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ABSTRACT

Quantitative analysis and controller synthesis probleansréac-
tive real-time systems can be formalized as optimizati@blems
on timed automata, timed games, and their probabilistieresions.
The limiting average cost and the discounted cost are twulatd
criteria for such optimization problems. In theory of fingate
probabilistic systems, a number of interesting resultsasedlable
relating the optimal values according to these two diffeprfor-
mance objectives. These results, however, do not direpplyao
timed systems due to the infinite state-space of clock \ialst
In this paper, we present some conditions under which the exi
tence of the limit of optimal discounted cost objective ifaplthe
the existence of limiting average cost to the same value.ndJsi
these results we answer an open question posed by Fahremiuerg
Larsen, and give simpler proofs of some known decidabiésufts
on (probabilistic) timed automata. We also show the detasuyi
and decidability of average-time games on timed automatheza-
pected average-time games on probabilistic timed automata
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1. INTRODUCTION

A number of recent case-studies [8, 15, 14, 4] demonstrate th
applicability of timed automata [1] for model based designl a
analysis of embedded real-time systems. Probabilistiensibns
of timed automata, such as probabilistic timed automaty fid
duration probabilistic automata [23] are useful in modglimcer-
tainties (component failure, probability distribution delays etc.),
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while two-player games [3, 7] on timed automata are natwuaat ¢
didates for modeling open real-time systems. The succeafsed
automata as a model of real-time systems can be partlywttdio
its theoretical properties, such as decidable model chgghiob-
lems, and partly to the availability of an excellent set aflsosuch
as UPPAAL [29], Kronos [20], RED [27], and, PRISM [25].

Performance analysis and optimal controller synthesistipres
for real-time embedded systems can be reduced to optimizati
problems on priced extensions of (probabilistic) timedendta for
a given performance metric [4, 2]. The limiting average cosd
the discounted cost are two standard criteria for assagiatiper-
formance metric with an (infinite) execution of a reactivetsyn.
For a given execution let 7(r) = (p; € R){2, be the sequence
of numbers such that; is the price at step. Then, the limiting
average cost of the executioris the limit, if exists, of finite length
averages:

def

Avg(n(r) £ tim sz

On the other hand, the discounted cost of the executidor a
discount factorh € (0, 1] is the total discounted sum of prices,
where the price at stepis discounted byl — \)*:

defAZ 17

The notions of limiting average cost and discounted costaosely
speaking, quite opposite to each other: while the limitingrage
cost criterion is insensitive to prices appearing in theahprefixes,
the discounted cost criterion gives more weight to pricggeapng
early in a sequence than the later ones. Hence it is perhgmsssu
ing at first to learn that these two criteria are related tdeatber.
Hardy and Littlewood [11] showed that for a bounded (or pes)t
sequencer, if the limit lim,, _, o+ Disct® () exists then the average
cost Avg(r) exists as well, and it is equal ttm, _, o+ Disct* (7).

In this paper we study optimization problems on timed autama
(and its generalizations) with discounted cost and avecagecri-
teria, and show the relation between their optimal valuesad-
dition to their purely theoretical interest, such relatigrield new
proofs of decidability of certain average cost games ondilgue-
tomata.

Connections between optimal discounted cost and average co
criteria are well-studied for probabilistic systems. Meg and
Neyman [24] showed that for two-player zero-sum stochastines
(and hence for Markov decision processes (MDPs)) with finite
many states and actions, the value of the game with average co
objective is equal to the limit of values of games with disteual
cost objectives. Lehrer and Sorin [22] showed a more genesalt
in the context of MDPs with infinite state spaces. They prabed

Disct (r



uniform convergence of the limit of optimal discounted aalsjec-
tive implies uniform convergence of the average reward aibvje
to the same value. The concept of Blackwell-optimal straisg
tightly coupled with the relation between the limit of opthdis-
counted cost and the optimal average cost. Blackwell [Sjveldo
the existence of strategies in finite Markov decision preesghat
are optimal for all discount factors sufficiently close0tdt is well
known [11, 26] that every positional Blackwell-optimalategy is
also average optimal, while the opposite is not true. Theltres
of Mertens and Neyman show the existence of Blackwell-opitim
strategies on finite stochastic games. To the best of our lkeciye
no analog of such results is known for timed automata, and the
results from finite state probabilistic systems do not aatically
generalize to timed systems due to infinite state space of clal-
uations.

The main contribution of this paper are the theorems rejatie
limit of optimal discounted cost and the optimal average cate-
ria on timed automata. We also show the existence Blackwell
optimal (Blackwell optimal up to a given precisian> 0) strate-
gies in priced timed automata. We generalize these resoits f
probabilistic timed automata, and games on probabilistied au-
tomata. Our results yield a simpler proof of decidabilitg ateter-
minacy of optimal average-time games on timed automatattend
first proof of decidability and determinacy for expectedrage-
time games on probabilistic timed automata. We also prov@na c
jecture of Fahrenberg and Larsen [9] on the connection ketwe
continuously-discounted cost and average cost (per tinitd-apti-
mization problem on timed automata.

The rest of the paper is organized in the following manner. We
begin the technical part of the paper by introducing the epts
and the notations in a general setting of MDPs and stochgesties
with infinite states and actions. In Section 3 we introdudegat

-T:5xA — P(S) is a probabilistic transition function
such that the sefi(s) = {a € A : T(s,a) is defined} is
nonempty for every statec S;

—-m: S %x A — Ry is abounded and measurable price
function.

A weighted state-transition system is an MDR=(S, A, T, )
such thafl’(s, a) is a point distribution for every statec S and ac-
tiona € A(s). We say that an MDP (or a weighted state-transition
system)M is finite if both .S and A are finite.

We say tha(s,a,s’) € SxAxS is a transition of the MDPU
if T'(s,a)(s’) is positive. A finite run ofM is a finite sequence
(s0,a1,81,...,Gn, sn) SUChtha(s;, ai+1, si+1), for eachi<n, is
a transition ofM. Similarly, an infinite run is an infinite sequence
(s0,a1,s1,az2,...) such that(s;, ai+1, si+1), for eachi € N, is
a transition of M. For a finite rurr we write last(r) andlen(r)
for its last state and number of transitions, resp. For eXarfp
r=(so,a1,...,an, $n) thenlast(r)=s, andlen(r)=n. We write
first(r) for the first state of a (finite of infinite) run=(so, a1, . ..),
herefirst(r)=so. Let FRunsandRunsbe the set of finite and infi-
nite runs of M, and letFRungs) andRungs) be the set of finite
and infinite rung- such thafirst(r)=s.

A strategyu : FRuns—P(A) is a function mapping finite runs
to probability distributions on the set of enabled actiares, for
all finite runsr € FRunswe havesupf(n:(r)) C A(last(r)). We
say that a strategy is pureif u(r) is a point distribution for all
r € Runs while we say that it istationaryif last(r) = last(r’)
implies p(r) = p(r’) for all r,7’ € Runs We also say that a
strategy is positional if it is both pure and stationary. Wetev
3. for the set of all strategies arid for the set of all positional
strategies of the MDPM.

For a strategyy € ¥ and a starting state € S we write

timed automata and present our main result. In Section 4 and 5Rur(s, i) for the set of all runs consistent with the strategyNo-

we discuss the extensions of our results for probabiligtied au-
tomata and two player games, respectively.

2. PRELIMINARIES

We write N for the set of natural numberR, for the set of real
numbers, an® >, for the set of non-negative reals. For s&tsind
Y, we write[X — Y] for the set of functiond” : X — Y and
[X — Y] for the set of partial functions’: X — Y.

A (discrete)probability distributionover a (possibly uncount-
able) setX is a functionF’ : X — [0, 1] such that support set of
F,ie.,supgF) = {z € X : F(z) > 0}, is a countable set and
> wex F(z) = 1. LetP(X) denote the set of all probability distri-
butions overX. We say that a probability distributiofl € P(X)
is apoint distributionif F'(z)=1 for somez € X.

2.1 Optimization Problems

The semantics of priced timed automata are weighted state tr
sition systems with uncountably infinite states and actiovisle
the semantics of probabilistic timed automata are Markaisiten
processes with uncountably infinite states and actionsorBefie
introduce priced timed automata, and priced probabilistied au-
tomata, let us first introduce various concepts and defirstio this
general framework.

DEFINITION1 (MARKOV DECISIONPROCESSE$. AMarkov
decision procesgMDP) is a tupleM = (S, A, T, w) where:

— Sis a (possibly uncountable) set sfates

— Ais a (possibly uncountable) set attions

tice that if M is a weighted state-transition system ani$ a pure
strategy therRun(s, n) is a singleton set. Given a finite rune
FRunsa basic cylinder se€yl(r) is defined as the set of all infinite
runs with prefixr. Let F be thes-algebra generated by all cylin-
der sets. To analyze an MD®1 under a strategy. and a starting
states we define the probability spa¢®ungs, 1), F, Prob(s, 1))
over the set of infinite runRungs, 1) in the standard manner [26].
Note thatProb(s, 1) is the unique probability measure satisfying

n

Prob(s, 1) (Cyl(r))=[ [ T(si-1, a:)(s:) - p(ri-1)(as),

i=1

for all finite runsr=(so, a1, . .., sn), wherer,=(so, a1, . .., si).

Given areal-valued random variablg¢ : Runs— R over the set
of infinite runs, using standard techniques from probahitieory,
we define the expectatidi(s, 1) { f} of this variable with respect
to the strategy: € ¥ when starting in the statec S.

To compare the performance of an MDP under different strate-
gies, we define optimality criteria (also known as perforoeaari-
teria, or payoffs) associated with a starting state and ategly.
Discounted cost and average cost are two well-studiedrieribe
performance analysis of MDPs. For a rue= (s, a1, $1,...) We
define itsA-discounted cosD, (for A € (0,1]) and N-average
costAy (for N > 1) as:

N—

Z W(si,ai+1).

=

-

Dy (r)=A ;(14) m(si, ait1) and Ay (r)=
Observe thaD, (r) is always defined for every run sincer is
a bounded function. Due to non-negativity of price functidthe
following result follows from a result [13] of Hardy and Ligtvood.



THEOREM 1. For every runrr of an MDP M we have that

< liminf Dy(r)
A—0t

< limsup Dx(r) < limsup An(r).
A—0+ N—oo

lim inf Ay (7)
N—oo

Moreover, if the middle inequality is an equality, then akkgquali-
ties are equalities.

The notion of\-discounted cosP,, (for A € (0, 1]) and N-average
cost Ay (for N > 1) of a run can be generalized doediscounted
costDj (s, 1) and N-average costn (s, ) of a strategy of M
with starting state as:

Di(s, ) = E(s, ) {Dxr} and An (s, n) = E(s, u) {An }.

Finally, we define optimal-discounted cosD, (s) and optimal
N-average costly (s) of M with starting states as:

Da(s) = inf Da (s 1) andAn (s) = inf Aw(s. 1)

It is natural to ask whetheP, (s) and An (s) are also related in

a manner similar to Theorem 1. Lehrer and Sorin [22] gave a par
tial answer to this question in the case of uniform convergeof

Dy and Ax. We say that a sequengg,, : S—R) of functions
converges uniformly to a limiting functioff : S—R if for every
>0 there existaV. € N such that for alks € S and allN > N,

we have|fn(s) — f(s)| < e. On the other hand, the ordinary
(point-wise) convergence only require that for every> 0 and

s € S there existsVe,s € N such that for allv.> N, , we have

lfn(s) = f(s) <e.

THEOREM2 ([22]). For a Markov decision process1 and
a functionF' : S — R we have thatim,_,,+ D = F uniformly
on S if and only iflimy— o Ax = F uniformly on S.

Lehrer and Sorin [22] showed that in the absence of uniform co
vergence this relation does not hold by giving an examplenof a
MDP with countably infinite states and finite action sets vetzath
limp oo An(s) andlim, _, o+ Da(s) exist and differ.

A strategyu is Dx-optimal if for all s € S we have thaD, (s) =
Da (s, ). Observe that since the optimaldiscounted cosD, is
defined as infimum ovek-discounted costs for an infinite set of
strategies, no strategy may achieve the optimal cost. Hdoca
given precisiore>0, we define the concept efoptimal strategies.
Fore>0 we say that a strategy is e-D-optimal if for all s € S
we have thaD, (s) +& > Da(s, u). The concepts ofl x-optimal
ande-An-optimal strategies are defined analogously.

For a givens > 0 we say that a strategy isBlackwell-optimal
if for every starting state € S there exists & € (0, 1] such that
it is e-Dx-optimal for allA € (0, Ao]. The concept of Blackwell-
optimal strategy is defined in straightforward manner.d4~or0 we
say that a strategy is e-limit-average optimal if for every starting
states € S there existsVy € N such thatu is e- A x-optimal for
all N > Nop.

For a given stats € S we also define the long-run average
A(s, p) of a strategy: € ¥ and the optimal average cods) as:

A(s, p) = limsup An (s, 1) and.A(s)

N —oo

inf A(s, ).

Inf A(s, 1)

The concepts of average optimal anrdverage-optimal strategies
are defined in straightforward manner. The following reseitites
these average and discounted cost criteria for finite Mademi-
sion processes.

THEOREM3 ([24],[26]). For a finite Markov Decision Pro-
cessM and staring state we have that

I\}Enoo An(s) = A(s).

lim D

. D)
Moreover, there exist positional Blackwell-optimal, pimsial e-
limit-average optimal, and positional average-optimabstgies.

2.2 Two-Player Games

Two player zero-sum games are a well-established paradigm t
study competitive optimization problems arising from penfiance
evaluation of open systems. In these games two playersspame
to the controller and the environment, and the goal of therober
is to choose the controllable actions in such a way that apéisn
some global objective. We are interested in games playethen t
infinite graph of configurations of timed automata, wheretthe
players, player Min (typically the controller) and playeak(the
environment), aim to minimize and maximize, resp., the ctje
function over the infinite runs of the system. We are intemst
in showing the relation between the optimal value of distedn
cost objective and average cost objective. In this sulmectie
introduce various concepts in the setting of stochasticegawith
infinite state and action spaces, and review some classigalls.

DEFINITION2 (GAME ARENA). A (stochastic) game arena
isatuplel’ = (M = (S, A, T, ), Smin, SMax)) Where

— M is a Markov decision process,

— Suin and Sumax are the sets of states controlled by player
Min and player Max, respectively, such th#ti, and Syiax
form a partition of S, i.e., Smin U Smax = S and Suin N
ShMax = 0.

We say that a game arefa= (M, Suin, Smax) iS deterministic
if M is a weighted state-transition system. Also, we say that a
game arena inite if M is finite.

A strategyof player Min is a (partial) functiop : FRuns—P(A)
that is defined for a finite run ending in states controlled layer
Min, and returns a distribution over actions available ia thst
state of the run. Formally, a strategyis defined for finite runs
r € FRunsif last(r) € Smin and it is such thasupgp(r)) C
A(last(r)). A strategyy of player Max is defined analogously. The
concepts of pure, stationary, and positional strategigtaykrs are
defined in a manner analogous to MDPs. We wWiitg, andXaax
for the sets of strategies of players Min and Max, respedgtiaad
TIvin @andIIvax for the set of positional strategies of players Min
and Max, resp.

We write Rungs, p, x) for all the runs ofl" starting from state
s where player Min plays according to the strateg¥ >, and
player Max plays according to strateqy € Xmax. The proba-
bility space(Rungs, i, x), F, Prob(s, i, x)) and the expectation
E(s, u, x) {f} of thereal-valued random variabl¢ : Runs— R
are defined in a straightforward manner.

A game on a game arena is characterized by the optimaligr-crit
rion players associate with a run. In a zero-sum game it fcgrit
to define the performance criterion of player Min, and theecion
of player Max is the opposite. Similar to the optimizatiorolpr
lems discussed in Section 2.1, we consiflargame, An-game,
A-game corresponding te-discounted costN-average cost, and
the average cost criteria, respectively.

We define the concept of t,-value of a strategy. of player
Min in a gamel” with starting state as:

D)\(S7N) = Sup E(87N/7X) {DA}7
XEXMax



andD,-value of a strategy of player Max in a gamé' with start-
ing states as:

Dia(s,x) = mf IE(s s X) {Dxr} -

HEXSNM

The upper valuauval(D,) of a Dy-game is then defined as the
upper limit on the value of optimization criterion that péayMin
can ensure irrespective of the strategy used by player Makjsa
equal to

uval(Dy)(s) = inf Da(s,p).

HEXMin

The concept of the lower valdeal(D, ) of theD,-game is analo-
gous:

Ival(Dy)(s) sup Dx(s, x)-
XEXMax

It is easy to verify thatval(Dy)(s) < uval(Da)(s). If for every
states € S we have thatval(Dy)(s) = uval(D,)(s) then we say

thatD,-game is determined. In such a case, we say that the value

D> (s) exists, wheréD, (s) = Ival(Dy)(s) = uval(Dx)(s).
For a givere > 0 we say that a strategy is e-Dx-optimal if

Dx(s,Xx) = Da(s) —e.

and a strategy is Dx-optimal if Dx(s,x) = Dx(s). The Dx-
optimality of the strategies of player Min is defined analagg.
Notice that if theD,-game is determined, then each player has an
e-optimal strategy for alt>0. We say thaD,-game iositionally
determinedf

'D>\(8)

= inf sup E(s,u,x){Dxr}

HEIIMin x €S pax

sup inf E(s,u,x){Dr}
XEMMax HEEMin

for all s € S. ltis straightforward to see that #,-game is po-
sitionally determined, then both players haesitionals-optimal
strategies for alE>0. The concepts of upper value, lower value,
optimal ance-strategies, etc., faV-average cost games are defined
in a similar fashion. For average cost games the only notéwor
difference is:

A(s,p) = sup E(s,p,x){A"}
XEX Max
A(s,x) = Hemfd E(s, u, x) {A«},

whereA” (Run(s, u, x)) = limsup y_, o A~ (RUn(s, i, x)), while
A, (Rur(s, g, x)) = liminf y oo An (Rur(s, g, x))-

For a givere > 0 we say that a strategy of player Min (Max) is
e-Blackwell-optimal if for every starting statec S there exists a
Xo € (0, 1] such that it is=-Dy-optimal for allA € (0, Ao]. The
concept of a Blackwell-optimal strategy of each player ifindsl
in straightforward manner. We also defindimit-average optimal
strategies for both players. Itis well known that for finienge are-
nase-limit-average optimality is a stronger notion thaiBlackwell
optimality.

PrRoPOSITION4 ([24]). Forevery finite stochastic game arena

T, e > 0, and for both players we have that everjimit-average
optimal strategy is alse’-Blackwell optimal for=’ = 2e.

The following result relates the value of discounted coshgao
the value of average cost game in a game arena.

THEOREMS5 ([24],[11]). For a finite game aren&’, all D,-
games,Ax-games and4-games are determined. For every start-
ing states we have that

/\lirg+ Di(s) = 1\}51100 An(s) = A(s).

Moreover, both players have positional Blackwell-optimadbsi-
tional e-limit-average optimal, and positional average-optimiahse-
gies.

2.3 Operator Based Approach

Rosenberg and Sorin [28] studied the functional operadors
[0, 1] X [S—)RZ()] — [S—)RZ()] and ¥ : [S—>R20]—>[S—>R20]
and used them to show the connection between discountedrubst
average cost criteria for absorbing games and incompléteniia-
tion repeated games. We review these operators and someinof th
properties that we later exploit to prove our results foretthsys-
tems. For a game arefiawe define the operato® and ¥ in the
following manner: forA € (0,1] andf : S — R, we have

o f)(s) = Og(t){/\'f(sza)Jr(l*A)ZT(Sya)(S)f(S/)L
acA(s s'es
VN6 = opt {xloa)+ Y T -}

s'eS

whereopt isinf if s € Swmin, and issup if s € Syax-

The following proposition follows from the fact thét is mono-
tonic and for every functiory : S — R andd € R we have
DN, f+d) = P\, f) + (1-X) - d.

PROPOSITIONG6 ([28]). The operator®(},-) is a contrac-
tion with coefficient(1 — \) on the sefS — Rx(] with respect
to co-norm.

Let0 € [S — Rxo] be such thad(s) = O forall s € S. The
following equalities involving operators are easy to verif

([28]). 1. Ay =@ (%, An_1).

2. Ay = 2UN(0).

3. Dy =P (A, Dy), and

4. Dy = limn—oo (PN, )V (f), forany f € [S — Rxo].

PROPOSITION7

Proposition 7 and Theorem 5 imply the following proposition
(that can also be proved directly by extending the operatoraach
of [28]).

PROPOSITION 8. For a finite game aren&' we have that

lim lim ®(X,-)"V(0)(s) =

A—0+t N—oo

N —oo

lim %\I/N(O)(S),
for everys € S.

To emphasize some set’s correspondence to its game arena (or
MDP) T, specially when it is not clear from the context, we affix
T in the superscript. For example, we wriRind' and ©%;;, to
denote the set of runs and the set of strategies for playerrigkp.,
in a stochastic game dn

3. PRICED TIMED AUTOMATA

To present the syntax and the semantics of priced timed afitom
we need to introduce clock variables and related concepts.

LetC be a finite set of nonnegative real variables which we refer
to asclocks A clock valuationon C is a functionv : C—R>o and
we write V' for the set of clock valuations. Abusing notation, we
treat a valuationv as a point wiR‘C‘ A clock constraintoverC is

a conjunction osimple constraintsf the forme i i or c—¢’ < 4,

wherec, ¢’ € C,i € Nand € {<,>,=,<,>}. A clock zone
is a set of clock valuations satisfied by some clock constraife
write Z for the set of clock zones ovér.



DEFINITION 3 (PRICED TIMED AUTOMATA). Apriced timed
automatoris a tuple7=(L, C, Inv, Act, Enb, Rst, §, pr) where:

— L is afinite set oflocations

— Cis afinite set ofclocks

— Inv : L — Z is aninvariant condition

— Act is a finite set ofactions

— Enb : Lx Act — Z is anaction guard function
— Rst : Act — 2 is aclock reset function

— 0 : LxAct — L is atransition functionand

— pr: LU Act — N is aprice functionassigning price-rates
to locations and fixed prices to actions.

We say that a timed automatontisundedf there exists a constant
K € Nsuch thatinv(¢{) C {v €V : v(c) < Kforallce C}
forall ¢ € L. For technical convenience we restrict our attention to
bounded priced timed automata.

If v € V andt € R>( then we writev+¢ for the clock valuation
defined by(v+t)(c) = v(c)+t forall c € C. ForC C C, we write
v[C:=0] for the valuation where/[C:=0](c) equalsO if ¢ € C
andv(c) otherwise. Aconfigurationof a timed automaton is a pair
(¢,v), wheref is a location and- a clock valuation satisfying the
invariant of the locatiod, i.e.,v € Inv(¢). For any delay € R>q
we let (¢, v)+t equal the configuratiof¢, v+t).

In a configuration(¢, v), a timed action (time-action paif}, a)
is available if and only if the invariant conditialwv (¢) is continu-
ously satisfied whilé time units elapse, and is enabled (i.e. the
enabling conditionEnb(¢,a) is satisfied) aftet time units have
elapsed. Furthermore, if the timed acti@na) is performed from
(¢, v) then the next location is equal 84/, a), while the next val-
uation’ is obtained by resetting clocks iRst(a) after waiting
for ¢ time-units fromv, i.e. v’ = (v + t)[Rst(a):=0]. The price
associated with this timed action is(f) - ¢ + pr(a).

DEFINITION 4 (PTA: SEMANTICS). The semantics of a priced
timed automatoT = (L, C, Inv, Act, Enb, Rst, §, pr) is given by
a weighted state-transition systdm]=(.5, A, T', v) where

— S C LxV isthe set of states such thdt v) € S if and only
if v € Inv(¥);

— A =Ry xAct is the set oftimed actions

- T :5x A — S is thetransition functionsuch that for a
state(¢,v) € S and a timed actior{t,a) € A we have that
(t,a) € A((¢,v)) ifand only if

1. v+t € Inv(¢) for all ¢’ <t and
2. v+t € Enb({,a).
Forall (¢,v) € S,and(t,a) € A((¢,v)) we have that
T((4,v),(t,a)) = (6(£,a), (v + t)[Rst(a):=0]).

- m: 8 x A — Ry is theprice functionand it such that for
(¢,v) € Sand(t,a) € A((¢,v)) we have that

m((¢,v), (£, a)) = pr(€)-t + pr(a).

We are interested in the relation between the optikadiscounted
costD,, optimal N-average costl -, and optimal average cogt
on the weighted state-transition syst¢#]. The following theo-
rem is our main result.

THEOREM 9. For every bounded priced timed automat@n
and every starting state we have

/\lirgl+ Di(s) = A}gnoo An(s) = A(s).

Moreover, there exist-Blackwell optimal and:-limit-average op-
timal strategies for every > 0.

In order to prove this theorem we present an abstractionoégr
timed automata in the next subsection, and using that weepiha/
correctness of the reduction of optimealdiscounted cost and opti-
mal N-average cost problems for a priced timed automaton to cor-
responding problems on a finite graph. In Section 3.2 we shew t
existence of-Blackwell optimal strategies in a timed automaton
7T, and in Section 3.3 we show the proof of Theorem 9 by showing
a crucial Lemma 14. Finally, in Section 3.4 we prove a sinter
orem for optimal continuous discounting cost problem sddiy
Fahrenberg and Larsen.

3.1 Region Abstractions

The decidability of the qualitative reachability problemtomed
automata was shown by Alur and Dill [1] by showing a reductimn
the so-called region graph. The region graph, however, tisuit-
able for qualitative optimization problems as it does nasprve
any timing/price information. Several generalizationsegfion ab-
stractions, e.g. corner-point abstraction [6, 9], digifaicks [21],
and boundary region abstractions [18], have been propossuie
quantitative optimization problems on timed automata. Vsent
the boundary region graph abstraction, and prove the dogss
of the reduction of discounted cost optimization problenpdoed
timed automata to that on its boundary region abstractiohe T
boundary region graph has the property that for a fixed stastiate
the reachable subgraph (a state-transition system) fratisthte is
finite. This subgraph coincides with the corner-point adagion if
the valuationv of the starting state is@rid point, i.e. v € NI°I,

Before we present the boundary region abstraction let wg-int
duce some concepts and notation related to the region etistra

For a bounded timed automat@n let SCQv) be the finite set
of simple constraints which hold in € V. A clock regionis a
maximal setR C V such that SCG/) = SCQ') for all v,v’ €
R. We writeR for the set of clock regions af . Observe that every
clock region is an equivalence class of the indistinguighgtiy-
clock-constraints relation, and vice versa. For a clockiatibnv
we write[v] for its clock region and, iR = [v], we write R[C:=0]
for the regionv[C:=0]].

For regionsRk, R’ € R, we say that the clock regioR’ is in
the future of clock regiom, or R is in the past of?’, if there are
v € R,V € R and delayd € R such that/’ = v+d; we
then writeR —. R’. For regionsR, R’ € R such thatR —. R’
we write [R, R'] for the union of the set of regions that are in the
future of R and in the past of?’. We say that a clock regioR is
thinif [v] # [v+¢] for everyr € R ande>0, andthick otherwise.
We write Rhin @and Rhick for the sets of thin and thick regions,
respectively. For a set C V of valuations we writelos(X') and
bd(X) for the closure and the boundary, respectively, of theXset
with respect to Euclidean topology &LC(‘)

The main idea of the boundary region abstraction is thatig th
abstraction from every configuration we permit only thosgetde-
lays that let the system reach a configuration either in artigion
or close to a boundary of a thick region. There is an additiover-
head of storing regions as part of configuration and timeirst
because thick regions are open sets of configurations armbthe
figurations lying on the boundary of a thick region do not belto
the thick region itself.



DEFINITION5 (BOUNDARY REGION GRAPH). The boundary
region graph ofT = (L, C, Inv, Act, Enb, Rst, 0, pr) with seman-
tics[7] = (S, A, T, ) is given by a weighted state-transition sys-

tem7=(S, A, T, #) where

- § C LxV xR is a set ofstatessuch that(¢, v, R) € § if
and only if(£,v) € S andv € clos(R);

— A =Rs>¢xRxAct is a set ofboundary timed actions

-T:8x
a state (¢,
(t, R, a)
Ro C Enb(4,
and(t, Ra, a)

is a transition functionsuch that for
) S and (t, R.,a) € A we have that
A((¢,v,R)) if and only if[R, R.] C Inv(),

a),andv +t € bd(R.). Forall (£,v,R) € §

€ A((¢,v, R)) we have

A - S
v, S
S
(£

T((Z, v, R), (t,Ra,a)) =

(6(¢,a),v+t[Rst(a):=0], Ra[Rst(a):=0]).

A - Risa price functionsuch that fors =
e Sand(t,R,a) € A((¢,v, R)) we have that

#((¢,v, R), (t, R',a)) = pr(£) - t + pr(a).

-7

S x
¢,v,R)

We write 7; for the weighted state-transition graph obtained by
restricting the set of states to the set of reachable statessfe S.

By the definition of a boundary region graph it follows that fo
every((,v,R) € Sif (t,Ra,a) € A(({,v, R)) then

— eitherR, is thin, andv + ¢ € clos(R,), or

— R, is thick, andt = inf{t' | v +¢ € clos(R
sup {t' | v +t' € clos(Ra)}

)} ort =

Moreover, sucht is a natural number if is a grid point, otherwise
there is a clock € C and numbeb € N such that = b — v(c).
The following property is now immediate.

PROPOSITION1O ([18]). If 7 is a bounded priced timed au-
tomaton then for everye S the setA(s) of enabled boundary ac-
tion is finite. Moreover, for everye S, the weighted state-transition
systent/; is finite and its size is exponential in the siz&/of

Now let us review the functional operatobsand ¥ for a timed
automatonZ and the related operatofis and ¥ for its boundary
region graph . For every state = (¢,v) € S of T, a function
f:8 —R,andX € (0,1] we define

o\ f)(s) £ inf {X-7(s, 1)+ (1= N) - F(T(s,7)},

TEA(S)
V(N = inf {w(sm)+ [(T(s,7))}
Similarly, for every states = (£,v,R) € S of 7, a function
f:S5—R,andX € (0, 1] we define
B N6) = min {37ls,) 4 (1= ST (7)),
U(f)(s) £ min {#(s,7)+ [(T(s,7))}-

TEA(S)

We say that a functiorf : 5 — R is regionally concave and
C-continuous, if for every locatiof € L, and regionR € R the
function f(¢,-,R) : v € clos(R) — f(¢,v, R) is concave and
Lipschitz continuous with constalt. The following proposition
is useful in showing the connection between operatorg amd7 .

PROPOSITION 11. The function¥™ (0) and & (X, -)™V (0) are
regionally concave and Lipschitz continuous with constgit - N)
and W, respectively, wher® is the largest location price-rate.

The proof of this proposition follows from the fact that ifanfction

f : S — Ris regionally concave an@-continuous ther@()\ f)
and \I'(f) are regionally concave and Lipschitz continuous with
constantsnax {C, W} andC + W respectively. It is shown using
the following properties of concave functions:

—If f: S — Risconcave, ang : S x R>o — S is affine,
thenf(g(-)) : S x R>o — Sis concave.

—If fi,f2 : S — R are concave andi, w2 € Rxo then
w1 - f1 + w2 - fa IS cOncave.

—If f1, f2,..., fn : S — R are concave functions, then their
point-wise minimum is also concave.

The proof for Lipschitz continuity follows from the followg prop-
erties:

—If f:S — Ris ki-continuous andy : S x R>o — S

is k2-continuous, therf(g(-)) : S x R>g — Sis k1 - ka-
continuous.
—If f1,fo : S — R arek;-continuous and:cz-continuous,

respectively, andvi, w2 € Rxo thenw; -
w1 k1 + wake continuous.

—If fi,fo,...,fn + S — R are continuous with constants
ki, ka2, ..., kn, resp., then their point-wise minimum is also
Lipschitz continuous with constaniax {k1, k2, ..., kn }.

For a states = (¢,v) of 7 we write [s] = (4, v, [v]) for the cor-

responding state ifi. The following relation shows the correct-
ness of the reduction of the optimal discounted cost prolftem
a priced timed automaton to its boundary region graph.

fi+twe- fols

PROPOSITION 12. For every bounded priced timed automaton
T we have

vV (0)(s) =
Jim B(\, )Y (0)(s) =

UM (0)(]s]), and
Jim ®(x, )" (0)([s)).
for everys € S and everyN € N.

PROOF We first show by induction oV that ¥V (0)(s)
UM (0)([s]). Let us first see the base case for= 1. Lets =
(L,v)es.

o= “’“i)r'g“(s) {m(s +0(T(s, (t,a)))}
- (t,a)%enj(g’l,) {7"(37 (La))}
= min min inf {ﬁ(s,(tya))}

ac€Act RER {t: v+teR}

= min min inf

r(€)-t-+pr
a€Act RER {t: v+teR} {p ( ) P (a)}
= min min

a€Act RER {t: l/+t€bd(R)} {p (1)
{m([s), (t, R, @))+O(T([s], (¢, R, a)))}

)-t+pr(a) }
= min

(t,R,a)EA

= ¥(0)(s).

The only non-trivial equality is (1) which follows as for a &

(¢, v) the function p¢?) - t + pr(a) is concave (linear) in, and for
every concave functioffi : (a b) — R we have that

inf {f }

{t: <t<b}



wheref is the unigue continuous extension obn [a, b].

For the inductive step assume thaf' (0)(s) = UV (0)([s]).
We show that the equality holds fof + 1. Following a reasoning
similar to the base case, in order to prov&+*(0) = ¥V*+1(0)
we need to show that for every stde ) € S, actiona € Act
and regionR in future ofv, the function

pr(e) - ¢ + pr(a) + ¥ (0)([T(s, (¢,a))]) @)

is concave irt on the domain{t : v+t € R}. It follows easily
considering the following facts:

— ¥ (0) is regionally concave (Proposition 11).

—If f: S — Risconcave, ang : R>o — S is affine, then
f(g()) : R0 — Sis concave as well.

— If f1,f2 : R>o — R are concave and, w2 € Rxo then
w1 - f1 + w2 - f2 is concave as well.

The proof for the equivalence @ and & operators is along the
similar lines and hence is omitted[]

3.2 Blackwell Optimal Strategies

To see the difference between different optimality créedon-
sider the timed automaton shown in Figure 1 with four loaatio
Lo—¢s and one clocke. The triplet on a transitions shows clock con-
straint of the action guard, action label, and the resekciet. Let
the price of a timed action be equal to the time delay, i.€/)pe 1
and pfa) = O for all £ € L anda € A. In this simple example
there are only three strategies.

— (Strategya): Choose actioru in location ¢, after 0 time
units, and then take the only available actibim location/,
every2 time unit. TheD, cost for this strategy i8(1 — \),
An-costis2 — 2/N, and the average costls

— (Strategyb): Choose actiorb in location ¢y after 10 time
units, and then take the only available actibim location/s
every1 time unit. TheD, cost for this strategy i + 9\,
An-costisl 4+ 9/N, and the average costis

— (Strategyc): Choose actiom in location?, after1 time unit,
and then take the only available actidim location/s every
1 time unit. TheD,-cost, thed y-cost and the average-cost
for this strategy id.

It is easy to see that the strategys Dx-optimal for allA > 0.5,
while for all other\ € (0, 0.5] the strategy: is optimal, hence the
strategyc is Blackwell-optimal. Also, strategy is limit-average-
optimal for all N > 2. Notice that under average cost criteria
both strategies andc are optimal, while it is obvious that strategy
c is always preferable to strategy To make this example more
interesting, consider the case when the guard on the locfits

r=0,a,{z
D@
x =10,b,{z}
—( £ —@ﬂazz 1,d,{z}
z=1,¢{z}

~@ﬂx= 1,d, {2}

Figure 1: Discount optimal, average optimal and Blackwell-
optimal strategies

strict, i.e.z > 1. Clearly there are no Blackwell-optimal or limit-
average-optimal strategies in this case. However, foryever 0
the strategy that choosds+ e delay ise-limit-average optimal
forall N > (2 —¢)/(1 — ), ande-Blackwell optimal for all\ €

(0, Xo] for Ao = 1/No. The following theorem shows the existence
of e-Blackwell optimal ands-limit-average optimal strategies for
all bounded priced timed automaton.

THEOREM 13. For every bounded priced timed automat®n
and every starting state € S there exist-limit-average optimal
ande-Blackwell optimal strategies for eveey> 0.

PROOF We only sketch the existence eflimit-average opti-
mal strategies. The proof for the existenceséBlackwell optimal
strategies is along the similar lines and hence omitted.

Let us fix a states € S of 7. Notice that[s] € S is its corre-
sponding state in the boundary region graplof 7. From Propo-
sition 10 we know that for evers] € S the reachable weighted
state-transition system @f from [s] is finite. The existence of an
e-limit-average optimal strategy i now follows from Theorem 3.
In other words, for everg > 0 there exists a strategy. € ©7
and Ny € N such that for allv > Ny we have

AL (), me) < AL ([s) + e ®)

It was shown in [6, 18] that for every € S, e > 0 andu € »7
there existg.’ € %7 such that for allV € N we have

AL (s, 1) < AL (18], ) + <. (4)

Notice that from Proposition 12 and 7 we have th ([s]) =
AZ (s)foralls € SandN € N. Combining (3) and (4) it is now
easy to see that for evegye S ande > 0 there exists a strategy
us € 27 and Ny € N such that for allV > N, we have

AR (s, 1) < AR (s) + e

The proof is now complete. [

3.3 Proof of Theorem 9

LEMMA 14. For every bounded priced timed automatbrand
every starting state we have

Alirg+ Di(s) = Iégnoo An(s) = A(s).

PROOF From Proposition 12 we know that for evetye S we
have that
lim (), )" (0)(s) =

N—o0

Jim (X, )™ (0)([s))-
Moreover since the reachable subgraphZofrom [s] is a finite
weighted state-transition system, from Theorem 3 it ingdifet the
limit lim, _, o+ Dx(s) exists. Now for every € S we show that it
implies thatlim y . .. An (s) exists and is equal tom o+ Da(s)
via the following equalities.

lim  lim ®(X,-))"(0)(s)

lim Dy(s) =
A—0+ A—0t N—oo

= lim lim @(A,))N(O)([S])

A—0+ N—oo

. 1 -xN
= lim < #(0)(s)

. 1 N
= lim N\I’ (0)(s)

N —oo

= Jm v ()



The first and fifth equalities are from Proposition 7. The selcand
fourth equalities are from Proposition 12. Finally the dréiquality
follows from Proposition 8 and the finiteness (Propositi@) a&f
the reachable state-transition systenyofrom [s].

Now we show thalimy_.. An(s) = A(s), which follows
from (5) and (6). First notice that for every stratagyc ¥ we have
thatinf,ex An (s, 1) < An(s, '), forall N € N. Itimplies that
limy— oo infuex An (s, ) < limsupy_, ., An(s,p’). Sincep’
was taken arbitrarily, it implies that

lim 1nf An(s,p) < mf limsup An (s, ).

N—oo pe N—oo

©)

The existence of-limit-average optimal strategy (Theorem 13)
implies that for arbitrarily smalt > 0 there exists a strategy. €
¥ andNy € N such that for allN > N, we have that

inf An(s,p) > An(s, px) — €.
HES

That implies that

lim mf An(s,p) > limsup An(s, pu«) — €
N—oo pe N—oo

Now it trivially follows that for alle > 0 we have

lim 1nf An (s, ) > inf limsup An (s, u) — €. 6)
HEX N—oo

N—ocop

The proof is now complete. [

3.4 Continuous Discounting

We say that a priced timed automaton is time-divergent if for
every strategy the runRur(s, o) = (so, (t1,a1), s1, .. .) is such
that}~°°, t; = co. Fahrenberg and Larsen [9] studied bounded
and time-divergent priced timed automata and defined cootis
discounted cost criterioB» () of the runr as:

Dy (r) Y <Ze AMitipr(ais) + /000 €Mp"(7")(t)dt> )

=0

wherer = <(£0, l/())7 (tl, al), (41, 1/1), ..
and p(r) : R>g — R>¢ is defined as:

pr(r) (t) = pl’(&) if A <t< A¢+1.

They conjectured the relation between this continuousodisting
criterion with the following average cost criterion intrazed in [6]:

ANl
<Z pr(ait1) / pr(r) (t)dt) .

=0
We deflndD)A(s o) £ D(Run(s, o)), An(s,0) £ An(Run(s, o)),
A(s,0) Eliminf oo An(s,0), andA(s) = inf,ex A(s, o).
Larsen and Fahrenberg [9] conjectured the following.

DA =30t to=0,

A r def
n(r) AN+1

THEOREM 15. For a bounded and time-divergent priced timed
automatorZ” we have thatim, _, o+ Da(s) = A(s).

PROOF The proof of this theorem can be shown using continu-
ous versions of operatofs and¥. However, for convenience we
prove this theorem by exploiting known results [9, 6] of tierect-
ness of the reductions of optimal continuousliscounted cost and
optimal continuous average cost on a bounded and timeggiér
priced timed automaton to its boundary region graph (copoant
abstraction).

We begin by observing that the limiiin,_, o+ D (s) exists since
for every\ we have thaD, (s) on 7 is equal taD, ([s]) on7, and
finiteness (Proposition 10) of the reachable state-tiansiystem

of 7 from [s]. Now from the existence of positional Blackwell
optimal strategies on finite MDPs we have:

Jim Da(s) = lim D([s])
def
T f D ,
Ai%lmlenz A(([s]), 0)

= 1 D ,
Aggmrgg; A(([s]), 0)

lim D 7).
i tim, Da((ls]), )

The third equality follows from the existence of positiodacount
optimal strategies in a finite MDPs [26], while the proof oé tlast
equality follows from the existence of Blackwell-optim#dategies
(Theorem 3) in a finite MDP, and the proof is similar to thatloé t
proof of (5) and (6) in the proof of Lemma 14.

For every positional strategy € 117 in 7 we know that the
limit lim,_ o+ Dx(([s]), o) exists. Feller [10] showed that for a
given Lebesgue-measurable and bounded real fungtiea have

liminf Vy < liminf V) < liminf V) < liminf Vy,
N—oo A—0Tt A—0t N—oo

whereVy = & [V g(t)dt andVa = X [° e g(t)dt. More-
over, if the middle |nequaI|ty is an equality then all inelities
are equalities. Combining this fact with Theorem 1 we hawat th
limy_, o+ Dr(([s]), o) isequal tdim inf y —oc An(([s]), o). Hence,
it follows that
lim Dy (s) = min liminf An([s], o).
A—0t oen? N—oo
For time-divergent priced timed automata it was shown irtt@}
there exist positionah-optimal strategies, and hence
min liminf Ay ([s],c) = inf liminf Anx([s], o).
UEHT — 00 UEET — 00
Now from the correctness [6] of the reduction of averageepper-
reward problem for a bounded and reward diverging price@dim
automaton to its boundary region graph, it follows that
lim Da(s) = inf hmlanN([] o)
A—0+ ocexT

= inf liminfAn(s
cexT N—oo

,o) = A(s).
The proof is now complete. []

4. PROBABILISTIC TIMED AUTOMATA

Probabilistic timed automata naturally extend both timemata
and Markov decision processes, and can model uncertaingaln
time systems. Building upon our results on timed automat, w
relate expected discounted cost optimization problem peeted
average cost problem on probabilistic timed automata.

DEFINITION 6. A pricedprobabilistic timed automatos a tu-
ple7 = (L,C, Inv, Act, Enb, §, pr) where

— L is afinite set oflocations

— Cis afinite set ofclocks

— Inv : L — Zis aninvariant condition

— Act is a finite set ofactions

— Enb : Lx Act — Z is anaction guard function

— & : LxAct — P(2° x L) is aprobabilistic transition func-
tion; and pr: L U Act — Nis aprice function



The semantics of a priced probabilistic timed automaforis a
Markov decision procesfl'| = (S, A, T, ) where the sef, set
A, setA(s) for s € S, and price functionr are defined in the same
way as in Definition 4. The only difference is the probabitist
transition functionl” : S x A — P(S) and is defined as:

T((Zv V)7 (t7 a))(f/, V/) =
> {6(L,a)(C, ) : C CCandy +t[C:=0] = '},

For (¢,v), (¢',V') € Sand(t,a) € A((¢,v)).
We have the following result analogous to Theorem 9 for proba
bilistic timed automata.

THEOREM 16. For every bounded priced probabilistic timed
automaton7 and every starting statewe have

Aling+ Di(s) = 1\;51100 An(s) = A(s).

Moreover, there exist-Blackwell optimal anct-limit-average op-
timal strategies for every > 0.

The proof of the existence af-Blackwell ands-limit-average
optimal strategies is very similar to the proof of Theorem 13
uses following results from [16]: for every € S, strategyu
of a boundary region grapf (now a Markov decision process),
ande > 0 there exists a strategy in 7 whose N-average cost
is at moste worse than that of. for all N € N, and an analo-
gous result forx-discounted cost. The proof for the equivalence
of limy g+ Da(s), imy oo An(s) and.A(s) follows the proof
of Lemma 14, as also in the case of priced probabilistic tiened
tomata, the operators( )\, f) and¥ (/) stay regionally concave for

every regionally concave functiof: S — Rxo.

5. TIMED GAMES

Two player zero-sum games on timed automata and probabilist
timed automata can model controller synthesis problemsefalr
time systems. For simplicity we consider turn-based ganmes o
probabilistic timed automata. The results presented hemepar-
tially be extended to concurrent timed games model of [12hwi
some effort. A turn based timed game is played between twe pla
ers Min (the controller) and Max (the environment) who counst
an infinite run of the (probabilistic) timed automaton by cbimg
a timed action when the play (finite execution so far) reaches
location controlled by them. Players choose their movesideio
to optimize their respective payoffs. The discussion bekdor
games on probabilistic timed automata, but results imptyilar
results for games on timed automata.

DEFINITION 7. A probabilistic timed game arena is a tudle=
(T = (L,C, Inv, Act, Enb, §,pr), Lmin, Lmax ), Where

— 7T is a priced probabilistic timed automaton with a restricted
price function pr: L U Act — N such that p(/)=1 and
pr(a)=0forall £ € L anda € Act.

— Lwain and Lyax are the set of locations controlled by player
Min and player Max, respectively, such thatr, and Laiax
form a partition of the sef. i.e. Lmin U Lmax = L and
Lyiin N Lytax = 0.

The semantics of a probabilistic timed game arEria defined as
a stochastic game arefie] = ([7] = (S, A, T, 7), Smin, SMax)
where[ 7] is the semantics df, the setSain = {(¢,v) : £ € Lain}
and the sefuvax = S\ Suin-

The following theorem is the main result of this section.

THEOREM 17. For every bounded probabilistic timed game arena
T" and every starting statese S we have

Jim Dy(s) = lim_ Aw(s) = A(s),

Moreover, there exist-Blackwell optimal anct-limit-average op-
timal strategies of both players for every> 0.

For such game arena it was shown in [12] tfat games are po-
sitionally determined for alk € (0, 1]. Using similar techniques,
we show thatd x games are determined for &1 € N. The proof
for the equivalence ofim,_,y+ Dx(s) andlimy—.o An(s) fol-
lows the structure of the proof of Lemma 14. However, the proo
of Proposition 12 can not be lifted directly as the functidn(s\, f)
and\i/(f) are no longer regionally concave for a regionally concave
function f, due to both minimum and maximum appearing on the
right hand sides of the operatofsand ¥. We use quasi-simple
functions, introduced by [12], in the place of concave fiomd to
show analog of Proposition 12 for probabilistic timed games

Due to space constraints, we only sketch the existenediofit-
average optimal strategies. It follows closely the strietof the
proof of Theorem 13, and uses Theorem 5 and the following fact

PROPOSITION 18. For every bounded probabilistic timed game
arenal, states € S, strategyy € X7 of player Min in7, and
e > 0 there exists a strategy’ € 7 and Ny € N such that for
all N > Ny we have that

AR (s, 1) < AR ([s) 1) + e
An analogous result holds for strategies of player Max.

The proof of this proposition uses the fact that they .o Ax
is regionally constant and is along the same lines as thef pfoo
Proposition 7 in [19].

Now we show the equality dfim ... An(s) andA(s). Since
for all N € N we know that4 y-games are determined, we have

inf  sup An(s, ) =

sup  inf  An(s,u, Xx).
HEXMin xE€Spax Min

XEEMax HEZ

Let x. € Xmax bee-limit-average optimal strategy of player Max
and hence there exisié, € N s.t. x. is e-optimal for player Max
in all Ay games forN > Ny. It follows that

inf An(s,pu, €
l"elgl\/lin N(S " Xs) +

S AN(87N/7XE)+87

for any arbitrary strategy’ € Xwmin. It is now immediate that

inf  sup An(s,my) <
HEZMin xESMax

lim inf sup An(s,p,X)
N—o00 p€XMin x€Spax

< sup limsup An(s,i’,x) +¢
XETMax N—o0

< inf sup limsup An(s, i, x) + ¢,
KEBMin xESNax N—o0

sincey’ was an arbitrary strategy. Similarly, we show that

lim inf sup An(s, 1, X)
N—00 p€XMin x€Spax

> inf sup

> liminf An (s, p, x) — €,
HEZXMin x €S pax

In a similar manner we show the equality of the lower valueswN
the determinacy of thed-games on bounded probabilistic timed
game arenas follows from the determinacy/Af-games on these
arenas. Thed-games on probabilistic timed game arenas are also



known as expected average-time games [12, 17]. Theorem 17,[10] W. Feller.An Introduction to Probability Theory and its
along with the correctness of the reduction [12]72f-games on

a probabilistic timed game arenas,-games on corresponding

boundary region graphs, shows a reduction from expectedgse

time games to4-games on the finite subgraph of reachable states

of the corresponding boundary region graph. The followieguit
is now immediate.

THEOREM 19. Expected average-time games [12] on bounded

probabilistic timed game arenas are decidable.

6.

Competitive optimization problems on timed automata are ce

CONCLUSION

tral to model based performance evaluation and optimaraiet

design for embedded systems. Discounted cost and average co

criteria are two standard performance metrics for reacjgems.
We studied the limits oh-discounted cost ani¥-average cost per-
formance criteria for timed automata and its generaliratioNe
showed the equivalence of these limits to the optimal avecagt
criterion for priced timed automata, priced probabilidiined au-

tomata, and probabilistic timed games. Our results showva ne

proof of determinacy and decidability of expected avertge-
games on probabilistic timed automata, while simplifying a-
ready known result for average-time games on timed automata
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