';:‘ Formal Methods in System Design 15, 7-48 (1999)

(© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Reactive Moduleg

RAJEEV ALUR alur@cis.upenn.edu
University of Pennsylvania and Bell Laboratories, Department of Computer and Information Science,
Philadelphia, PA 19104

THOMAS A. HENZINGER tah@eecs.berkeley.edu
University of California at Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley,
CA 94720-1770

Abstract. We present a formal model for concurrent systems. The model represents synchronous and asyn-
chronous components in a uniform framework that supports compositional (assume-guarantee) and hierarchical
(stepwise-refinement) design and verification. While synchronous models are based on a notion of atomic compu-
tation step, and asynchronous models remove that notion by introducing stuttering, our model is based on a flexible
notion of what constitutes a computation step: by applying an abstraction operator to a system, arbitrarily many
consecutive steps can be collapsed into a single step. The abstraction operator, which may turn an asynchronous
system into a synchronous one, allows us to describe systems at various levels of temporal detail. For describing
systems at various levels of spatial detail, we use a hiding operator that may turn a synchronous system into
an asynchronous one. We illustrate the model with diverse examples from synchronous circuits, asynchronous
shared-memory programs, and synchronous message-passing protocols.

Keywords: modeling of reactive systems, formal verification, compositionality, concurrency modeling,
synchrony and asynchrony, assume-guarantee reasoning, temporal abstraction

1. Introduction

We introduce a new formal model for reactive computation. Our target application is
hardware-software codesign and verification. This application requires (1) an ability to de-
scribe and compose modules with different synchrony assumptions, (2) an ability to describe
and compose modules at different levels of abstraction, and (3) an ability to decompose
verification tasks into subtasks of lower complexity. Our model formalizes heterogeneous
systems that are built from synchronous and asynchronous hardware and software compo-
nents, and provides assume-guarantee and abstraction principles for reasoning about such
systems. The salient features of our modelsoalability along both the space and time

axes, andnterdefinabilityof synchronous and asynchronous behavior.

Scalability. Scalability along the space axis means that spatial implementation details
of a module, such as internal variables and wires, can be hidden from outside observers.
Scalability along the time axis means that temporal implementation details, such as internal
computation steps and delays, can be hidden from outside observers.

*A preliminary version of this paper appeared in fReceedings of the 11th IEEE Symposium on Logic in
Computer Scienc@.ICS), pp. 207-218, 1996.

8 ALUR AND HENZINGER

Example A 64-bitadder can be implemented either by using two 32-bit adders in parallel,
or by using a single 32-bit adder twice for each 64-bit addition, first for the lower-order
bits and then for the higher-order bits. The first implementation decomposes the 64-bit
adder spatially, by splitting it into two components; the second implementation decom-
poses the 64-bit adder temporally, by splitting each computation step into two micro-steps.
Both implementations are presented in Section 5. More generally, spatial scaling provides
components at different levels of detail, such as gates, ALUs, and processors; and temporal
scaling provides computation steps at different levels of detail, such as gate operations,
arithmetic operations, and processor instructions.

While spatial scalability is a standard feature of concurrency models, the concept of
temporal scalability is inspired by the notion of multiform time in synchronous program-
ming languages [14], and by the notion of action refinement in process algebras [26]. In
verification, temporal scaling is usually performed in an informal, manual manner under
the umbrella buzzword of “abstraction.” We introduce temporal scaling as a modeling
primitive, callednext, that supports the formal construction and the automatic analysis of
temporal abstractions. P is a module, an& is an output variable oP, then the more
abstract moduleQ = (next x for P) combines as many computation stepsPofnto a
single computation step @ as are required to change the output~or example, ifP is
a gate-level description of a processor, and the togglinggi§nals the completion of an
instruction, therQ is an instruction-level description of the processor.

Interdefinability. In fully synchronous behavior, concurrent modules proceed in lock-step
and respond to mutual inputs by simultaneous outputs. In fully asynchronous behavior, con-
current modules proceed by interleaving and respond to inputs by eventual outputs. Interde-
finability means that after hiding spatial information, a collection of synchronous modules
can appear asynchronous to outside observers; and after hiding temporal information, a
collection of asynchronous modules can appear synchronous.

Example Consider a transducer that accepts integers as input and computes the corre-
sponding squares as output. Atan abstract level, the transducer may proceed synchronously,
in discrete rounds, accepting one integer per round and computing one square per round;
or it may proceed asynchronously, accepting a stream of integers and computing an arbi-
trarily delayed stream of squares. The (a)synchrony of the abstract transducer, however, is
independent of whether a concrete implementation of the transducer employs synchronous
modules or asynchronous modules or both. For example, a distributed asynchronous trans-
ducer can be implemented using synchronous communication on hidden channels; and a
synchronous transducer can be implemented using delay-insensitive circuitry whose inter-
nal computation steps and delays are hidden.

Overview. The paper defines the formalism of reactive modules. Definitions are usually
preceded by motivating thoughts, and succeeded by illustrative examples as well as pro-
perties that ensure the soundness of the definitions. The bulk of the paper discusses safety
aspects of reactive modules. Fair reactive modules are defined in Section 7.

REACTIVE MODULES 9

2. Definition of reactive modules

A discrete reactive system is a collection of variables that, over time, change their values
in a sequence of rounds. We model discrete reactive systems that may interact with each
other by mathematical objects that are catieactive modulegor modulesfor short).

Variables vs. events. A moduleP has afinite set of typed variables, denokgd A stateof
P is a valuation for the variables ip. Events, such as clock ticks, are modeled by toggling
boolean variables. For example, the event that is represented by the boolean viakable
occurs whenever the module proceeds from a staie state such thas[tick] # t[tick].*

System vs. environment.The moduleP represents a system that interacts with an envi-
ronment. Some of the variablesXp are updated by the system, and the other variables in
Xp are updated by the environment. Hence, theXgeis partitioned into two sets: the set
ctrXp of controlled variablesand the seéxtl Xp of external variables

States vs. observationsNot all controlled variables of the module are visible to the
environment. Hence, the setr Xp is partitioned further into two sets: the s@ivXp of
private variablesand the seintf Xp of interface variablesThe interface variables and the
external variables are visible to the environment, and therefore aabieervable The set

of observable variables d&? is denotedbsX. An observatiorof P is a valuation for the
variables inobsX. The various classes of module variables and their relationships are
summarized in Table 1. The distinction between private, interface, and external variables is
similar to the distinction between internal, output, and input events in the formalism of I/O
automata [21].

Asynchrony vs. synchrony. During the execution of the module the variables inXp
change their values in a sequence of rounds. Various models of reactivity propose different
ways in which the variables are updated in a single round.

Pure asynchrony(interleaving [10, 17, 20, 22]): Either the system performs an update, or
the environment performs an update. Interleaving models usually distinguish only be-
tween private variables, which can be updated by the system alone, and shared variables,
which can be updated by both the system and the environment. This is a natural style
for modeling asynchronous communication via a shared memory.

Table 1 Module variables.

privXp ’ intf Xp extlXp

ctrXp

’ obsXp
Xp

10 ALUR AND HENZINGER

Observable asynchronfl/O automata [21]): Either the system updates the controlled vari-
ables, orthe environment updates the external variables and the system updates the private
variables in response. This is a natural style for modeling asynchronous communication
via events or messages.

Atomic synchrony(Mealy machines [18, 23]; € rendezvous [16, 24]): The system and
the environment simultaneously update variables in an interdependent fashion. This is
a natural style for modeling synchronous communication via events or messages.

Nonatomic synchronysynchronous programming languages [7-9, 14]): Each round
(macro-step) consists of several subrounds (micro-steps), and the system and the en-
vironment take turns in executing micro-steps to update variables. This is a natural style
for modeling when a computation of arbitrary duration can be synchronized with a single
event.

The first two options lead to nonblocking communication, as the system puts no con-
straints on what the environment can do, nor on the speed at which the environment performs
its updates. Nonblocking communication supports compositional reasoning with respect to
a trace semantics. However, the inherently asynchronous nature of the communication
in these two options render them unsatisfactory for modeling intrinsically synchronous
systems such as hardware. The third option leads to the possibility of deadlocks in commu-
nication, and the fourth option may lead to the possibility of nonterminating computation
within a single round. Both prospects raise difficulties for achieving a compositional trace
semantics.

We use the power of nonatomic synchrony, but restrict it to ensure nonblocking commu-
nication. First, each variable is updated in exactly one subround of each round. Second,
the controlled variables of a module are partitioned into groups cattads and the vari-
ables within a group are updated simultaneously, in the same subround. Third, the atoms
are partially ordered. If atonA precedes atorB in the partial order, then in each round,
the A-subround must precede thigsubround, and the updated values of the variables
controlled byB may depend on the updated values of the variables controlled by

Our approach is related to recent compilers for synchronous languages, suatERELE
[8], which perform compile-time safety checks to reject programs that may lead at run-time
to nonterminating computations with a round. However, whBgHERELis a programming
language for reactive systems, reactive modules is a modeling language. This has led us
to many choices different from synchronous languages. For example, reactive modules
support both explicit state and nondeterminism, which is convenient for describing high-
level or incomplete designs, and can be used for modeling asynchronous processes that
proceed at independent speeds. The envisioned scenario is the one in which a variety of
different programming languages are translated into reactive modules, and verification is
then performed on the resulting modules.

Latched vs. updated valueslin each round, every variablehas two values. The value of

x at the beginning of the round is called ta&ched valueand the value of at the end of the
round is called thepdated valueWe use unprimed symbols, suchxago refer to latched
values, and primed symbols, suctxago refer to the corresponding updated values. Given
a setX of unprimed symbols, we writX’ for the set of corresponding primed symbols.

REACTIVE MODULES 11

Initial vs. update actions. The moduleP proceeds in a sequence of rounds. The first round
is aninitialization round during which the variables iXp are initialized. Each subsequent
round is arupdate roungdduring which the variables iXp are updated. The initialization
and updating of variables are specified by actions. Given two)etsdY of variables,
anactionfrom X to Y is a binary relation between the valuations ¥0and the valuations
for Y. The action from X to Y is executablef for every valuations for X, the number

of valuationst for Y with (s,t) € « is nonzero and finite. Executable actions are enabled
in all states and ensure finitely branching nondeterminism.

Atoms vs. modules. The controlled variables of a modul are partitioned into atoms;

that is, every controlled variable &f is controlled by one and only one atom Bf The
initialization round and all update rounds consist of several subrounds, one for the envi-
ronment and one for each atom. For each afann the A-subround of the initialization
round, all variables controlled b# are initialized simultaneously, as defined by an initial
action. In theA-subround of each update round, all variables controlledlaye updated
simultaneously, as defined by an update action.

Definition 1[Atom. Let X be a finite set of typed variables. Af-atom Aconsists of
a declaration and a body. The atom declaration consists of@rsét C X of controlled
variables a setread Xa C X of read variables and a setvait X, C X\ctrX of awaited
variables The atom body consists of an executaipigial action Inity from waitX), to

ctrX’, and an executablepdate action Updatefrom read Xa U wait X/, to ctrX/,.

In the initialization round, the initial action of the atofassigns initial values to the
controlled variables as a nondeterministic function of the initial values of the awaited
variables. In each update round, the update actior afssigns updated values to the
controlled variables as a nondeterministic function of the latched values of the read variables
and the updated values of the awaited variables. Hence, in each rouddsth®ound can
take place only after all awaited variables have already been updated. The vaaaidés
the variablex, writteny >4 X, if y € ctrX, andx € waitX,. Now, we can define reactive
modules.

Definition 2[Moduld. A (reactive module Pconsists of a declaration and a body. The
module declaration is a finite s&tp of typed variables that is partitioned as shown in
Table 1. The module body is a sép of Xp-atoms such that (](UAeAP ctrXa) =ctrXp;

(2) for all atomsA and B in Ap, ctrXaNctrXg=#¢; and (3) the transitive closure
>p = Upca, =a) T is asymmetric.

The first two conditions ensure that the atomsPotontrol precisely the variables in
ctrXp, and that each variable ictr Xp is controlled by precisely one atom. The third
condition ensures that the await dependencies among the variab¥esare acyclic. A
linear orderAy, ..., Ax_1 of the atoms in4p is consistentf for all 0 <i < j <Kk, the
awaited variables ofy; are disjoint from the controlled variables &f. The asymmetry of
>p ensures that there exists a consistent order of the atoss.in

12 ALUR AND HENZINGER

Module execution. When executing the module, in each round, first the external vari-
ables are assigned arbitrary values of the correct types, and then the atotpsaire
executed in an arbitrary consistent ordy, ..., Ax_1. Specifically, in the initialization
round, after the external variables have been initialized, the initial actidg & followed

by the initial action ofA; etc.; and in each update round, after the external variables have
been updated, the update actionffis followed by the update action @; etc. In this
manner, all awaited values are available when they are needed during the execution, and
thus every round can be completedin 1 subrounds—one subround for the environment
followed by one subround for each atom. Moreover, all nondeterminism in the completion
of around is caused by the nondeterminism of the environment and by the nondeterminism
of individual atoms, not by the order of the atoms.

3. Examples of reactive modules

The syntax we use for specifying modules will be comprehensible once a few conventions
are explained. Variable declarations are indicated by keywords suelvaits, for the
awaited variables of an atom, private, for the private variables of a module. The initial

and update actions of atoms are specified by the keywoidsind update, followed by
nondeterministic guarded commands. The combined keywiitrdipdate indicates that

the guarded command that follows specifies both the initial and update actions. If several
guards of a guarded command are true, then one of the corresponding assignments is chosen
nondeterministically; if none of the guards are true, then all controlled variables obtain their
default values. In the initialization round, the default initial value of a variable is chosen
nondeterministically (this is legal only if the variable has finite type). In each update round,
the default updated value of a variable is equal to the latched value of the variable (i.e., the
value of the variable stays unchanged). The default values are also invoked if a controlled
variable does not appear on the left-hand side of an assignment, or if the initial command
is omitted altogether.

3.1. Synchronous circuits

Synchronous circuits are built from logic gates and memory cells that are driven by a
sequence of clock ticks. Each logic gate computes a boolean value once per clock cycle,
and each memory cell stores a boolean value from one clock cycle to the next. We model
each logic gate and each memory cell as a reactive module so that every update round
represents a clock cycle. All sequential circuits can be constructed from the building blocks
shown in figure 1.

The moduleNot models a synchronousoT gate, which takes a boolean input and
produces a boolean output. The input is modeled as an external vangtdecause it is
modified by the environment and visible to the gate. The output is modeled as an interface
variable, out, because it is modified by the gate and visible to the environment. In the
initialization round, thevoT gate waits for the input value to be initialized before computing
the initial output value, by negating the initial input value. In each update roundicthe

REACTIVE MODULES 13

module Not
external in: B
interface out: B
atom out awaits in
init update
[m'=0 — out':=1
[in"=1 — out’':=0

module And

external ing,ing: B

interface out: B

atom out awaits ing, ing

init update

[inf=0 — out':=0
| iny=0 — out':=0
[mi=1Aint=1 — out':=1

module Latch
external set, reset: B
interface out: B
private state : B
atom out reads state
update
| true — out':= state
atom state awaits set, reset, out
init update
| set’ =0 A reset =0 — state' := out’
| set' =1 — state’ :=1
| reset’ =1 — state’ :=0

Figure L SynchronousiOT gate, AND gate, and latch.

gate waits for the input value to be updated before computing the next output value, by
negating the updated input value.

The moduleAnd models a synchronous\Dd gate that produces the boolean output
as a function of the two boolean inputg andin,. In each round, the interface variable
outis initialized or updated after both external variabilgsandin, have been initialized or
updated.

The synchronous latchatch takes the two boolean inpusetandreset produces the
boolean outpubut, and maintains the private lsitate In each update round, the latch copies
its state to the interface varialbet, without waiting for the updated values of the external

14 ALUR AND HENZINGER

variables. In a later subround, after both external variables have been updated, the latch
updates its state: if both updated external variables are lowsthésstays unchanged; if

only setis high, therstategoes to 1; if onlyresetis high, thenstategoes to O; if both are

high, therstategoes to an arbitrary value. In the initialization round, the output of the latch

is arbitrary, and the state of the latch is initialized after both inputs have been initialized. If
both inputs are initially low, then the initial state of the latch is arbitrary, but equal to the
initial output.

History-free variables in verification. Given a moduléP, a variablex of P is history-free

if x is not read by any atom d?. Then, the update commands®fcan refer only to the
updated value’ and not to the latched value In synchronous circuits, all variables that
represent wires are history-free. Specifically, all variables of figure 1 except for the latch
state,state are history-free. In each round, the possible updated values of a history-free
variablex depend only on the latched values of variables that are not history-free, and on the
updated values of variables other thanin this way, history-free variables are analogous

to the combinational variables of hardware description languages, the selection variables
of CosPAN [18], and the pointwise functions of dataflow languages. Hence, during the
verification of a module by explicit search through the state space, the values of history-free
variables can be omitted from the search stack. Similarly, during the symbolic verification
of a module, the history-free variables can be eliminated using existential quantification in
each image-computation step.

3.2. Asynchronous shared-memory programs

As an example of a concurrent program consisting of processes that communicate through
read-shared variables, we consider a mutual-exclusion protocol, which ensures that no two
processes simultaneously access a common resource. The mBdalesP, of figure 2

model the two processes of Peterson’s solution to the mutual-exclusion problem for shared
variables. Each proce$3 has a program count@g and a flagx;, both of which can be
observed by the other process. The program counter indicates whether a processis outside its
critical section pG = outC3, requesting the critical sectiop§ = reqC3, or occupying the

critical section pG =inCS. In each update round, a process looks at the latched values of
all variables and, nondeterministically, either updates its controlled variables or sleeps (i.e.,
leaves the controlled variables unchanged), without waiting to see what the other process
does. Note that each process may sleep for arbitrarily many rounds: nondeterminism is used
to ensure that there is no relationship between the execution speeds of the two processes.

Interleaving. Unlike in interleaving models, both processes may modify their variables

in the same round. While Peterson’s protocol ensures mutual exclusion even under these
weaker conditions, if one were to insist on the interleaving assumption, one would add a

third module that, in each update round, nondeterministically schedules either or none of

the two processes. The modeling of interleaving by a scheduler module introduces only

history-free variables, and thus, does not increase the search space during verification.
Alternatively, one could describe the complete protocol as a single module containing a

REACTIVE MODULES 15

module P;
interface pc, : {outCS, reqCS, inCS}; z1: B
external pc,: {outCS, reqCS, inCS}; z5: B
atom pc;,zy reads pey, pey, 21, T2
init
| true — pcf:= outCS
update
| pcq = outCS — pcl := reqCS; 2} =z,
[pcq = regCS A (pey = outCS V z1 # x3) — pcf = inCS
| pey = inCS — pc) = outCS
| true —

module P,
interface pc,: {outCS, reqCS, inCS}; z3: B
external peq: {outCS, reqCS, inCS}; 21: B
atom pc,, 23 reads pey, pey, 1, 22
init
| true — pcly = outCS
update
| pe, = outCS — pcjy := reqCS; zhy 1= 2y
| pcy = regCS A (pcy = outCS V z1 = z2) — pch = inCS
| pe, =nCS — pcfy:= outCS
| true —

Figure 2 Asynchronous mutual-exclusion protocol.

single atom whose update action is the union of the update actions of the atoms of figure 2.
The guarded command that specifies a union of actions consists simply of the union of

all guarded assignments of the individual actions. This style of describing asynchronous

programs as an unstructured collection of guarded assignments is pursued in formalisms
such as Wity [10] and MURg@ [12].

Write-shared variables. The original formulation of Peterson’s protocol uses a single
write-shared boolean variabke whose value always corresponds to the value of the pred-
icate x; =X, in our formulation. If one were to insist on modelingas a write-shared
variable, one would add a third module with the interface variatded awaited external
variables such aB;_setsx_to_0, which is a boolean interface variable of thib process

that indicates when the process wants toxsét 0. Since all of these variables with the
exception ofx are history-free, the modeling does not increase the search space during
verification. This style of describing write-shared memory makes explicit what happens
when several processes write simultaneously to the same location.

16 ALUR AND HENZINGER

module Sender
external ready: E
interface transmit: E; msgg, msgp: M
private pc: {produce, send}; donep: E
atom pe, transmit, msgg reads pc, transmit, msgg, donep, msgp, ready awaits donep, ready
init
| true — pc':= produce
update
| pc = produce A donep? — pc’:= send
| pc=send A ready? — transmit!; msg'y := msgp; pc’ := produce
AProd : atom donep, msgp reads pc, donep, msgp

update
| pc = produce — donep!; msgp :=M
1 true —

module Receiver
external transmit: &; msgg: M
interface ready: E; msg.: M
private pc: {receive, consume}; donec: E; msgp: M
atom pc, msgg reads pe, transmit, donec awaits transmit, msgg, donec

init
| true — pe’ = receive
update
| pc = receive A transmit? — msgp 1= msgy; pc’ = consume
| pc = consume A donec? — pc’ := receive
atom ready reads pc, ready
update
| pc = receive — ready!
| true —
ACons : atom donec, msgo reads pe, donec, msgp
update

| pc= consume — donec; msgp := msgp
[true —

Figure 3 Synchronous message-passing protocol.

3.3. Synchronous message-passing protocols

The modulessendetandReceiverof figure 3 communicate via events in order to transmit
a stream of messages. We writeE to declarex to be a boolean variable that is used
for modeling events. To issue an event represented ke writex!, which stands for the
assignmenk’ ;= —x. To check if an event represented:bys present, we write?, which
stands for the predicate £ x.

The private variablpcof the sender indicates if itis producing a messame-£ producse),
or attempting to send amessage £ send. The private variablpcof the receiverindicates
if itis waiting to receive a messagp¢= receive, or consuming a messagaq= consumg
Messages are produced by the atBRrod, which requires an unknown number of rounds

REACTIVE MODULES 17

to produce a message. Once a message is produced, thedewentis issued, and the
message is shown assg (the actual value of message is chosen nondeterministically
from the finite typeMl). Once a message has been produced, the sender is ready to send
the message, amtis updated. When ready to send a message, the sender sleeps until the
receiver becomes ready to receive, and when ready to receive a message, the receiver sleeps
until the sender transmits a message.

The synchronization of both agents is achieved by two-way handshaking in three sub-
rounds within a single update round. The first subround belongs to the receiver. If the receiver
is ready to receive a message, it issues the interface eaayto signal its readiness to
the sender. The second subround belongs to the sender. If the sender sees the external event
readyand is ready to send a message, itissues the interfacetemesmitto signal a trans-
mission. The third subround belongs to the receiver. If the receiver sees the external event
transmit it copies the message from the external variaide; to the private variablensg.
The sender goes on to wait for the production of another message, and the receiver goes on
to consumensg;. Messages are consumed by the a®@ons, which requires an unknown
number of rounds to consume a message. Once a message is consumed, theneyént
issued, the consumed message is shownsag, and the receiver waits to receive another
message.

Event variables in verification. Like history-free variables, event variables are also used
only for interaction within a round, and their actual values at the beginning of a round are
immaterial. In a sense, the values of event variables behave like labels on the transitions
of a state-transition graph, unlike the values of other variables, which behave like labels
on the states. Consequently, during explicit verification, the values of event variables can
be omitted from the search stack, and during symbolic verification, event variables can be
eliminated using existential quantification.

4. Semantics of reactive modules

The execution of a module results in a trace of observations. Reactive modules are related
viaatrace semantics: roughly speaking, one modutementgor refineg another module

if all possible traces of the former, more detailed module are also possible traces of the latter,
more abstract module.

4.1. The trace language of a module

Let P be a reactive module. As indicated earlier, a statP of a valuation for the seXp
of module variables. We writEp for the set of states d?.

A states of the moduleP is initial if it can be obtained by executing all initial actions of
P in a consistent order: for each atoe Ap, (S[waitX,], S[ctrX/]) € Inita.?2 We write
Initp for the set of initial states of the module. The setinitp is nonempty. In fact, for
every valuatiors® for the external variables d?, there is a nonzero but finite number of
initial statess with s[extIXp] =s®. This is because all initial actions are executable.

18 ALUR AND HENZINGER

For two states andt of P, the state is asuccessopof s, writtens—p t, if t can be
obtained froms by executing all update actions &fin a consistent order: for each atom
Ae Ap, (sfread Xa] Ut'[waitX}], t'[ctrX}]) € Update,. The binary relation-p over the
state spac&p is called theransition relationof the moduleP. The transition relatior>p
is serial (i.e., every state has at least one successor). In fact, for every stdRe and for
every valuatiort® for the external variables @, there is a nonzero and finite number of
stateg with s —p t andt[extIXp] =t&. Thisis because all update actions are executable. In
other words, a module does not constrain the behavior of the external variables and interacts
with its environment in a nonblocking way.

In this way, the moduld® defines a state-transition graph with the state spagethe
initial stateslnitp, and the transition relation>p. The initialized paths of this graph are
called the trajectories of the module: trajectory of P is a finite sequencey, ..., S,
of states ofP such that (1) the first stat® is initial and (2) for all O<i < n, the state
S.1is a successor . A states of P is reachablef there is a trajectory oP whose last
stateis. If S=5, ..., Syis atrajectory ofP, then the corresponding sequespabs X] =
so[obsXe], ..., ss[obsXr] of observations is calledmaceof P. Thus, a trace records the
sequence of observations that may result from executing the module for finitely many steps.
Thetrace languagef the moduleP, denotedp, is the set of traces d?. By definition,
every prefix of a trajectory is also a trajectory, and hence, every prefix of a trace is also a
trace. Since the set of initial states is nonempty, and the transition relation is serial, every
trajectory of a module, and hence also every trace, can be extended.

Proposition 1. For every module Pthe trace language k is prefix-closed and contains
traces of arbitrary length.

It follows that a module cannot deadlock. In modeling, therefore, a deadlock situation
must be represented by a special state with a single outgoing transition back to itself.

4.2. The implementation preorder between modules

The semantics of the modukeconsists of the trace languabe, as well as all information
that is necessary for describing the possible interactiofswith the environment: the set
intf Xp of interface variables, the sextl Xp of external variables, and the await dependen-
cies >p N (intf Xp x obsX) between interface variables and observable variables (there
cannot be any await dependencies between external variables and other variables).

Definition 3[Implementatioh The moduleP implementshe moduleQ, written P < Q,

if the following conditions are met: (1) every interface variabl€Xif an interface variable
of P; (2) every external variable @ is an observable variable &; (3) for all observable
variablesx of Q and all interface variablegof Q, if y >q X, theny >p x; and (4) ifSis a
trace of P, then the projectioS[obsXg] is a trace ofQ.

The first three conditions ensure that the compatibility constraints impose®l dy
its environment are at least as strong as those imposeQ.byhe fourth condition is

REACTIVE MODULES 19

conventional trace containment. Intuitively,Rf< Q, then the modulé® is as detailed as

the moduleQ: the implementatiof® has possibly more interface and external variables than
the specificationQ; some external variables @ may be interface variables ¢, and

thus are more constrainedih) the implementatio® has possibly more await dependencies
among its observable variables than the specificaflpand P has possibly fewer traces
than Q, and thus more constraints on its execution. It is easy to check that every module
P implements itself, and that if a moduRRimplements another modul@, which, in turn,
implements a third modul®, thenP also implements.

Proposition 2. The implementation relatior is a preorder on module§.e., reflexive
and transitive.

We write P= Q if P implementsQ and Q implementsP. It follows that= is an
equivalence relation on modules. Timeaningof a moduleP is the=-equivalence class
of P.

4.3. Special classes of atoms and modules

Combinational vs. sequential atomsAn atom A is combinationalif it has (1) no read
variables and (2) identical initial and update actiorsad Xa =@, andInit = Update,.
In each update round, the updated values of the controlled variables of a combinational
atom depend only on the updated values of other variables, and not on any latched values.
Furthermore, a combinational atom cannot distinguish between the initialization round and
later rounds. If an atom is not combinational, then it is cafleduential For example, in
figure 1, the atoms of the modulé®t and And and the atom that controls the variable
stateof the moduleLatch are combinational; the atom that controls the variahié of
Latchis sequential. Note that a combinational atom may control some variables that are not
history-free, and an atom may be sequential despite controlling only history-free variables.
The two cases apply to the two atoms of the moduaitch

For further illustration of the difference between combinational and sequential atoms,
consider the following example. Given two variableandy of the same type, we wamt
to duplicate the behavior of. The combinational atom

ACombCopyatom x awaits y
init update
[true — x' =y

copiesy into x without delay, and ensures that batlandy have the same value at the end
of each round. The sequential atom

ASeqgCopyatom x readsy
update
[true — x':=y

20 ALUR AND HENZINGER

copiesy into x with a delay of one round. In each update rourds assigned the value
of y at the beginning of the round (the initial command is irrelevant for the purposes of this
example).

Lazy vs. eager atoms.An atomsleepsn an update round if the values of all controlled
variables stay unchanged. Atratom A is lazyif it may sleep in every update round: for
all valuationss andt for X, (s[read Xa] Ut'[waitX/], s'[ctrX/y]) € Update,. A sufficient
syntactic condition for laziness is the presence of the guarded assignment$” in
the update command, which leaves the values of all controlled variables unchanged. For
example, the atoms of the modulesand P, from figure 2 are lazy. Typically, lazy atoms
are nondeterministic and sequential, with all controlled variables being read in order to keep
their values unchanged.

If an atom is not lazy, then it is callezhger Both atomsACombCopy andASeqCopy
are eager. In the first case, all updateg &dllow immediately, within the same round, the
corresponding updates gf in the second case, the updates aire delayed by exactly one
round. By contrast, the lazy atom

ALazyCopy:atom x readsx awaits y
init update
[true - X =y
| true —

copiesyintox atarbitrary times. Ineach update round, either the valuetdys unchanged,
or it is set to the updated value gf Consequently, some values yinay not be copied
into X.

Event-driven vs. round-driven atoms.In each update round, an atom can notice changes
in the values of awaited variables. If an awaited variable is also read, then the atom can
directly compare the latched value with the updated value. If an awaited variable is not read,
then the atom can remember the latched value from the previous round, by storing it in a
controlled variable, and still compare the latched value with the updated value. Therefore,
each change in the value of an awaited variable is an observable eveXtatom A is
event-drivernf it may sleep in every update round in which no observable event occurs; that
is, the atom may sleep whenever the values of all awaited variables stay unchanged: for
all valuationss for X, (s[read Xa] U s'[waitX,], s'[ctrX,]) € Update,. While the progress
of a lazy atom cannot be enforced at all, the progress of an event-drivenfatan be
enforced by other atoms that modify awaited variables. However, the progress of an event-
driven atom cannot be enforced solely by the expiration of rounds. Hence, if an atom is not
event-driven, then it is calledund-driven

A sufficient syntactic condition for being event-driven is the presence of a conjunct of
the formx? in each guard of the update command. Second, every lazy atom is event-driven.
For example, all atoms of the modulgsndeandReceiveffrom figure 3 are event-driven.
Third, every combinational atom is event-driven. This is because if the awaited variables do
not change in an update round, then the combinational atom may compute the same values
for the controlled variables as in the previous round. For example, while the sequential

REACTIVE MODULES 21

atomASeqCopy is round-driven, the behavior of the combinational ad@ombCopy can
be alternatively defined by the atom

AEventCopyatom x readsx, y awaits y
init
[true - x':=y
update
[y#y - X:i=y

because the value gneeds to be modified only when the valugs@hanges. This explicitly
event-driven specification of immediate copying, however, readsbatidy, and is no
longer combinationalyis read to check if the value gfchanges, ans is read to keep the
value ofx unchanged).

Asynchronous vs. synchronous modulesA module stuttersin an update round if the
values of all interface variables stay unchanged. Asynchronous modules are defined so that
they may stutter in every update round.

Definition 4[Asynchronj. A moduleP is asynchronouff all interface variables oP are
controlled by lazy atoms. OtherwisB,is asynchronousnodule.

Itfollows that the environment cannot enforce the observable progress of an asynchronous
module. While an asynchronous module can privately record all changes in the values of
external variables, all updates of interface variables proceed at a speed that is independent of
the environment speed. For example, the modB{esdP, from figure 2 are asynchronous.

Round-insensitive vs. round-sensitive modulesA modulesleepsn an update round if the
values of all controlled variables stay unchanged, and the envirorsngtarsin an update
round if the values of all external variables stay unchanged. Round-insensitive modules
are defined so that they may sleep in every update round in which the environment stutters.

Definition 5[Round-insensitivily A module P is round-insensitivéf all atoms of P are
event-driven. Otherwise? is around-sensitivenodule.

It follows that the trace language of a round-insensitive modiuis closed under the
insertion of stutter steps: &, ..., a, is atrace ofP, then so are the observation sequences
a,...,q,&,...,a,forall0<i <n. Forexample, the modul&endeandReceivefrom
figure 3 are round-insensitive.

Asynchrony and round-insensitivity are independent: a module may be synchronous
and round-sensitive, asynchronous and round-sensitive, synchronous and round-insensitive,
or asynchronous and round-insensitive. The difference between asynchrony and round-
insensitivity is illustrated by the three counters shown in figure 4. While the environment
cannot enforce observable progress of an asynchronous module, it can enforce obser-
vable progress of a round-insensitive module by modifying external variables. A round-
insensitive module, on the other hand, cannot count rounds, but only changes in the values

22 ALUR AND HENZINGER

module RoundCount
interface count: N
atom count reads count
init
| true — count’ :=0
update
| true — count’ := count + 1

module EventCount
external tick: E
interface count: N
atom count reads count, tick awaits tick
init
| true — count’ :=0
update
[tick? — count’ := count + 1

module AsyncCount
interface count: N
atom count reads count

init
| true — count’ :=0
update
| true — count’ := count +1
| true —

Figure 4 Three counters.

of external variables. In our example, the round-sensitive synchronous cBated Count
is incremented in each round, the round-insensitive synchronous cdtnvgatCounts
incremented with every occurrence of the external etiekt and the round-insensitive
asynchronous countésyncCountis incremented nondeterministically.

5. Spatial operations on reactive modules

We create complex modules from simple modules using the three spatial operations of
variable renaming, parallel composition, and variable hiding, and the two temporal opera-
tions of round abstraction and triggering. Spatial operations manipulate the variables of a
module, leaving the underlying notion of round fixed; temporal operations manipulate what
happens during a round, leaving the variables fixed. We discuss the three spatial operations
in this section, and the two temporal operations in the next.

REACTIVE MODULES 23

All five operationsf on modules are compositional in the sense that the equivalence
relation= is a congruence with respect fa for all modulesP and Q, if P < Q, then
f(P) < f(Q). Thus, if we prove that modulP is =-equivalent to modul&, thenP can
be substituted fo@ in every context without affecting the meaning of the complex module.
Furthermore, in order to prove thdt(P) implementsf (Q), it suffices to prove thaP
implementsQ. In this way, reasoning about complex modules can be reduced to reasoning
about simpler submodules.

5.1. Variable renaming

The renaming operation is useful for creating different instances of a module, and for
avoiding name conflicts. LeR be a module, and let andy be two variables of the same

type such thay is notinXp. Then the modul®[x := y] results fromP by renamingc toy.
Henceforth, whenever we write[x := y], we assume that andy have the same type, and
thaty is not a module variable d?. We make liberal use of notation suchRx, y :=y, X]

for P[x:=7][y:=x][z:=y]. We furthermore assume that for any two modules, a private
variable of one module is not a module variable of the other module. This can always be
achieved by renaming private variables, which does not change the meaning of a module.
It is obvious that the renaming operation is compositional: for all modBlesd Q, if

P =< Q, thenP[x:=y] < Q[x:=Y].

5.2. Parallel composition

The composition operation combines two modules into a single module whose behavior
captures the interaction between the two component modules. The two mé&tialed

Q arecompatibleif (1) the interface variables d® and Q are disjoint, and (2) the await
dependencies among the observable variabl®safdQ are acyclic—that is, the transitive
closure(>p U >qg)* is asymmetric. It follows that i and R are compatible modules,
andP < Q, thenQ andR are also compatible.

Definition 6] Compositiof If P andQ are two compatible modules, then t@mposition
P|lQ is the module with the seirivXp;q = privXp U privXq of private variables, the set
intf Xpq = intf Xp Uintf X of interface variables, the sext|Xp; o = (extlXp U extlXg)\
intf Xp o of external variables, and the sép g = .Ap U .Aq of atoms.

Itis easyto checkthatfortwo compatible moduReandQ, the compositiorP || Q is again
amodule. The compositioR || Q is asynchronous iff botF andQ are asynchronous, and
P || Q is round-insensitive iff botP and Q are round-insensitive. Henceforth, whenever
we write P||Q, we assume that the modul®sand Q are compatible. The composition
operation on modules is commutative and associative. We therefore omit parentheses when
writing P || Q| R.

Parallel composition behaves like language intersection. This is captured by the following
proposition, which asserts that the traces of a compound module are completely determined

24 ALUR AND HENZINGER

by the traces of the component modules. In particuld®?, &dQ have identical observa-
tions, thenL pio=LpNLo.

Proposition 3. Let P and Q be two compatible modulesd leta be a finite sequence
of observations of the compound modul¢ ®. Then & belongs to the languagepl iff
the projectiora[obsXs] belongs to L and the projectior@i[obsXg] belongs to lg.

It follows that, up to projection, the trace language of a compound module is a subset of
the trace language of each component. Hence, the composition of two modules creates a
module that is equally or more detailed than its components. This is captured by the first
part of the following proposition. The second part asserts that the composition operation is
compositional.

Proposition 4. Let P, Q, and R be three modules such that P and R are compatible.
Then(l) P||R=<xP,and(2) P<Q implies P|R=< Q| R.

Proof: Part (1) follows from Proposition 3. For part (2), consider two mod#emnd Q
such thatP < Q, and a moduler that is compatible withP. ThenR is also compatible
with Q. The definition of implementation has four conditions. The first three conditions
are immediate. The fourth condition is trace containment.ale¢ a trace oP | R. By
Proposition 3, the projectio@[obs] is a trace ofP, and the projectio[obsXg] is a
trace ofR. SinceP =< Q, the projectiora[obsXy] is a trace ofQ. Again by Proposition 3,

the projectiora[obsXqr] is a trace ofQ || R. O

It follows that, in order to prove that a complex compound modrylé P, (with a large
state space) implements a simpler compound mo@Qul¢ Q, (with a small state space),
it suffices to prove (1P, implementsQ; and (2) P, implementsQ,. We call this the
compositional proof ruléor reactive modules. Itis valid, because parallel composition and
implementation behave like language intersection and language containment, respectively.

Assume-guarantee reasoning While the compositional proof rule decomposes the veri-
fication task of proving implementation between compound modules into subtasks, it may
not always be applicable. In particuld?; may not implemenQ; for all environments,

but only if the environment behaves lik&, and vice versa. For such cases, an assume-
guarantee proof rule is needed [2, 4, 13, 25]. aksume-guarantee proof ruler reactive
modules asserts that in order to prove tRall P, implementsQ; || Q., it suffices to prove

(1) Py || Q2 implementsQ;, and (2)Q1 || P, implementsQ,. Both proof obligations (1)

and (2) typically involve smaller state spaces than the original proof obligation, because
the complex compound moduk® || P, usually has the largest state space involved. The
assume-guarantee proof rule is circular; unlike the compositional proof rule, it does not sim-
ply follow from the fact that parallel composition and implementation behave like language
intersection and language containment. Rather the proof of the validity of the assume-
guarantee proof rule proceeds by induction on the length of traces. For this, it is crucial
that every trace of a module can be extended.

REACTIVE MODULES 25

Proposition 5. Let P, and B be two compatible moduleand let @ and @ be two
compatible modules such that every external variable pf Q- is an observable variable
of P[P If P1]| Q2<Qrand Q|| P2<xQz, then R|| P2<x Q1 | Q2.

Proof: Consider four moduleBy, P, Q1, andQ, such that (1P, andP, are compatible,

(2) Q1 and Q, are compatible, (3) every external variable @f|| Q. is an observable
variable of P || P2, (4) Py || Q2=< Qq, and (5) Q1 || P < Q.. We wish to establish that
P || P> < Q1 || Q2. The definition of implementation has four conditions. Let us consider
these four proof obligations one by one.

Condition 1. every interface variable o®, || Q2 is an interface variable oP; | P,. Let
X be an interface variable d; || Q.. Without loss of generality, assume thats an
interface variable of:. Assumption (4) implies thatis an interface variable ¢#; || Q.
Assumption (2) implies that is not an interface variable d,. It follows, from the
definition of parallel composition, that is an interface variable oP;, and hence, of
Py Pa.

Condition 2. every external variable dD; || Q- is an observable variable & || P.. This
is assumption (3).

Condition 3. for all observable variableg of Qi || Q. and all interface variableg of
Q1 1l Qo If Y >q,j0, X, theny >p,p, Xx. We show the stronger claim that for interface
variableszy, ..., z of P, || P, interface variableg, ..., y; of P.|| P, or Q1 || Q2, and
observable variablesof Q4 || Q,, if

Y=2Z1>pP, " 4 >PyP, Y1 >R, " Y] ZR; X,

whereR, € {P1, P», Q1, Qo}foralll<I < j, theny >p,p, X. Condition (3) then follows
from the special case thiat 0, and hencey = ;.

Inthe claim, since the relatichp, | p, is acyclic by assumption (1), the variablgs. . . , z
are all pairwise distinct. ThereforeQi < n, wheren is the number of interface variables of
P1 || P>. We prove the claim by decreasing inductiori ononsider < {0, ..., n}, assume as
induction hypothesis that< n implies the claim holds far+ 1, and show the claim far If
j =0, theny >p,p, X by the transitivity of-p,p,. If j > 1, then there are four possibilities
for Ry. If Ry € {P1, P}, theny; is an interface variable d?; || P,. The acyclicity of-p,;p,
implies thati <n, and the claim follows by induction hypothesis (choasg = y). If
R1 = Q1, theny, is an interface variable @@, and, therefore, by assumption (2), itis notan
interface variable 0Q,. Sincey; >q, Yo, from assumption (4) it follows thag >p, g, Y2
Sincey; is not an interface variable ., it is an interface variable oP;, and therefore
Y1 >p U >R - - Uk =R, Yz, forinterface variables,, . . ., ux of Py || Q2, andR/ € {P1, Q2}
for all 1 <1 <k. Again, the acyclicity of~p,p, implies thati <n, and the claim follows
by induction hypothesis (chooge, ;1 = y;1). The final caseR; = Q», is symmetric to the
previous case.

Condition 4. if a is a trace ofP; || P,, then the projection dd to the observable variables
of Q1 || Q2 is a trace ofQ; || Q2. In the following, for simplicity we omit the explicit

26 ALUR AND HENZINGER

use of projections. For example, X is a superset obbsX anda is a sequence of
valuations forX, when we refer t@ as a trace oP, what we mean is that the projection
a[obsXp] is a trace ofP.

We need to define some additional concepts. Given a mdauke setX of variables
is await-closedfor P if for all observable variableg andy of P, if y>p Xx andy € X,
thenx € X. For an await-closed set, the pair(a, b) consisting of a traca@ of P and a
valuationb for X is an X-partial traceof P if there exists an observatianof P such that
(1) c[X NobsX:] = b[obsXr], and (2)acis a trace ofP. Thus, partial traces are obtained
by executing several complete rounds followed by a partial round, in which only some of
the atoms are executed. The following facts about partial traces follow from the definitions.

(A) If P<xQ andX is an await-closed set of variables fBr then X is an await-closed
set of variables foR. If P < Q and(a, b) is anX-partial trace ofP, then(a, b) is an
X-partial trace ofQ. Thus, trace containment is equivalent to containment of partial
traces.

(B) The partial traces of a compound module are determined by the partial traces of the
component modules: for every await-closed Xetor P || Q, every sequenca of
observations oP || Q, and every valuatioh for X, the pair(a, b) is anX-partial trace
of P || Qiff it is an X-partial trace of bottP and Q.

(C) If (@, b) is an X-partial trace ofP, andc is a valuation for a seY of variables ofP,
which is disjoint from bothX andintf Xp, then(a, buc) is an(X U Y)-partial trace
of P. This property is due the nonblocking nature of modules.

Let Xy, ..., Xm be a partition ofobsXp,p, into disjoint subsets such that (1) eaxh
either contains only external variablesFf|| P,, or contains only interface variables lef,
or contains only interface variables Bf, and (2) ify >p,;p, X andy € X;, thenx e X; for
somej <i. DefineYg =@, andforall0<i < m, defineY; . ; = Y; U X;. Each seY; is await-
closed forPy || P,. For all 0<i <m, letL; be the set ofY;-partial traces of; || P, and
let L = (Upi-m Li. We define the following orde& on the partial traces ih: fori <m,
if (8, b)eL;and(&, c) € Li,1 andc[Y;] =b, then(a, b) < (&, ¢); fori =m, if (&, b) e L;,
then(a, b) < (ab, ¥). Clearly, the ordek is well-founded. We prove by well-founded
induction with respect ta< that for all 0<i <m, every partial trace ir.; is a;-partial
trace of Q1 | Q2. Then, the case= 0 implies that every trace d?, || P, is also a trace of
Q1 Q2.

Consider(a, ¥) in Lo. If & is the empty trace, the(, ¥) is a trace of all modules.
Otherwise,a = bc for some observation sequenbeand observatiom of Py || P,. Then
(b, ¢) is aYy-partial trace ofPy || P, and(b, ¢) < (&,). By induction hypothesigb, c)
is aYpy-partial trace ofQ; || Q2, and hence(a, ¥) is aYp-partial trace ofQ; || Q-.

Consider(a, b) in Lj,, for some O<i <m. Let c=Db[Y;]. Then (&, c¢) is aY;-partial
trace of Py || P,, and(a, ¢) < (a, b). By induction hypothesiga, c) is a;-partial trace of
Q1 1l Q2. By fact (B) about partial tracesa, c¢) is aY;-partial trace of bothQ; and Q..
ConsiderYj 1 =Y; U X;. Without loss of generality, assume th&t contains no interface
variables ofP,, and hence, by assumptions (2) and (5), no interface variabl€s.oBy
fact (C) about partial traces, thé-partial trace(a, c) of Q. can be extended with any

REACTIVE MODULES 27

valuation for Xj. In particular,(a, b) is a Y, i-partial trace ofQ,. Since(a, b) e Lj,1,
by fact (B) about partial tracesa, b) is a Y;,1-partial trace ofP;, and therefore also of
P: || Q2. From assumption (4) and fact (A) about partial traces, it follows taah) is a
Y; +1-partial trace ofQ1. Hence by fact (B) about partial trac&g, b) is aY; ;1-partial trace

of Q1 || Q2. O

5.3. Variable hiding

The hiding of interface variables allows us to construct module abstractions of varying

degrees of detail. For instance, after composing two modules, it may be appropriate to
convert some interface variables to private variables, so that they are used only for the
interaction of the component modules, and are no longer visible to the environment of the
compound module.

Definition 7[Hiding]. Given a moduleP and an interface variabbeof P, by hiding xin

P we obtain the modulaide x in P, which has the satrivXp U {x} of private variables,
the setintf Xp\{x} of interface variables, the sektlXr of external variables, and the set
Ap of atoms.

Henceforth, whenever we writdde x in P, we assume that is an interface variable
of P. We writehide X1, xo in P short for the modulédiide x; in (hide x, in P), which
is identical to the moduléide x; in (hide x; in P). The hiding of a variable creates in
a module that is equally or less detailed, and the hiding operation is compositional. Both
facts are stated in the following proposition.

Proposition 6. For all modules P and Qand every interface variable x of Qve have
(1) Q= (hidexin Q), and(2) if P < Q, then(hide x in P) < (hide x in Q).

From synchrony to asynchrony. Hiding preserves asynchrony, round-sensitivity, and
round-insensitivity, but not synchrony. Hence, hiding is useful for constructing asyn-
chronous modules from synchronous modules. Consider, for example, an asynchronous
moduleClockthat nondeterministically issues the interface evieht

module Clock
interface tick: E
atom tick readstick
update
| true — tick!
| true —

Then, given the synchronous countrentCountfrom figure 4, we can implement the
asynchronous counté&syncCounusing hiding:

AsyncCount= hide tick in (EventCount Clock)

28 ALUR AND HENZINGER

module SendRecSpec
interface msgp, msg, : M
private pc: {in_sync, cons_ahead, prod_ahead}; msgy, : M
atom pc, msgp, msgy, msgc reads pc, msgp, msgy, msgc
init
| true — pc’ := cons_ahead
update
pc = cons_ahead — msgp :=M; pc’ := in_sync
pc = in_sync — msgp := msgp; msgp := M; pc’ = in_sync
pc = in_sync — msgy, = msgp; msg’p :=M; pc’ := prod_ahead
pc = in_sync — msgp = msgp; pc’ = cons_ahead
pc = prod_ahead — msgy, := msgy; pc’ := in_sync
true —

N1

Figure 5 Asynchronous message-passing specification.

For a more elaborate example, recall the synchronous message-passing protocol from
figure 3:

module SendRee- Sendel| Receiver

After hiding the communication events, so that only the streams of produced messages
(msg) and consumed messagess(t) remain visible, we obtain an asynchronous module:

module SendReclmpt hide ready, transmit msg; in SendRec

The moduleSendRecImpmplements the asynchronous mod8kendRecSpedf figure 5,
which contains a single lazy atom:

SendReclmpk SendRecSpec

The moduleSendRecSpegpecifies the class of sliding-window protocols with window

size 2: the stream of consumed messages results from delaying the stream of produced
messages such that at any point, at most two produced messages have not yet been con-
sumed. If, as initiallypc= consahead then the latest produced message has already been
consumed, so the consumer waits and the producer works on producing the next message;
if pc=in_syn¢ then the consumer works on consuming the latest produced message, and
the producer works on producing the next message;#f prod_ahead then the previously
produced message, which is storedriag,, has not yet been consumed, so the consumer
works on that message and the producer, constrained by the window size 2, waits. While
SendRecimpmplements the sliding-window specification using synchronous handshak-
ing, alternatively,SendRecSpemuld be implemented by sender and receiver processes
that communicate via asynchronous handshaking.

REACTIVE MODULES 29

module BehavOr
external ing,ing: B
interface out: B
atom out awaits iny, ing
init update
[infj=1 — out':=1
[iny=1 — out':=1
[inf=0Ainb=1 — out':=0

module StructOr =
hide 2y, 29, 23 in
|| And[ing, ing, out := 21, 29, 23]
|| Not[in, out := iny, z1]
|| Not[in, out := ing, z;]
|| Notlin, out := z3, out]

Figure 6. Two definitions of a synchronouwsr gate.

5.4. Spatial scaling

The three operations of renaming, composition, and hiding allow us to construct a space
hierarchy of modules. We illustrate this on the example of synchronous circuits.

Figure 6 shows two module definitions for a synchronorgate. The modulBehavOr
specifies the input-output behavior of@rgate similar to the definition of the synchronous
AND gate from figure 1. The modulstructOr builds anor gate from anaND gate and
three inverters. First, we rename the variables of the modules from figure 1 that define syn-
chronousaND andNOT gates in order to create three instancesnabagate and connect, for
example, the output of thenD gate with the input of the thirdoT gate. Second, we com-
pose the four modules representing tn® gate and the threeoT gates. Third, we hide
the variables that represent internal wires, for example, thezyitegat connects the output
of theAND gate with the input of the thirdoT gate. Itis easy to check that the two modules
BehavOrandStructOrare=-equivalent; in particular, they have the same traces.

Using the definitions of synchronous gates and latches from figure 1, and the three
operations of renaming, composition, and hiding, we can build sequential circuits whose
clock cycles correspond to rounds. As an example, we design a three-bit binary counter.
The counter takes two boolean inputs, represented by the external vaststesdinc,
for starting and incrementing the counter. The counter value ranges from 0 to 7, and is
represented by three bits. We do not make any assumption about the initial counter value.
A start command resets the counter value to 0 and overrides any increment command that is
issued in the same round. An increment command increases the counter value by 1. If the
counter value is 7, the increment command changes the counter value to 0. In each round,
the counter issues its value as output—the low bit on the interface vadab|ehe middle
bit on the interface variableut;, and the high bit on the interface varialolet,.

30 ALUR AND HENZINGER

* Sync1BitCounter

set

Latch : out

ine

start

' Sync3BitCounter

ine ——————>> SynclBit Counter .
carry » start,inc out ' outo

start
carry

carryg

inc SynciBit Counter .
out = guiy

carry

carryy

ine Synci1Bit Counter

out [= outy

Figure 7. Block diagram for a three-bit binary counter.

Figure 7 shows a possible design of the three-bit counter from three one-bit counters.
This design is defined by the modugnc3BitCounteof figure 8 (for clarity, we some-
times annotate both component and compound modules with the names of the observable
variables). Note thatarry, waits for bothstart andinc, thatcarry, waits forcarry,, and
thatcarry, waits forcarry,. It follows that all three bits of the counter are updated within
a single round.

Combinational loops. By identifying each clock cycle with a round, we cannot model
combinational loops, which would resultin cyclic await dependencies. Consider the module
UselessTransLatdinom figure 9, which models a transparent latch: in each round in which
the control inputlk is true, the data inpuh is without delay propagated to the outmuit,

and in each round in which the inpalkis false, the outpututstays unchanged. The module
IllegalLoopcomposes two transparent latches. Since in each round, the control inputs of the

REACTIVE MODULES 31

module Sync1BitCounter =

—external start, inc

—interface out, carry

hide set, reset, z in
|| Latch[set, reset, out]
|| And[in,, ing, out := out, inc, carry)
|| Or[iny, ing, out := carry, start, reset]
|| Notlin, out := reset, 2]
|| And[ing, ing, out := inc, z, set]

module Sync3Bit Counter =
—external start, inc
—interface outq, outy, outs
hide carry,, carry,, carry, in
|| Sync1Bit Counter{start, inc, out, carry := start, inc, outg, carry)
|| Sync1Bit Counter(start, inc, out, carry := start, carryy, outy, carry,|
|| Sync1Bit Counter(start, inc, out, carry := start, carry,, outy, carry,]

Figure 8 Three-bit binary counter.

module UselessTransLatch
external in, clk: B
interface out: B
atom out reads out awaits in, clk
init update
| clk’ — out':=in’
module [llegalLoop =
—external clk
—interface latchy, latchy
|| UselessTransLatch[in, out, clk := latchy, latch,, clk]
| UselessTransLatch[in, out, clk := latchy, latchy, not_clk)
| Not{in, out := clk, not_clk]

Figure 9 Naive model of a transparent latch.

two latches are complementary, all data dependencies can be resolved dynamically, during
execution. Our definition of await dependencies, however, is static, and therefore value-
independent. HencélegalLoopis not a legal modulelatch, > latch, andlatch, > latch;.

In the next section, we will present a legal model for this circuit. We will use several rounds
to model a single clock cycle, and then collapse these rounds into a single round.

32 ALUR AND HENZINGER

6. Temporal operations on reactive modules

Each module defines what happens during around. The notion of round is global: when two
modules are composed, the rounds of both component modules are taken to overlap perfectly
intime, none being shorter or longer than the other. Throughout the operations of renaming,
composition, and hiding, the notion of round stays unchanged: a complex module has the
same round as each of its submodules. Sometimes it is convenient, however, to change
the notion of what constitutes a round. For example, what happens during a round of a
complex module may best be defined by what happens during several consecutive rounds
of a submodule. For this purpose, we introduce the operations of round abstraction and
triggering.

6.1. Round abstraction

In order to reduce the complexity of a system, it is often useful to combine several consecu-
tive rounds into a single, more abstract round. This can be done by applying the abstraction
operatomext. Intuitively, given a subseY of the interface variables of a modul the
modulenext Y for P collapses consecutive rounds Bfuntil one of the variables ity
changes its value. This is similar to the notion of sampling simulation for a complex sys-
tem: we want to observe the behavior of the modRlenly at those instances when the
value of some of the variables ¥ changes. As we compress several rounds into one, it
is assumed that an external variable that is read stays unchanged in all, except possibly the
last, rounds, and an external variable that is awaited stays unchanged in all, except possibly
the first, rounds.

Let P be a module, and letf Cintf Xp be a subset of its interface variables. For two
states andt of P, the statd is aY -successaof sif there exists a finite sequensg . .., S,
of states ofP such that the following three conditions are met:

1. s9=s; forall0<i <n, the states ;1 is a successor &f ; ands, =t.

2. ForallO<i <n, we haves[Y] = [Y]; ands [Y] # So[Y]

3. For every external variabbe of P, if some atom ofP readsx, then for all O<i <n,
we haves [x] = 5[x]; and if some atom oP awaitsx, then for all 0< i < n, we have

s [X] =s[x].

A round markerfor the moduleP is a (honempty) seY of interface variables oP such

that for every reachable stat@f P, and every valuatiotf for the external variables d?,

there is a nonzero and finite numbenbfisuccessors of s with t[extlIXp] =t®. If Y is a
round marker foiP, then from any reachable state, no matter how the environment updates
the external variables, the update actiondPofan be iterated in a way that leads to the
modification of an interface variable ¥ For afinite-statemoduleP, all of whose variables
range over finite types, it can be checked automatically i a round marker foP, by
model checking a CTL formula of the forkid3i/.

REACTIVE MODULES 33

module P
external z: B
interface y,z: E
private count: [0..9]
atom count reads count, z
init
[true — count’:=0
update
[] z A count <9 — count’ := count + 1
[2 A count =9 — count’ :=0
atom vy, z reads z,y, z awaits count
update
| A count’' =0 — y!
[—2 — 2!

module ¢
external z: B
interface y,2: E
atom y,z reads 2,y, 2
update
| 2 — ¥
| 2 — 2!

Figure 10 Round abstraction.

Definition 8[Abstractio. Given a moduleP, if Y is a round marker folP, then the
abstractiomextY for P is the module with the same declaratiorPaand a single atomAY,.
The atomA[, has the settr Xp of controlled variables, the setad Xe = ((Jac 4, r€adXa)
of read variables, and the sehitXp = (UAeAP waitX) NextlXp of awaited variables.
The initial action ofA}, contains all pairs of the forns'[waitX}], s'[ctrX;]), wheres is
an initial state ofP. The update action oA}, contains all pairs of the forns[read Xp] U
t'[waitXp], t'[ctrX:]), wheret is aY-successor of.

As an example, consider the two modules shown in figure 10. The private variable

countof the moduleP is initially 0. As long as the latched value of the external variable

X is true, the variableountis incremented modulo 10. The interface evgns issued
whenevercountis incremented from 9 to 0. The interface evers issued whenevex

is false. The sety, z} is a round marker foP: every state withx = true (andcount=1i)

has a{y}-successor witlkx = true (andcount= 0) and a{y}-successor witkx = false(and
count=0); and every state with = false(andcount=i) has &z}-successor witlx = true
(andcount=i) and a{z}-successor witlx = false(andcount=i). By contrast, neithefy}

34 ALUR AND HENZINGER

nor {z} are round markers foP, because the initial state with=true (and count=0)
does not have fz}-successor, and the initial state with=false (andcount= 0) does not
have a{y}-successor. The abstractioext {y, z} for P is =-equivalent to the modul®:
wheneverx is true, Q issues the interface event and whenevex is false,Q issues the
interface event.

It is easy to check that i¥ is a round marker for a modulB, then the abstraction
nextY for P is again a module. Henceforth, whenever we wniggt Y for P, we assume
thatY is a round marker foP. If the setintf Xp of all interface variables is a round marker
for P, then the modulaext intf Xp for P is called thestutter reductiorof P, and denoted
next P. In each update round, the stutter reductient P iterates the update actions Bf
until some interface variable changes.

We now show that the abstraction operation is compositional. For this purpose, we
need to strengthen the definition of the implementation relation slightly. The mé&dule
environment-faithfully implementse moduleQ, written P <€ Q, if P < Q and for every
external variable of Q, (A) if X is read by some atom @3, thenx is an external variable ¢t
thatisread by some atomBf and (B) ifx is awaited by some atom @f, thenx is an external
variable of P that is awaited by some atom &f. Environment-faithful implementations
cannot constrain external variables by turning them into interface variables.

Proposition 7. Let P and Q be two moduleand let Y be a round marker for both P
and Q. Then P<®Q implies(nextY for P) < (nextY for Q).

Proof: Consider two module®’ = (nextY for P) and Q' = (nextY for Q). Assume
thatP < Q, and assume conditions (A) and (B) of the definition for the environment-faithful
implementation ofQ by P. We prove that’ < Q'. The definition of implementation has
four conditions. The first two conditions are immediate. For the third condition, consider
an observable variableof Q" and an interface variablof Q’, suppose thay > X, and
show thaty >p/ X. Sincey >q x, and Q' has a single atonx is an external variable of
(Q"and)Q that is awaited by some atom @. From assumption (B), it follows thatis an
external variable oP (and P’) that is awaited by some atom Bf. SinceP < Q, andy is
an interface variable of’ and)Q, itis also an interface variable &f (andP’). Therefore
y>p X.

The fourth condition is trace containment. L&te a trace ofP’, and consider the
trajectoryS=s, ..., S, with 5[obsX]=a. Then, for all O<i <n, the states;; is a
Y-successor of according toP. Hence, by the definition of theext operator, we can
introduce a finite sequence of states between each pair of st&ttsaltain a trajectory of
P of the formso, oo, - - - , Sokg» St S10s - - - » Siky» S25 - - - » Sh. FOr €ach stats; , the value of the
round markely equalss[Y], the value of each read external variaklef P equalss [X],
and the value of each awaited external variablef P equalss_1[x]. Since P < Q,
there exists a trajectory d of the formto, too, . - . , toky, t1, t10, - - -, takg, t2, - . -, th SUCh
that for all 0<i <n, we haves[obsXy] =t[obsXg], and for all 0< j <k;, we have
sij[obsXo] =t [obsXy]. From assumptions (A) and (B), it follows that for alk(<n,
the statd;; is aY-successor df according toQ. Henceto, ..., t, is a trajectory ofQ’.
Thereforef[obsXy] = 5[obsXy] = a[obsXy] is a trace ofQ'. O

REACTIVE MODULES 35

From asynchrony to round-sensitive synchronyEvery module of the formext Y for P

is synchronous and round-sensitive. Hence, abstraction is useful for constructing round-
sensitive synchronous modules from asynchronous modules. For example, given the asyn-
chronous counteAsyncCountfrom figure 4, we can implement the round-sensitive
synchronous counté&oundCountising abstraction:

RoundCount next AsyncCount

Similarly, while the message-passing implementaemdReclmplrom Section 5.3 is
asynchronous, its stutter reduction

module RedSendRe¢ next SendRecimpl

is synchronous. In each round BReEdSendReeither a message is produced by the atom
AProd, or a message is consumed by the atom ACons, or both.

6.2. Temporal scaling

The next operator changes the notion of what happens during a round, and allows us to
construct a time hierarchy of modules. This can again be illustrated with circuit examples.
In a first example, we aggregate several clock cycles into an arithmetic operation; in a
second example, we aggregate several gate operations into a clock cycle.

Consider the specificatiohdd64of a 64-bit adder shown in figure 11. The 32-bit adder
Add32is specified similarly. We give two implementationsAdd64usingAdd32 If x is

module Add64
external z,y: B[0..63]; carry: B
interface z: B[0..63]; ofi: B
atom z, ofl awaits z,y, carry
init update
[true — 2 :=(2'+ ¥y + carry’) mod 2%4;
ofl' := (2’ +y' + carry’) div 2%4

module ParAdd =
—external z, y, carry
—interface z, ofl
hide u in
|| Add32(z,y, z, carry, ofl := o, yo, 20, Carry, u
|| Add32[z,y, z, carry, ofl := x4, Y1, 21, U, ofl]

Figure 11 Specification and parallel implementation of a 64-bit adder.

36 ALUR AND HENZINGER

module SeqAdd =
—external z,y, carry
—interface z, ofl
hide done in next {done} for hide a,b,c,u, v, round in
|| Add32[x,y, 2, carry, ofl := a,b, ¢, u, ofl]
|| AuzCircuitry

module AuzCircuitry
external z,y: B[0..63]; c¢: B[0..31]; carry,ofi: B
interface round: {0,1}; z: B[0..63]; a,b: B[0..31]; u:B; done:E
private v: B
atom round reads round
init
| true — round =0
update
[round =0 — round :=1
[round =1 — round :=0
atom a, b, u reads v awaits round, z, y, carry
init update
[round' =0 — a':=z(; b = y); o = carry’
[round' =1 — o :=zi; b :=y}; v =0
atom z, v, done reads done awaits round, c, ofl
init update
[round' =0 — 2z :=c; v :=oft!
[round’ =1 — 2z} :=¢; done!

Figure 12 Sequential implementation of a 64-bit adder.

a 64-bit word, we writexg for the less significant 32 bits and for the more significant 32
bits. The firstimplementatioffarAdd(figure 11), uses two copies 8fid32and connects
them appropriately. In each rouriBarAddadds two 64-bit words by first adding the less
significant half-words and then, in a later subround of the same round, adding the more
significant half-words. HencearAdd< Add64

The second implementatioBegAddfigure 12), uses a single copyAfid32and embeds
it in additional circuitry, represented by the mod@exCircuitry. The submodule

module SeqAddSuk Add33x, vy, z, carry, ofl:=a, b, ¢, u, ofl] || AuxCircuitry

requires two consecutive update rounds to compute a 64-bit sum: it adds the less significant
half-words in one round before adding the more significant half-words in the subsequent
round. The modul&egAddSubas four atoms. In each round, first the variatolend is

REACTIVE MODULES 37

module Useful TransLatch
external in, clk: B
interface out: B
atom out reads in, out awaits clk
update
| clk’ — out':=in

module LegalLoop =
—external clk
—interface latchy, latch,
stabilize hide not_clk in
|| UsefulTransLatch[in, out, clk := latchy, latchs, clk]
|| Useful TransLatch[in, out, clk := latchy, latchy, not_clk]
|| Not[in, out := clk, not_clk]

Figure 13 Correct model of a transparent latch.

set to indicate if the less significamb(ind=0) or the more significantgund=1) half-
words need to be added. Second, the variahlkesandu are assigned the proper input values
for the 32-bit addition. Third, the 32-bit addition is performed. Fourth, the output values
of the 32-bit addition are assigned to the varialdesd possibly (intermediate carry),
and ifround= 1, the eventlonesignals completion of the 64-bit addition. SegAddthe

two rounds of each 64-bit addition are collapsed, so$zafAdd< Add64 Indeed, all three
models of the 64-bit adder are equivalent:

Add64= ParAdd= SegAdd

Combinational loops revisited. Round abstraction is also useful for modeling systems
that otherwise cannot be modeled naturally as reactive modules because of the acyclicity
requirement on await dependencies. For example, using round abstraction, we can legally
model the circuitllegalLoopfrom figure 9 using the scheme shown in figure 13. Unlike the
moduleUselessTransLatgtwhich awaits the data input, the moduleUsefulTransLatch
readsin, and thus delays its propagation to the output by a round. Then, for each constant
control inputclk, the variables of the module

module LegalLoopSub-
|| UsefulTransLatchin, out, clk := latchy, latch, clk]
| UsefulTransLatchin, out, clk := latchy, latchy, not clk]
|| Noffin, out:= clk, not_clk]

stabilize within a finite number of rounds—that is, after some finite number of rounds, the
variables of_egalLoopSulbemain unchanged if any additional rounds are executed (in our

38 ALUR AND HENZINGER

case, a single round suffices, butin general, the number of rounds depends on the number of
transparent latches in the circuit). When the variables stabilize, a fixpoint is reached for the
valueslatch; andlatch, of the transparent latches. This signals the end of a clock cycle.
Then, the control inputlk can change, and a new fixpoint iteration starts, whose result
represents the state of the circuit after another clock cycle, etc.

Hence, we want to iterate the update actions of the mddegalLoopSuluntil the inter-
face variables remain unchanged. This can be achieved by first compesjali oopSub
with a moduléWatchLegalLoopSuthat watches the executionloégalLoopSuland issues
the evenstableonce the interface variables bégalLoopSulbemain unchanged during an
update round. In general, for an arbitrary modBlehe monitor modul&VatchPis defined
as follows:

module WatchP
external intf Xp
interface stable E
atom stablereadsstable intf Xp awaitsintf Xp
update
| intf Xp =intf X;, — stabld

Then we collapse rounds dfegalLoopSulj WatchLegalLoopSuhbntil the eventstable
occurs. Letuswritetabilize P as an abbreviation for the moduiliele stablein next {stablg

for (P || WatchB. The result is the modulleegalLoopof figure 13. Within every context,

the modulelLegalLoopproperly updates the values of the transparent latches every single
round.

Round abstraction in verification. Temporal properties and implementation relations for
finite-state modules can be checked algorithmically, by constructing the state-transition
graphGp that underlies a modulP. Consider the abstractio = (nextY for P). The
search ofGg may be more efficient than the searchGy, because abstraction may cause
some variables to become history-free. More importartly, typically has many fewer
edges tharsp, and therefore a smaller reachable state space. For example, in figure 10,
in the abstract moduleext {y, z} for P, the value ofcountis 0 in every reachable state.
WhenGq is searched explicitly, the reachable statesafiever have to be added to the
search stack. Rather, the edgeSefare constructed by a secondary seard@gnwhich is
implemented using an auxiliary stack that is released once all edges from a given vertex of
Gq have been found. This reduction of the reachable state space is similar to synchronous
programming languages, where only macro-steps, rather than micro-steps, correspond to
edges in the state-transition graph [14].

Also the symbolic verification of a system that consists of modules nétti operators
can be performed efficiently. Consider the modRle: (nextY; for Py) || (nextY, for P,).
Each single image-computation step fdrcorresponds to iterating the transition relation
of Py until some variable itY; changes, and iterating, independently, the transition relation
of P, until some variable irY, changes. The experiments reported in [5] indicate that this
scheme can enable the analysidoih cases where no analysis Bf || P, is feasible.

REACTIVE MODULES 39

6.3. Triggering

Hiding allows us to build asynchronous modules from synchronous parts, and round ab-
straction allows us to build synchronous and round-sensitive modules from asynchronous
and/or round-insensitive parts. We now introduce the opetagmer for building round-
insensitive modules from round-sensitive parts. Intuitively, given a subséthe external
variables of a modulé®, the modulérigger Z for P sleeps until some external variable
in Z changes its value. Thel, is executed. Thus, in a sense, triggering is dual to round
abstraction: while the operatoext collapses several rounds of a module into a single
round, the operatdrigger splits a round into several rounds, in all but one of which the
module sleeps.

Let P be a module, and lef C extl Xp be a subset of its external variables. The&&t
aread triggerfor P if ze Z for every external variable of P that is read by some atom
of P. The setZ is anawait triggerfor P if ze Z for every external variable of P that is
awaited by some atom d@f. A trigger for P is either a read trigger or an await trigger.

Definition 9[Trigger]. Given a moduleP, if Z is a trigger for P, then the module
trigger Z for P hasthe same declarationRand a single atonBS. The atorrB% hasthe set
ctr Xp of controlled variables; the setad Xé = (UAGAp read Xa) U Z ofread variables, and
the selwaitxé = ((UAGAP waitXa) NextlXp) U Z of awaited variables. The initial action
of B3 contains all pairs of the forrs'[wait X}], s'[ctrX}]), wheresis an initial state oP.
The update action d35 contains all pairs of the forrgs[read Xp] Ut'[waitX}], t'[ctrXp]),
where either (13[Z] =t[Z] ands[ctr Xp] =t[ctrXp], or (2)s[Z] # t[Z] andt is a successor
of saccording toP.

It is easy to check that iZ is a round marker for a modul®, then the module
trigger Z for P is again a module. Henceforth, whenever we wiiigger Z for P, we
assume tha¥ is a set of variables that contains no controlled variablg?.df Z contains
some variables that are not (external) variable® pthen we agree thatigger Z for P
stands for the modulgigger Z for (P || Q), whereQ is the trivial module with the set
Z\extl Xp of external variables and the empty set of atoms. The madgéger extlXp for P
is called theasvent reductiof P, and denotetrigger P. In each update round, the event
reductiontrigger P executed? in the update rounds in which the environment changes the
value of some external variable, and sleeps in the update rounds in which the environment
stutters.

Like the other operations on modules, triggering is compositional.

Proposition 8. Let P and Q be two moduleand let Z be a trigger for both P and Q.
Then P=<® Q implies(trigger Z for P) < (trigger Z for Q).

Proof: Consider two module$’ = (trigger Z for P) and Q' = (trigger Z for Q).
AssumethaP < Q, and assume conditions (A) and (B) of the definition for the environment-
faithful implementation ofQ by P. We prove that?’ < Q’. The definition of implemen-
tation has four conditions. The first two conditions are immediate, and the third condition
can be shown by an argument similar to the one used in the proof of Proposition 7.

40 ALUR AND HENZINGER

The fourth condition is trace containment. ladbe a trace oP’, and consider the trajec-
torySwith S[obsXp] =4&. Thetrajectorghasformsy, . . ., Soky» S10s - - - » Sikys S205 - - - » Sk,
such that for all O< i < n, we havesy,[Z] # S +1.0[Z], ands 110 iS a successor &y, ac-
cording toP, and forall 0<i <nand 0< j <k;, we haves; [ctrXp U Z] = s[ctrXp U Z].

If Z is aread trigger foQ, then by assumption (A), the sgtis also a read trigger fae,

and thereforesy, Sio, - - . , Sho iS @ trajectory ofP. If Z is an await trigger forQ, then by
assumption (B), the sét is also an await trigger foP, and thereforesy,, Six,. - - - , Sk,

is a trajectory ofP. We pursue only the former case; the latter can be handled simi-
larly. Since P < Q, there exists a trajectory dP of the formtgg, ti, ..., tho such that

for all 0<i <n, we haveso[obsXg] =tio[obsXy]. Let t be a state sequence of the
form too, . . . , toky, t10s - - - » taky, t20, - - -, thk, SUCh that for all G<i <n and O< j <k;, we
havet;j[ctrXq U Z] =tio[ctrXq U Z] andt;; [extlXg\ Z] = s [extIXp\ Z]. Then, sinceZ

is a read trigger foQ, the state sequendas a trajectory ofQ’. Thereforef[obsXy] =
S[obsXy] =a[obsXy] is a trace ofQ'. O

From round-sensitivity to round-insensitivity. While triggering preserves (in spirit) asyn-
chrony as well as synchrony, every module of the ftrigger Z for P is round-insensitive.
Hence, triggering is useful for constructing round-insensitive modules from round-sensitive
modules. For example, given the round-sensitive synchronous cdRotgid Counfrom

figure 4, we can implement the round-insensitive synchronous cobimgartCounusing
triggering:

EventCount= trigger {tick} for RoundCount
This completes our demonstration that all three counters from figure 4 are interdefinable:

RoundCoun& next AsyncCount
AsyncCoung hide tick in (EventCount Clock)

Reactive modules vs. multiform time.The temporal operatorextandtrigger of reactive
modules are similar in spirit to the polychronous operators of synchronous programming
languages such agSIAL [7] and LUSTRE[14]. Both approaches allow temporal abstraction

by manipulating what happens during around. However, there is a key difference. Reactive
modules have a global notion of round, and applicationsext andtrigger only change

what a module does within a round. IGRAL, the notion of round (oclock) is local to a
module (orsignal), is part of its semantics, and can be changed by applying operators such
aswhen anddefault. Consequently, the parallel composition of reactive modules behaves
quite differently from the parallel composition in synchronous programming languages.

7. Fair reactive modules

Based on the trace semantics of modules from Section 4, we can reason about the safety
requirements of modules. Reasoning about liveness requirements demands that we consider

REACTIVE MODULES 41

infinitebehaviors of modules. Then, in order to rule out certain degenerate infinite behaviors
of a module, we add fairness constraints to the module.

7.1. The infinite traces of a module

Let P be a module. Anv-trajectory of P is an infinite sequencs, 1, S, ... of states
such that (1) the first sta® is initial and (2) for alli >0, the states .1 is a successor

of 5. If s=g,9, ... is anw-trajectory of P, then the corresponding infinite sequence
s[obsXp] = so[0bs Xp], si[obsXr], . . . of observations is am-trace of P. Since all initial

and update actions of the modeare executable, the set @ftraces ofP is completely
determined by the sétp of finite traces, and vice versa. This property of a reactive system
is calledlimit closure or safety[3].

Proposition 9. Let P be a module. An infinite sequencefaobservations of P is an
w-trace of P iff every finite prefix of & a trace of P. A finite sequenéeof observations
of P is atrace of P iffa is a finite prefix of some-trace of P.

Proof: The first part of the proposition follows from the finite controlled branching of the
transition relation. Consider an infinite sequeace ay, a;, . . . of observations. I& is an
w-trace ofP, then, by definition, every finite prefix afis a trace ofP. So suppose that for
alli > 0, the finite sequenc® =ay, . .., & is a trace ofP; that is, for alli > 0, there is a
finite trajectorys' of P with §'[obsX>] =&'. We define a forest whose vertices are labeled
with states ofP. For every initial states of P with s[obsX] = ag, there is a root—i.e., a
level-0 vertex—Ilabeled witls. For every level >0, every levelr vertexv labeled with
states, and every successbof s with tjobsX] = a1, there is a child ob—i.e., a level-
(i +1) vertex—labeled with. Since all initial and update actions Bfare executable, the
forest has a finite number roots, and every vertex has a finite number of children. Further-
more, for each > 0, the finite trajectong is a path of the forest. Hence the forest has infi-
nitely many vertices, and byagiig’s lemma, the forest contains an infinite path. The sequ-
ence of labels along this path is artrajectory of P, and the corresponding-trace isa.

The second part of the proposition follows from the seriality of the transition relation.

O

7.2. Modules with fairness constraints

Remember that an actienfrom X to Y is a binary relation between the valuations ¥r

and the valuations fo¥. Thus, all subsetg C « are also actions fronX to Y; they are

called thesubactionsof «. An update choicdor an atomA is a subaction of the update
actionUpdate,. An update choice need not be executable; that is, an update choice may
be enabled in some states but not in others. We add fairness constraints to modules by
declaring a set of weakly-fair update choices and a set of strongly-fair update choices for
each atom.

Definition 10[Fair module$. A fair moduleP consists of a moduleafg’P) together with
two fairness constraints. Theeak-fairness constraint wfis a function that maps every

42 ALUR AND HENZINGER

atom A of safg’P) to a finite set of update choices fé; which are called theveakly-fair
update choices foA. Thestrong-fairness constraint gfis a function that maps every atom
A of safg’P) to a finite set of update choices fAr which are called thetrongly-fairupdate
choices forA.

For a fair moduleP, we refer to parts of the underlying moduafgP)—such as
variables, atoms, etc.—as partsff The fair moduleP is weakly fairif for every atomA
of P, the sesf, (A) of strongly-fair update choices is empty. The fair modBls trivially
fair if for every atomA of P, both setswvf, (A) andsf, (A) of update choices are empty.

The fairness constraints of the fair mod#eslassify thew-trajectories of the underlying
module safg’P) into fair and unfair. Intuitively, a weakly-fair update choice cannot be
enabled forever without being chosen, and a strongly-fair update choice cannot be enabled
infinitely often without being chosen.

Consider an update choice for the atomA, and an infinite sequencg of states.
The update choicer is enabledat positioni >0 of s if there is a stated such that
(s[readXa] U 4 [waitX}], t'[ctrX};]) € . The update choiag is choserat position >0
ofsif (s[read Xa] US ,[waitX}], §,,[ctrX}]) € . The state sequensés weakly fairto
the update choice if either« is not enabled at infinitely many positionssyfor« is chosen
at infinitely many positions of. The state sequenseés strongly fairto the update choice
if either « is enabled at only finitely many positions gfor « is chosen at infinitely many
positions ofs. A fair trajectory of the fair moduleP is anw-trajectorys of the module
safg’P) such that for every atom of P, the state sequenasdas weakly fair to all update
choices inwf, (A) and strongly fair to all update choicessfy, (A). If sis a fair trajectory
of P, then the corresponding infinite sequerfmbs %] of observations is &ir trace of P.

Example Consider the fair modulEair shown in figure 14. In every update round, if the
external event is present, then the module issues, nondeterministically, either the interface
eventy or the interface everg. The update choice consists of all pairgs, t) of states

such thats[x] # t[x] and s[y] #t[y], and the update choicgé consists of all pairgs, t)

such thats[x] #t[x] and s[Z] #t[Z]. The weak-fairness assumption f@rensures that in
every fair trace, if, after some rounxljs present in every round, thenis issued infinitely
often. The strong-fairness assumption foensures that in every fair trace xfis present

in infinitely many rounds, themis issued infinitely often.

module Fair
external 2: E
interface y,z: E
atom vy, z reads z,y, z awaits z
update weakly-fair « strongly-fair §
[2?7 = ¢!
] 2?7 — 2

Figure 14 Weak and strong fairness.

REACTIVE MODULES 43

The fairness constraints of a fair module can be translatedhatoceptance conditions on
the underlying state-transition graph—weak-fairness constraints irgbiBonditions, and
strong-fairness constraints into Streett conditions. However, whileceptance conditions
are usually defined using sets of states, a direct translation of the fairness constraints on
modules leads t@-acceptance conditions that are defined using sets of transitions. This is
because whether an update choice is enabled or chosen may depend on both the latched and
the updated values of variables.

Definition 11[Fair implementatioh The fair moduleP fairly implementghe fair mod-
ule Q, written? <F Q, if the first three conditions of Definition 3 are met, and (4 i6 a
fair trace ofP, then the projectios[obsX;] is a fair trace ofQ.

It is easy to check that the fair-implementation relatidnis a preorder on fair modules.

Machine closure. Every finite trajectory of a fair modul® can be extended to a fair
trajectory of P. This property of a reactive system is call@dchine closurél].

Proposition 10. If P is a fair module anda is a finite trace of?, thena is a finite prefix
of some fair trace oP.

It follows that the set of fair trajectories of a fair module is always nonempty. Moreover, in
verification, machine closure is important for two reasons. First, as we will see in the next
section, machine closure facilitates an assume-guarantee principle for fair implementation.
Second, the fairness constraints of a machine-closed system can be ignored when reasoning
about safety requirements of the system. Both are because for machine-closed systems, fair
implementation implies implementation.

Proposition11. Let P andQ be two fair modules. Theh <~ Qimplies safé¢P) < safg Q).
If Q is trivially fair, then saf€P) < safg Q) impliesP <F Q.

Proof: The first part of the proposition follows from the machine closure of fair modules
(Proposition 10); the second part follows from the limit closure of trivially-fair modules
(first part of Proposition 9). O

Thus, in order to show that a fair modukefairly implements a trivially-fair module,
which represents a safety requirementRfit is sufficient and necessary to show that
safg’P) implementsafg Q).

Receptiveness.Proposition 10 can be strengthened: in order to extend a finite trajectory
to a fair trajectory, the module does not need the cooperation of the environment. Given a
fair moduleP, consider a finite trajectors, . . ., s, of the underlying modulsafgP), and

an infinite sequend ,, t5 ,. t7, 5, ... of valuations for the external variables®f Then,

there is a fair trajectory of P such that for all Gz i < n, we havey; =5, and for alli > n,

we haveau;[extIXp] =t;. Infact, evenin a stepwise game between module and environment,
no matter how the environment plays, the module always has a strategy to produce a fair

44 ALUR AND HENZINGER

trajectory. This property of a reactive system is calieceptivenesgl1]. In a formalism

that builds compound systems from atomic systems, in order to prove that all compound
systems are machine-closed, it suffices to prove that all atomic systems are receptive. Since
fair modules will be closed under composition—that is, the parallel composition of two
fair modules is again a fair module—there is no need to formally define and establish the
receptiveness of fair modules.

7.3. Operations on fair modules

The operations of renaming, composition, and hiding extend to fair modules in the obvious
way. For a fair modulé®, and two variableg andy of the same type witly & Xp, the fair
moduleP[x :=y] results fromP by renamingx to y. The requirement of compatibility for

fair modules is the same as for unfair modules. For two compatible fair mofudes Q,

safgP || Q) =safeP) || safgQ), for every atomA of P, we havewfp o(A) =wf,(A)
andsfp o(A) =sfp(A), and for every atomA of Q, we havewf, o (A) =wf,(A) and
stp o (A) =sfy(A). For a fair module? and an interface variabbeof P, the fair module

hide x in P results by moving from intf Xp to privXp.

Example In asynchronous shared-memory programs, progress can be ensured by weak-
fairness constraints. Recall Peterson’s solution to the mutual-exclusion problem from figure 2.
Figure 15 adds weak-fairness assumptions to the first process of the protocol; the second
fair process is defined similarly, by the weakly-fair modb&rP,. The weak-fairness as-
sumption for, say, the update choigensures that in every fair trace, it cannot happen that
the first process remains in its critical section forever. For the unfair mdjulé>,, we can

prove mutual exclusion: in every trace, it cannot happen that both processes are simultane-
ously in their respective critical sections. For the weakly-fair modraleP; || FairP,, we

can, in addition, prove starvation freedom: in every fair trace, if a process requests to enter
its critical section, then eventually it will be in its critical section (some unfairaces do

not satisfy this requirement).

module FairP,
interface pcy: {outCS, reqCS, inCS}; z1: B
external pc,: {outCS, reqCS, inCS}; z9: B
atom pc,,z; reads pcy, pey, 1,22
init
[true — pcf = outCS
update weakly-fair «, 3
| pey = outCS — pcf := reqCS; 2} := 2z,
| pe; = regCS A (pey = outCS V zy # z2) — pcy = inCS
| pc; = inCS — pcj = outCS
| true —

Figure 15 Fair mutual-exclusion protocol.

REACTIVE MODULES 45

The three operations of renaming, composition, and hiding for fair modules are compo-
sitional with respect to fairimplementation. For parallel composition, this follows from the
analogue of Proposition 3: for two compatible fair moduReand Q, an infinite sequence
a of observations of the compound modd@td| Q is a fair trace ofP || Q iff the projection
aJobsXp] is a fair trace ofP and the projectiom[obsX,] is a fair trace ofQ.

Proposition12. LetP, Q, andR be three fair modules such thHRtandR are compatible.
Then(l) P || R <F P, and(2) P <F QimpliesP | R <F Q|| R.

Proposition 13. For all fair modulesP and Q, and every interface variable x @, we
have(1) Q <F (hide x in Q), and(2) if P <F Q, then(hide x in P) <F (hide x in Q).

Assume-guarantee reasoning.Recall the assume-guarantee principle for unfair modules
from Proposition 5. Suppose that bd® || Q» < 9, and Q; || P, <F Q,. From this we

can conclude that evety-trace ofsafg’P;) || saf€P,) is anw-trace ofsafg Q) || safg Q5).
However, we cannot conclude that every fair tracePef| P, is a fair trace ofQ; || Q».
Figure 16 shows a counterexample, for the special case thatthathd P, are trivially

fair: while Py || Q2 guarantees that infinitely often=1, and Qs || P, guarantees that
infinitely ofteny = 1, the moduléP; || P, guarantees neither. The circularity in the fairness
constraints needs to be broken, which leads to a somewhat weaker form of assume-guarantee
principle in the presence of fairness [4]. For a fair modB|det unfair(P) be the trivially-

fair moduleQ with safg Q) = safgP); that is,unfair(P) is obtained fronf® by discarding

the fairness constraints.

Proposition 14. LetP; andP, be two compatible fair moduleand letQ; and Q, be two
compatible fair modules such that every external variabl@ pf Q, is an observable vari-
able of Py || Py. If Py || Q2 <F Q1 and unfair(Qy) || P, <F Qp, thenPy || P, <F Q1 || Q.

module P, module P,
external y: B external z: B
interface z: B interface y: B
atom z reads y atom y reads z
update update
| true — 2':=y | true — ¢ :=2
module Q; module Q,
interface z: B interface y: B
atom z atom y
update weakly-fair « update weakly-fair 3
[true — 2':=0 [true — ¢ :=0
[true = 2':=1 [true — y':=1

Figure 16 Counterexample to naive assume-guarantee principle for fair modules.

46 ALUR AND HENZINGER

Proof: Consider four fair module®;, P,, Q1, and Q, such that (1)P; and P, are
compatible, (2)Q1 and Q, are compatible, (3) every external variable®f | 9, is an
observable variable oP; || P2, (4) P1 || Q2 <F Q1, and (5)unfair(Qy) || P> <7 Q,. We
wish to establish thaP; || P, <F Qi || Q. From assumptions (4) and (5), by the first part
of Proposition 11 it follows thagafgP,) || safgQ,) < safg Q) andsaf€Q,) || safgP,) <
safg Q,). From this and assumptions (1)—(3), by the assume-guarantee principle for unfair
modules (Proposition 5) it follows thaafgP;) || safeP,) < safgQ;) || saf€ Q2). This im-
plies the first three conditions of the definition of fair implementation. Hence it remains to
be shown that every fair trace ®% || P, is also a fair trace 0f; || 9, (for simplicity, we
omit the explicit use of projections).

Let a be a fair trace ofP; | P,, and therefore of botP; and P,. Since every trace
of safdPy) || safgP,) is a trace ofsafg Q) || safgQ,), by the first part of Proposition 9
it follows thata is anw-trace ofsafgQ;) || safgQ,), and therefore obafgQ;). For a
trivially-fair module R, the fair traces coincide with the-traces of the underlying module
safg’R). Hencea is a fair trace ofunfair(Q,). Sincea is also a fair trace oP;, it follows
thata is a fair trace ounfair(Q;) || P., and by assumption (5), a fair trace @b. Sincea
is also a fair trace oP, it follows thata is a fair trace ofP; || Q», and by assumption (4),
a fair trace ofQ;. Sincea is a fair trace of bottQ; and Q;, we conclude thaa is a fair
trace ofQq || O,. O

Round abstraction vs. fairness.The abstraction operatoext is closely related to weak
fairness. For instance, while not alttraces of the modul®; || P, from figure 2 satisfy
starvation freedom, alb-traces of the stutter reductiamext (Py || P,) do. Indeed, the
modulenext (P; || P,) satisfies the stronger requiremenbolundedstarvation freedom: if

a process requests to enter its critical section, then it will be in its critical section within
four rounds.

8. Concluding Remarks

We have presented a unified, modular, and hierarchical framework for describing syn-
chronous and asynchronous reactive computation. The uniformity, modularity, and hierar-
chy of reactive modules can be exploited in computer-aided verification.

The efficiency of current verification tools often depends on the specific synchrony as-
sumption supported by the underlying model. For instance, hardware description languages
(like VHDL) assume synchronous progress, and BDD-based model checking is successful
in this domain. On the other hand, many protocol description languages @iGRERA
[17]) assume asynchronous interleaving, and the most effective verification strategy is ex-
plicit on-the-fly search with reduction techniques based on partial orders and symmetries.
Finally, the verification tools for synchronous programming languages (FReREL[8])
can afford to construct global state-transition graphs, because much of the complexity is
hidden by the fact that a single transition involves several subtransitions between transient
states.

While both synchrony and asynchrony can be forced, in one way or another, into most con-
currency models, this often comes at the cost of inefficiencies in verification. For example,

REACTIVE MODULES 47

the use of stutter transitions in synchronous models to represent asynchronous progress
increases the number of transitions exponentially over an asynchronous model [19]. Or, the
introduction of synchronization points into asynchronous models restricts the applicability
of efficient search methods in verification [17]. By contrast, our uniform framework allows

us to separate intrinsic truths and complexities about verification methods from accidental
and model-dependent idiosyncrasies.

In addition, our framework supports modular proof principles, such as assume-guarantee
reasoning, and hierarchical verification, based on built-in abstraction operators such as
next. This allows us to decompose a verification task into subtasks with smaller state
spaces. Module-based case studies that exploit assume-guarantee reasoning can be found
in [15]; case studies that expoit round abstraction, in [5]. A verification tool, calledHM,
whose system description language is based on reactive modules, is currently being imple-
mented [6].

Acknowledgments

We thank Albert Benveniste, Bob Kurshan, Ken McMillan, Amir Pnueli, and the VIS
group at UC Berkeley for fruitful discussions. We also thank the anonymous referees for
suggesting improvements. Alur was supported in part by the DARPA/NASA grant NAG2-
1214 and Henzinger was supported in part by the ONR YIP award N00014-95-1-0520, the
NSF CAREER award CCR-9501708, the NSF grant CCR-9504469, the DARPA/NASA
grant NAG2-1214, and by the SRC contract 97-DC-324.041.

Notes

1. If sis a state and is a variable in the domain & we writes[x] for the value assigned kgyto x.

2. Given a valuatiors for the setX of variables, and a subs¥étof X, we writes[Y] for the projection ofs to the
variables inY. If sis a valuation for a seX of unprimed variables, thesi denotes the valuation for the 96t
of corresponding primed variables such tHaassigns to each variabje the values[x]. Given two disjoint
setsX andY of variables, ifs is a valuation forX andt is a valuation forY, thensuUt denotes the combined
valuation forXU'Y.

References

1. M. Abadi and L. Lamport, “The existence of refinement mappingl¢oretical Computer Scienceol. 82,
pp. 253-284, 1991.

2. M. Abadi and L. Lamport, “Conjoining specification®CM Transactions on Programming Languages and
Systems\ol. 17, pp. 507-534, 1995.

3. B. Alpern, A.J. Demers, and F.B. Schneider, “Safety without stutterimfgrmation Processing Letters
Vol. 23, pp. 177-180, 1986.

4. R. Alurand T.A. Henzinger, “Local liveness for compositional modeling of fair reactive systen@Avrd5:
Computer-aided VerificatigrLecture Notes in Computer Science 939, Springer-Verlag, pp. 166-179, 1995.

5. R. Alur, T.A. Henzinger, and S.K. Rajamani, “Symbolic exploration of transition hierarchieBAGAS 98:
Tools and Algorithms for the Construction and Analysis of Systeetsure Notes in Computer Science 1384,
Springer-Verlag, pp. 330-344, 1998.

48 ALUR AND HENZINGER

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.

21.
22.

23.
24.
25.

26.

. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. TasirancHM Modularity
in model checking,” inCAV 98: Computer-aided Verificatiphecture Notes in Computer Science 1427,
Springer-Verlag, pp. 521-525, 1998.

. A. Benveniste, P. le Guernic, and C. Jacquemot, “Synchronous programming with events and relations: The
SIGNAL language and its semantic§tience of Computer Programmingpl. 16, pp. 103—149, 1991.

. G. Berry and G. Gonthier, “The synchronous programming languagerEL Design, semantics, imple-
mentation,” Technical Report 842, INRIA, 1988.

. G. Berry, S. Ramesh, and R.K. Shyamasundar, “Communicating reactive procesBes¢eadings of the

20th Annual Symposium on Principles of Programming Languas@M Press, pp. 85-98, 1993.

K.M. Chandy and J. Misr&arallel Program Design: A FoundatioriAddison-Wesley Publishing Company,

1988.

D.L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-independent CircLiits MIT

Press, 1989.

D.L. Dill, “The MUR@ verification system,” irCAV 96: Computer-aided Verificatipi.ecture Notes in

Computer Science 1102, Springer-Verlag, pp. 390-393, 1996.

0. Grumberg and D.E. Long, “Model checking and modular verificatid@M Transactions on Programming

Languages and Systenwl. 16, pp. 843-871, 1994.

N. HalbwachsSynchronous Programming of Reactive Systéhaver Academic Publishers, 1993.

T.A. Henzinger, S. Qadeer, and S.K. Rajamani, “You assume, we guarantee: Methodology and case studies,”

in CAV 98: Computer-aided Verificatiphecture Notes in Computer Science 1427, Springer-Verlag, pp. 440—

445, 1998.

C.A.R. HoareCommunicating Sequential Processeeentice-Hall, 1985.

G.J. HolzmanrDesign and Validation of Computer ProtocoRrentice-Hall, 1991.

R.P. KurshanComputer-aided Verification of Coordinating Procesg&snceton University Press, 1994.

R.P. Kurshan, M. Merritt, A. Orda, and S.R. Sachs, “Modeling asynchrony with a synchronous maga\/’ in

95: Computer-aided VerificatigrLecture Notes in Computer Science 939, Springer-Verlag, pp. 339-352,

1995.

L. Lamport, “Specifying concurrent program modulesCM Transactions on Programming Languages and

Systems\ol. 5, pp. 190-222, 1983.

N.A. Lynch,Distributed AlgorithmsMorgan-Kaufmann, 1996.

Z. Manna and A. Pnueli,he Temporal Logic of Reactive and Concurrent Systems: Specific&ponger-

Verlag, 1992.

K.L. McMillan, Symbolic Model Checking: An Approach to the State-explosion Prolllkiwer Academic

Publishers, 1993.

R. Milner,Communication and Concurrendyrentice-Hall, 1989.

E.W. Stark, “A proof technique for rely-guarantee propertiesP$1T & TCS 85: Foundations of Software

Technology and Theoretical Computer Scieroecture Notes in Computer Science 206, Springer-Verlag,

pp. 369-391, 1985.

R.J. van Glabbeek, “Comparative concurrency semantics and refinement of actions,” Ph.D. Thesis, Vrije

Universiteit te Amsterdam, 1990.

