-successorst of s with t [extlXP]= te. If Y is a
round marker forP, then from any reachable state, no matter how the environment updates
the external variables, the update actions ofP can be iterated in a way that leads to the
modification of an interface variable inY. For afinite-statemoduleP, all of whose variables
range over finite types, it can be checked automatically ifY is a round marker forP, by
model checking a CTL formula of the form∀2∃U .
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Figure 10. Round abstraction.

Definition 8 [Abstraction]. Given a moduleP, if Y is a round marker forP, then the
abstractionnextY for P is the module with the same declaration asP and a single atom,AY

P.
The atomAY

P has the setctrXP of controlled variables, the setreadXP= (
⋃

A∈AP
readXA)

of read variables, and the setwaitXP= (
⋃

A∈AP
waitXA)∩ extlXP of awaited variables.

The initial action ofAY
P contains all pairs of the form(s′[waitX′P], s′[ctrX′P]), wheres is

an initial state ofP. The update action ofAY
P contains all pairs of the form(s[readXP] ∪

t ′[waitX′P], t ′[ctrX′P]), wheret is aY-successor ofs.

As an example, consider the two modules shown in figure 10. The private variable
countof the moduleP is initially 0. As long as the latched value of the external variable
x is true, the variablecount is incremented modulo 10. The interface eventy is issued
whenevercount is incremented from 9 to 0. The interface eventz is issued wheneverx
is false. The set{y, z} is a round marker forP: every state withx= true (andcount= i )
has a{y}-successor withx= true (andcount= 0) and a{y}-successor withx= false(and
count= 0); and every state withx= false(andcount= i ) has a{z}-successor withx= true
(andcount= i ) and a{z}-successor withx= false(andcount= i ). By contrast, neither{y}
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nor {z} are round markers forP, because the initial state withx= true (andcount= 0)
does not have a{z}-successor, and the initial state withx= false(andcount= 0) does not
have a{y}-successor. The abstractionnext {y, z} for P is∼=-equivalent to the moduleQ:
wheneverx is true,Q issues the interface eventy, and wheneverx is false,Q issues the
interface eventz.

It is easy to check that ifY is a round marker for a moduleP, then the abstraction
next Y for P is again a module. Henceforth, whenever we writenext Y for P, we assume
thatY is a round marker forP. If the setintf XP of all interface variables is a round marker
for P, then the modulenext intf XP for P is called thestutter reductionof P, and denoted
next P. In each update round, the stutter reductionnext P iterates the update actions ofP
until some interface variable changes.

We now show that the abstraction operation is compositional. For this purpose, we
need to strengthen the definition of the implementation relation slightly. The moduleP
environment-faithfully implementsthe moduleQ, written P¹e Q, if P¹ Q and for every
external variablex of Q, (A) if x is read by some atom ofQ, thenx is an external variable ofP
that is read by some atom ofP, and (B) ifx is awaited by some atom ofQ, thenx is an external
variable ofP that is awaited by some atom ofP. Environment-faithful implementations
cannot constrain external variables by turning them into interface variables.

Proposition 7. Let P and Q be two modules, and let Y be a round marker for both P
and Q. Then P¹e Q implies(next Y for P)¹ (next Y for Q).

Proof: Consider two modulesP′ = (next Y for P) and Q′ = (next Y for Q). Assume
thatP¹ Q, and assume conditions (A) and (B) of the definition for the environment-faithful
implementation ofQ by P. We prove thatP′ ¹ Q′. The definition of implementation has
four conditions. The first two conditions are immediate. For the third condition, consider
an observable variablex of Q′ and an interface variabley of Q′, suppose thatyÂQ′ x, and
show thatyÂP′ x. SinceyÂQ′ x, and Q′ has a single atom,x is an external variable of
(Q′ and)Q that is awaited by some atom ofQ. From assumption (B), it follows thatx is an
external variable ofP (andP′) that is awaited by some atom ofP. SinceP¹ Q, andy is
an interface variable of (Q′ and)Q, it is also an interface variable ofP (andP′). Therefore
yÂP′ x.

The fourth condition is trace containment. Letā be a trace ofP′, and consider the
trajectory s̄= s0, . . . , sn with s̄[obsXP′ ]= ā. Then, for all 0≤ i < n, the statesi+1 is a
Y-successor ofsi according toP. Hence, by the definition of thenext operator, we can
introduce a finite sequence of states between each pair of states ofs̄ to obtain a trajectory of
P of the forms0, s00, . . . , s0k0, s1, s10, . . . , s1k1, s2, . . . , sn. For each statesi j , the value of the
round markerY equalssi [Y], the value of each read external variablex of P equalssi [x],
and the value of each awaited external variablex of P equalssi+1[x]. Since P¹ Q,
there exists a trajectory ofQ of the form t0, t00, . . . , t0k0, t1, t10, . . . , t1k1, t2, . . . , tn such
that for all 0≤ i ≤ n, we havesi [obsXQ]= ti [obsXQ], and for all 0≤ j ≤ ki , we have
si j [obsXQ]= ti j [obsXQ]. From assumptions (A) and (B), it follows that for all 0≤ i < n,
the stateti+1 is aY-successor ofti according toQ. Hence,t0, . . . , tn is a trajectory ofQ′.
Therefore,̄t [obsXQ′ ]= s̄[obsXQ′ ]= ā[obsXQ′ ] is a trace ofQ′. 2
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From asynchrony to round-sensitive synchrony.Every module of the formnext Y for P
is synchronous and round-sensitive. Hence, abstraction is useful for constructing round-
sensitive synchronous modules from asynchronous modules. For example, given the asyn-
chronous counterAsyncCountfrom figure 4, we can implement the round-sensitive
synchronous counterRoundCountusing abstraction:

RoundCount∼= next AsyncCount

Similarly, while the message-passing implementationSendRecImplfrom Section 5.3 is
asynchronous, its stutter reduction

moduleRedSendRec= next SendRecImpl

is synchronous. In each round ofRedSendRec, either a message is produced by the atom
AProd, or a message is consumed by the atom ACons, or both.

6.2. Temporal scaling

The next operator changes the notion of what happens during a round, and allows us to
construct a time hierarchy of modules. This can again be illustrated with circuit examples.
In a first example, we aggregate several clock cycles into an arithmetic operation; in a
second example, we aggregate several gate operations into a clock cycle.

Consider the specificationAdd64of a 64-bit adder shown in figure 11. The 32-bit adder
Add32is specified similarly. We give two implementations ofAdd64usingAdd32. If x is

Figure 11. Specification and parallel implementation of a 64-bit adder.
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Figure 12. Sequential implementation of a 64-bit adder.

a 64-bit word, we writex0 for the less significant 32 bits andx1 for the more significant 32
bits. The first implementation,ParAdd(figure 11), uses two copies ofAdd32and connects
them appropriately. In each round,ParAddadds two 64-bit words by first adding the less
significant half-words and then, in a later subround of the same round, adding the more
significant half-words. HenceParAdd¹Add64.

The second implementation,SeqAdd(figure 12), uses a single copy ofAdd32and embeds
it in additional circuitry, represented by the moduleAuxCircuitry. The submodule

moduleSeqAddSub=Add32[x, y, z, carry, ofl :=a, b, c, u, ofl] ‖AuxCircuitry

requires two consecutive update rounds to compute a 64-bit sum: it adds the less significant
half-words in one round before adding the more significant half-words in the subsequent
round. The moduleSeqAddSubhas four atoms. In each round, first the variableround is
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Figure 13. Correct model of a transparent latch.

set to indicate if the less significant (round= 0) or the more significant (round= 1) half-
words need to be added. Second, the variablesa, b, andu are assigned the proper input values
for the 32-bit addition. Third, the 32-bit addition is performed. Fourth, the output values
of the 32-bit addition are assigned to the variablesz and possiblyv (intermediate carry),
and if round= 1, the eventdonesignals completion of the 64-bit addition. InSeqAdd, the
two rounds of each 64-bit addition are collapsed, so thatSeqAdd¹Add64. Indeed, all three
models of the 64-bit adder are equivalent:

Add64∼=ParAdd∼=SeqAdd

Combinational loops revisited. Round abstraction is also useful for modeling systems
that otherwise cannot be modeled naturally as reactive modules because of the acyclicity
requirement on await dependencies. For example, using round abstraction, we can legally
model the circuitIllegalLoopfrom figure 9 using the scheme shown in figure 13. Unlike the
moduleUselessTransLatch, which awaits the data inputin, the moduleUsefulTransLatch
readsin, and thus delays its propagation to the output by a round. Then, for each constant
control inputclk, the variables of the module

moduleLegalLoopSub=
‖ UsefulTransLatch[in, out, clk := latch1, latch2, clk]
‖ UsefulTransLatch[in, out, clk := latch2, latch1, not clk]
‖ Not[in, out:= clk, not clk]

stabilize within a finite number of rounds—that is, after some finite number of rounds, the
variables ofLegalLoopSubremain unchanged if any additional rounds are executed (in our
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case, a single round suffices, but in general, the number of rounds depends on the number of
transparent latches in the circuit). When the variables stabilize, a fixpoint is reached for the
valueslatch1 and latch2 of the transparent latches. This signals the end of a clock cycle.
Then, the control inputclk can change, and a new fixpoint iteration starts, whose result
represents the state of the circuit after another clock cycle, etc.

Hence, we want to iterate the update actions of the moduleLegalLoopSubuntil the inter-
face variables remain unchanged. This can be achieved by first composingLegalLoopSub
with a moduleWatchLegalLoopSubthat watches the execution ofLegalLoopSuband issues
the eventstableonce the interface variables ofLegalLoopSubremain unchanged during an
update round. In general, for an arbitrary moduleP, the monitor moduleWatchPis defined
as follows:

moduleWatchP
external intf XP

interface stable: E
atom stablereadsstable, intf XP awaits intf XP

update
[] intf XP = intf X′P → stable!

Then we collapse rounds ofLegalLoopSub‖WatchLegalLoopSubuntil the eventstable
occurs. Let us writestabilizeP as an abbreviation for the modulehidestablein next {stable}
for (P ‖WatchP). The result is the moduleLegalLoopof figure 13. Within every context,
the moduleLegalLoopproperly updates the values of the transparent latches every single
round.

Round abstraction in verification. Temporal properties and implementation relations for
finite-state modules can be checked algorithmically, by constructing the state-transition
graphGP that underlies a moduleP. Consider the abstractionQ= (next Y for P). The
search ofGQ may be more efficient than the search ofGP, because abstraction may cause
some variables to become history-free. More importantly,GQ typically has many fewer
edges thanGP, and therefore a smaller reachable state space. For example, in figure 10,
in the abstract modulenext {y, z} for P, the value ofcount is 0 in every reachable state.
WhenGQ is searched explicitly, the reachable states ofP never have to be added to the
search stack. Rather, the edges ofGQ are constructed by a secondary search inGP, which is
implemented using an auxiliary stack that is released once all edges from a given vertex of
GQ have been found. This reduction of the reachable state space is similar to synchronous
programming languages, where only macro-steps, rather than micro-steps, correspond to
edges in the state-transition graph [14].

Also the symbolic verification of a system that consists of modules withnext operators
can be performed efficiently. Consider the moduleP= (next Y1 for P1) ‖ (next Y2 for P2).
Each single image-computation step forP corresponds to iterating the transition relation
of P1 until some variable inY1 changes, and iterating, independently, the transition relation
of P2 until some variable inY2 changes. The experiments reported in [5] indicate that this
scheme can enable the analysis ofP in cases where no analysis ofP1 ‖ P2 is feasible.
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6.3. Triggering

Hiding allows us to build asynchronous modules from synchronous parts, and round ab-
straction allows us to build synchronous and round-sensitive modules from asynchronous
and/or round-insensitive parts. We now introduce the operatortrigger for building round-
insensitive modules from round-sensitive parts. Intuitively, given a subsetZ of the external
variables of a moduleP, the moduletrigger Z for P sleeps until some external variable
in Z changes its value. Then,P is executed. Thus, in a sense, triggering is dual to round
abstraction: while the operatornext collapses several rounds of a module into a single
round, the operatortrigger splits a round into several rounds, in all but one of which the
module sleeps.

Let P be a module, and letZ⊆ extlXP be a subset of its external variables. The setZ is
a read triggerfor P if z∈ Z for every external variablez of P that is read by some atom
of P. The setZ is anawait trigger for P if z∈ Z for every external variablez of P that is
awaited by some atom ofP. A trigger for P is either a read trigger or an await trigger.

Definition 9 [Trigger]. Given a moduleP, if Z is a trigger for P, then the module
trigger Z for P has the same declaration asP and a single atom,BZ

P . The atomBZ
P has the set

ctrXP of controlled variables; the setreadXZ
P = (

⋃
A∈AP

readXA)∪ Z of read variables, and
the setwaitXZ

P = ((
⋃

A∈AP
waitXA)∩ extlXP)∪ Z of awaited variables. The initial action

of BZ
P contains all pairs of the form(s′[waitX′P], s′[ctrX′P]), wheres is an initial state ofP.

The update action ofBZ
P contains all pairs of the form(s[readXP] ∪ t ′[waitX′P], t ′[ctrX′P]),

where either (1)s[Z]= t [Z] ands[ctrXP]= t [ctrXP], or (2)s[Z] 6= t [Z] andt is a successor
of s according toP.

It is easy to check that ifZ is a round marker for a moduleP, then the module
trigger Z for P is again a module. Henceforth, whenever we writetrigger Z for P, we
assume thatZ is a set of variables that contains no controlled variables ofP. If Z contains
some variables that are not (external) variables ofP, then we agree thattrigger Z for P
stands for the moduletrigger Z for (P ‖ Q), whereQ is the trivial module with the set
Z\extlXP of external variables and the empty set of atoms. The moduletrigger extlXP for P
is called theevent reductionof P, and denotedtrigger P. In each update round, the event
reductiontrigger P executesP in the update rounds in which the environment changes the
value of some external variable, and sleeps in the update rounds in which the environment
stutters.

Like the other operations on modules, triggering is compositional.

Proposition 8. Let P and Q be two modules, and let Z be a trigger for both P and Q.
Then P¹e Q implies(trigger Z for P)¹ (trigger Z for Q).

Proof: Consider two modulesP′ = (trigger Z for P) and Q′ = (trigger Z for Q).
Assume thatP¹ Q, and assume conditions (A) and (B) of the definition for the environment-
faithful implementation ofQ by P. We prove thatP′ ¹ Q′. The definition of implemen-
tation has four conditions. The first two conditions are immediate, and the third condition
can be shown by an argument similar to the one used in the proof of Proposition 7.
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The fourth condition is trace containment. Letā be a trace ofP′, and consider the trajec-
tory s̄with s̄[obsXP′ ]= ā. The trajectorȳshas forms00, . . . , s0k0, s10, . . . , s1k1, s20, . . . , snkn

such that for all 0≤ i < n, we havesiki [Z] 6= si+1,0[Z], andsi+1,0 is a successor ofsiki ac-
cording toP, and for all 0≤ i ≤ n and 0≤ j ≤ ki , we havesi j [ctrXP ∪ Z]= si 0[ctrXP ∪ Z].
If Z is a read trigger forQ, then by assumption (A), the setZ is also a read trigger forP,
and therefores00, s10, . . . , sn0 is a trajectory ofP. If Z is an await trigger forQ, then by
assumption (B), the setZ is also an await trigger forP, and therefores0k0, s1k1, . . . , snkn

is a trajectory ofP. We pursue only the former case; the latter can be handled simi-
larly. Since P¹ Q, there exists a trajectory ofQ of the form t00, t10, . . . , tn0 such that
for all 0≤ i ≤ n, we havesi 0[obsXQ]= ti 0[obsXQ]. Let t̄ be a state sequence of the
form t00, . . . , t0k0, t10, . . . , t1k1, t20, . . . , tnkn such that for all 0≤ i ≤ n and 0< j ≤ ki , we
haveti j [ctrXQ ∪ Z]= ti 0[ctrXQ ∪ Z] and ti j [extlXQ\Z]= si j [extlXQ\Z]. Then, sinceZ
is a read trigger forQ, the state sequencet̄ is a trajectory ofQ′. Therefore,̄t [obsXQ′ ]=
s̄[obsXQ′ ]= ā[obsXQ′ ] is a trace ofQ′. 2

From round-sensitivity to round-insensitivity. While triggering preserves (in spirit) asyn-
chrony as well as synchrony, every module of the formtrigger Z for P is round-insensitive.
Hence, triggering is useful for constructing round-insensitive modules from round-sensitive
modules. For example, given the round-sensitive synchronous counterRoundCountfrom
figure 4, we can implement the round-insensitive synchronous counterEventCountusing
triggering:

EventCount∼= trigger {tick} for RoundCount

This completes our demonstration that all three counters from figure 4 are interdefinable:

RoundCount∼= next AsyncCount

AsyncCount∼= hide tick in (EventCount‖Clock)

Reactive modules vs. multiform time.The temporal operatorsnextandtrigger of reactive
modules are similar in spirit to the polychronous operators of synchronous programming
languages such as SIGNAL [7] and LUSTRE[14]. Both approaches allow temporal abstraction
by manipulating what happens during a round. However, there is a key difference. Reactive
modules have a global notion of round, and applications ofnext andtrigger only change
what a module does within a round. In SIGNAL, the notion of round (orclock) is local to a
module (orsignal), is part of its semantics, and can be changed by applying operators such
aswhenanddefault. Consequently, the parallel composition of reactive modules behaves
quite differently from the parallel composition in synchronous programming languages.

7. Fair reactive modules

Based on the trace semantics of modules from Section 4, we can reason about the safety
requirements of modules. Reasoning about liveness requirements demands that we consider
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infinitebehaviors of modules. Then, in order to rule out certain degenerate infinite behaviors
of a module, we add fairness constraints to the module.

7.1. The infinite traces of a module

Let P be a module. Anω-trajectory of P is an infinite sequences0, s1, s2, . . . of states
such that (1) the first states0 is initial and (2) for alli ≥ 0, the statesi+1 is a successor
of si . If s= s0, s1, . . . is anω-trajectory of P, then the corresponding infinite sequence
s[obsXP]= s0[obsXP], s1[obsXP], . . . of observations is anω-traceof P. Since all initial
and update actions of the moduleP are executable, the set ofω-traces ofP is completely
determined by the setL P of finite traces, and vice versa. This property of a reactive system
is calledlimit closure, or safety[3].

Proposition 9. Let P be a module. An infinite sequence aof observations of P is an
ω-trace of P iff every finite prefix of ais a trace of P. A finite sequenceā of observations
of P is a trace of P iff̄a is a finite prefix of someω-trace of P.

Proof: The first part of the proposition follows from the finite controlled branching of the
transition relation. Consider an infinite sequencea=a0,a1, . . . of observations. Ifa is an
ω-trace ofP, then, by definition, every finite prefix ofa is a trace ofP. So suppose that for
all i ≥ 0, the finite sequencēai =a0, . . . ,ai is a trace ofP; that is, for alli ≥ 0, there is a
finite trajectorys̄i of P with s̄i [obsXP]= āi . We define a forest whose vertices are labeled
with states ofP. For every initial states of P with s[obsXP]=a0, there is a root—i.e., a
level-0 vertex—labeled withs. For every leveli ≥ 0, every level-i vertexv labeled with
states, and every successort of s with t [obsXP]=ai+1, there is a child ofv—i.e., a level-
(i + 1) vertex—labeled witht . Since all initial and update actions ofP are executable, the
forest has a finite number roots, and every vertex has a finite number of children. Further-
more, for eachi ≥ 0, the finite trajectorȳsi is a path of the forest. Hence the forest has infi-
nitely many vertices, and by K¨onig’s lemma, the forest contains an infinite path. The sequ-
ence of labels along this path is anω-trajectory ofP, and the correspondingω-trace isa.

The second part of the proposition follows from the seriality of the transition relation.
2

7.2. Modules with fairness constraints

Remember that an actionα from X to Y is a binary relation between the valuations forX
and the valuations forY. Thus, all subsetsβ ⊆α are also actions fromX to Y; they are
called thesubactionsof α. An update choicefor an atomA is a subaction of the update
actionUpdateA. An update choice need not be executable; that is, an update choice may
be enabled in some states but not in others. We add fairness constraints to modules by
declaring a set of weakly-fair update choices and a set of strongly-fair update choices for
each atom.

Definition 10[Fair modules]. A fair moduleP consists of a modulesafe(P) together with
two fairness constraints. Theweak-fairness constraint wfP is a function that maps every



42 ALUR AND HENZINGER

atomA of safe(P) to a finite set of update choices forA, which are called theweakly-fair
update choices forA. Thestrong-fairness constraint sfP is a function that maps every atom
A of safe(P) to a finite set of update choices forA, which are called thestrongly-fairupdate
choices forA.

For a fair moduleP, we refer to parts of the underlying modulesafe(P)—such as
variables, atoms, etc.—as parts ofP. The fair moduleP is weakly fairif for every atomA
of P, the setsfP(A) of strongly-fair update choices is empty. The fair moduleP is trivially
fair if for every atomA of P, both setswfP(A) andsfP(A) of update choices are empty.

The fairness constraints of the fair moduleP classify theω-trajectories of the underlying
modulesafe(P) into fair and unfair. Intuitively, a weakly-fair update choice cannot be
enabled forever without being chosen, and a strongly-fair update choice cannot be enabled
infinitely often without being chosen.

Consider an update choiceα for the atom A, and an infinite sequences of states.
The update choiceα is enabledat position i ≥ 0 of s if there is a statet such that
(si [readXA] ∪ s′i+1[waitX′A], t ′[ctrX′A])∈α. The update choiceα ischosenat positioni ≥ 0
of s if (si [readXA] ∪ s′i+1[waitX′A], s′i+1[ctrX′A])∈α. The state sequences is weakly fairto
the update choiceα if eitherα is not enabled at infinitely many positions ofs, orα is chosen
at infinitely many positions ofs. The state sequences is strongly fairto the update choiceα
if eitherα is enabled at only finitely many positions ofs, or α is chosen at infinitely many
positions ofs. A fair trajectory of the fair moduleP is anω-trajectorys of the module
safe(P) such that for every atomA of P, the state sequences is weakly fair to all update
choices inwfP(A) and strongly fair to all update choices insfP(A). If s is a fair trajectory
ofP, then the corresponding infinite sequences[obsXP ] of observations is afair traceofP.

Example. Consider the fair moduleFair shown in figure 14. In every update round, if the
external eventx is present, then the module issues, nondeterministically, either the interface
eventy or the interface eventz. The update choiceα consists of all pairs(s, t) of states
such thats[x] 6= t [x] and s[y] 6= t [y], and the update choiceβ consists of all pairs(s, t)
such thats[x] 6= t [x] and s[z] 6= t [z]. The weak-fairness assumption forα ensures that in
every fair trace, if, after some round,x is present in every round, theny is issued infinitely
often. The strong-fairness assumption forβ ensures that in every fair trace, ifx is present
in infinitely many rounds, thenz is issued infinitely often.

Figure 14. Weak and strong fairness.
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The fairness constraints of a fair module can be translated intoω-acceptance conditions on
the underlying state-transition graph—weak-fairness constraints into B¨uchi conditions, and
strong-fairness constraints into Streett conditions. However, whileω-acceptance conditions
are usually defined using sets of states, a direct translation of the fairness constraints on
modules leads toω-acceptance conditions that are defined using sets of transitions. This is
because whether an update choice is enabled or chosen may depend on both the latched and
the updated values of variables.

Definition 11[Fair implementation]. The fair moduleP fairly implementsthe fair mod-
uleQ, writtenP ¹F Q, if the first three conditions of Definition 3 are met, and (4) ifs is a
fair trace ofP, then the projections[obsXQ] is a fair trace ofQ.

It is easy to check that the fair-implementation relation¹F is a preorder on fair modules.

Machine closure. Every finite trajectory of a fair moduleP can be extended to a fair
trajectory ofP. This property of a reactive system is calledmachine closure[1].

Proposition 10. If P is a fair module, andā is a finite trace ofP, thenā is a finite prefix
of some fair trace ofP.

It follows that the set of fair trajectories of a fair module is always nonempty. Moreover, in
verification, machine closure is important for two reasons. First, as we will see in the next
section, machine closure facilitates an assume-guarantee principle for fair implementation.
Second, the fairness constraints of a machine-closed system can be ignored when reasoning
about safety requirements of the system. Both are because for machine-closed systems, fair
implementation implies implementation.

Proposition 11. LetP andQbe two fair modules. ThenP ¹F Q implies safe(P)¹ safe(Q).
If Q is trivially fair , then safe(P)¹ safe(Q) impliesP ¹F Q.

Proof: The first part of the proposition follows from the machine closure of fair modules
(Proposition 10); the second part follows from the limit closure of trivially-fair modules
(first part of Proposition 9). 2

Thus, in order to show that a fair moduleP fairly implements a trivially-fair moduleQ,
which represents a safety requirement ofP, it is sufficient and necessary to show that
safe(P) implementssafe(Q).

Receptiveness.Proposition 10 can be strengthened: in order to extend a finite trajectory
to a fair trajectory, the module does not need the cooperation of the environment. Given a
fair moduleP, consider a finite trajectorys0, . . . , sn of the underlying modulesafe(P), and
an infinite sequencete

n+1, t
e
n+2, t

e
n+3, . . . of valuations for the external variables ofP. Then,

there is a fair trajectoryu of P such that for all 0≤ i ≤ n, we haveui = si , and for alli > n,
we haveui [extlXP ]= ti . In fact, even in a stepwise game between module and environment,
no matter how the environment plays, the module always has a strategy to produce a fair
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trajectory. This property of a reactive system is calledreceptiveness[11]. In a formalism
that builds compound systems from atomic systems, in order to prove that all compound
systems are machine-closed, it suffices to prove that all atomic systems are receptive. Since
fair modules will be closed under composition—that is, the parallel composition of two
fair modules is again a fair module—there is no need to formally define and establish the
receptiveness of fair modules.

7.3. Operations on fair modules

The operations of renaming, composition, and hiding extend to fair modules in the obvious
way. For a fair moduleP, and two variablesx andy of the same type withy 6∈ XP , the fair
moduleP[x := y] results fromP by renamingx to y. The requirement of compatibility for
fair modules is the same as for unfair modules. For two compatible fair modulesP andQ,
safe(P ‖Q)= safe(P) ‖ safe(Q), for every atomA of P, we havewfP‖Q(A)=wfP(A)
andsfP‖Q(A)= sfP(A), and for every atomA of Q, we havewfP‖Q(A)=wfQ(A) and
sfP‖Q(A)= sfQ(A). For a fair moduleP and an interface variablex of P, the fair module
hide x in P results by movingx from intf XP to privXP .

Example. In asynchronous shared-memory programs, progress can be ensured by weak-
fairness constraints. Recall Peterson’s solution to the mutual-exclusion problem from figure 2.
Figure 15 adds weak-fairness assumptions to the first process of the protocol; the second
fair process is defined similarly, by the weakly-fair moduleFairP2. The weak-fairness as-
sumption for, say, the update choiceβ ensures that in every fair trace, it cannot happen that
the first process remains in its critical section forever. For the unfair moduleP1 ‖ P2, we can
prove mutual exclusion: in every trace, it cannot happen that both processes are simultane-
ously in their respective critical sections. For the weakly-fair moduleFairP1 ‖FairP2, we
can, in addition, prove starvation freedom: in every fair trace, if a process requests to enter
its critical section, then eventually it will be in its critical section (some unfairω-traces do
not satisfy this requirement).

Figure 15. Fair mutual-exclusion protocol.
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The three operations of renaming, composition, and hiding for fair modules are compo-
sitional with respect to fair implementation. For parallel composition, this follows from the
analogue of Proposition 3: for two compatible fair modulesP andQ, an infinite sequence
a of observations of the compound moduleP ‖Q is a fair trace ofP ‖Q iff the projection
a[obsXP ] is a fair trace ofP and the projectiona[obsXQ] is a fair trace ofQ.

Proposition 12. LetP,Q, andR be three fair modules such thatP andR are compatible.
Then(1) P ‖R¹F P, and(2) P ¹F Q impliesP ‖R¹F Q ‖R.

Proposition 13. For all fair modulesP andQ, and every interface variable x ofQ, we
have(1) Q¹F (hide x in Q), and(2) if P ¹F Q, then(hide x in P)¹F (hide x in Q).

Assume-guarantee reasoning.Recall the assume-guarantee principle for unfair modules
from Proposition 5. Suppose that bothP1 ‖Q2¹F Q1 andQ1 ‖P2¹F Q2. From this, we
can conclude that everyω-trace ofsafe(P1) ‖ safe(P2) is anω-trace ofsafe(Q1) ‖ safe(Q2).
However, we cannot conclude that every fair trace ofP1 ‖P2 is a fair trace ofQ1 ‖Q2.
Figure 16 shows a counterexample, for the special case that bothP1 andP2 are trivially
fair: while P1 ‖Q2 guarantees that infinitely oftenx= 1, andQ1 ‖P2 guarantees that
infinitely ofteny= 1, the moduleP1 ‖P2 guarantees neither. The circularity in the fairness
constraints needs to be broken, which leads to a somewhat weaker form of assume-guarantee
principle in the presence of fairness [4]. For a fair moduleP, let unfair(P) be the trivially-
fair moduleQ with safe(Q)= safe(P); that is,unfair(P) is obtained fromP by discarding
the fairness constraints.

Proposition 14. LetP1 andP2 be two compatible fair modules, and letQ1 andQ2 be two
compatible fair modules such that every external variable ofQ1 ‖Q2 is an observable vari-
able ofP1 ‖P2. If P1 ‖Q2¹F Q1 and unfair(Q1) ‖P2¹F Q2, thenP1 ‖P2¹F Q1 ‖Q2.

Figure 16. Counterexample to naive assume-guarantee principle for fair modules.
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Proof: Consider four fair modulesP1, P2, Q1, andQ2 such that (1)P1 andP2 are
compatible, (2)Q1 andQ2 are compatible, (3) every external variable ofQ1 ‖Q2 is an
observable variable ofP1 ‖P2, (4) P1 ‖Q2¹F Q1, and (5)unfair(Q1) ‖P2¹F Q2. We
wish to establish thatP1 ‖P2¹F Q1 ‖Q2. From assumptions (4) and (5), by the first part
of Proposition 11 it follows thatsafe(P1) ‖ safe(Q2)¹ safe(Q1) andsafe(Q1) ‖ safe(P2)¹
safe(Q2). From this and assumptions (1)–(3), by the assume-guarantee principle for unfair
modules (Proposition 5) it follows thatsafe(P1) ‖ safe(P2)¹ safe(Q1) ‖ safe(Q2). This im-
plies the first three conditions of the definition of fair implementation. Hence it remains to
be shown that every fair trace ofP1 ‖P2 is also a fair trace ofQ1 ‖Q2 (for simplicity, we
omit the explicit use of projections).

Let a be a fair trace ofP1 ‖P2, and therefore of bothP1 andP2. Since every trace
of safe(P1) ‖ safe(P2) is a trace ofsafe(Q1) ‖ safe(Q2), by the first part of Proposition 9
it follows that a is anω-trace ofsafe(Q1) ‖ safe(Q2), and therefore ofsafe(Q1). For a
trivially-fair moduleR, the fair traces coincide with theω-traces of the underlying module
safe(R). Hence,a is a fair trace ofunfair(Q1). Sincea is also a fair trace ofP2, it follows
thata is a fair trace ofunfair(Q1) ‖P2, and by assumption (5), a fair trace ofQ2. Sincea
is also a fair trace ofP1, it follows thata is a fair trace ofP1 ‖Q2, and by assumption (4),
a fair trace ofQ1. Sincea is a fair trace of bothQ1 andQ1, we conclude thata is a fair
trace ofQ1 ‖Q2. 2

Round abstraction vs. fairness.The abstraction operatornext is closely related to weak
fairness. For instance, while not allω-traces of the moduleP1 ‖ P2 from figure 2 satisfy
starvation freedom, allω-traces of the stutter reductionnext (P1 ‖ P2) do. Indeed, the
modulenext (P1 ‖ P2) satisfies the stronger requirement ofboundedstarvation freedom: if
a process requests to enter its critical section, then it will be in its critical section within
four rounds.

8. Concluding Remarks

We have presented a unified, modular, and hierarchical framework for describing syn-
chronous and asynchronous reactive computation. The uniformity, modularity, and hierar-
chy of reactive modules can be exploited in computer-aided verification.

The efficiency of current verification tools often depends on the specific synchrony as-
sumption supported by the underlying model. For instance, hardware description languages
(like VHDL) assume synchronous progress, and BDD-based model checking is successful
in this domain. On the other hand, many protocol description languages (like PROMELA

[17]) assume asynchronous interleaving, and the most effective verification strategy is ex-
plicit on-the-fly search with reduction techniques based on partial orders and symmetries.
Finally, the verification tools for synchronous programming languages (like ESTEREL[8])
can afford to construct global state-transition graphs, because much of the complexity is
hidden by the fact that a single transition involves several subtransitions between transient
states.

While both synchrony and asynchrony can be forced, in one way or another, into most con-
currency models, this often comes at the cost of inefficiencies in verification. For example,
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the use of stutter transitions in synchronous models to represent asynchronous progress
increases the number of transitions exponentially over an asynchronous model [19]. Or, the
introduction of synchronization points into asynchronous models restricts the applicability
of efficient search methods in verification [17]. By contrast, our uniform framework allows
us to separate intrinsic truths and complexities about verification methods from accidental
and model-dependent idiosyncrasies.

In addition, our framework supports modular proof principles, such as assume-guarantee
reasoning, and hierarchical verification, based on built-in abstraction operators such as
next. This allows us to decompose a verification task into subtasks with smaller state
spaces. Module-based case studies that exploit assume-guarantee reasoning can be found
in [15]; case studies that expoit round abstraction, in [5]. A verification tool, called MOCHA,
whose system description language is based on reactive modules, is currently being imple-
mented [6].
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Notes

1. If s is a state andx is a variable in the domain ofs, we writes[x] for the value assigned bys to x.
2. Given a valuations for the setX of variables, and a subsetY of X, we writes[Y] for the projection ofs to the

variables inY. If s is a valuation for a setX of unprimed variables, thens′ denotes the valuation for the setX′
of corresponding primed variables such thats′ assigns to each variablex′ the values[x]. Given two disjoint
setsX andY of variables, ifs is a valuation forX andt is a valuation forY, thens∪ t denotes the combined
valuation forX ∪Y.
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