
Scenario-based Programming for SDN Policies ∗

Yifei Yuan Dong Lin Rajeev Alur Boon Thau Loo
University of Pennsylvania

ABSTRACT
Recent emergence of software-defined networks offers an
opportunity to design domain-specific programming abstrac-
tions aimed at network operators. In this paper, we propose
scenario-based programming, a framework that allows net-
work operators to program network policies by describing
representative example behaviors. Given these scenarios,
our synthesis algorithm automatically infers the controller
state that needs to be maintained along with the rules to pro-
cess network events and update state. We have developed
the NetEgg scenario-based programming tool, which can ex-
ecute the generated policy implementation on top of a cen-
tralized controller, but also automatically infers flow-table
rules that can be pushed to switches to improve throughput.
We study a range of policies considered in the literature and
report our experience regarding specifying these policies us-
ing scenarios. We evaluate NetEgg based on the computa-
tional requirements of our synthesis algorithm as well as the
overhead introduced by the generated policy implementa-
tion. Our results show that our synthesis algorithm can gen-
erate policy implementations in seconds, and the automat-
ically generated policy implementations have performance
comparable to their hand-crafted implementations.

CCS Concepts
•Networks→ Programming interfaces; Network manage-
ment;

∗This research was partially supported by NSF Expeditions
in Computing award CCF 1138996, CNS-1218066, CNS-
0845552, and CNS-1117052.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT’15 December 01-04, 2015, Heidelberg, Germany
c© 2015 ACM. ISBN 978-1-4503-3412-9/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2716281.2836119

Keywords
Software defined networking; programming by examples;
policy synthesis

1. INTRODUCTION
Software-defined networking (SDN) holds the promise of

extensible routers that can be customized directly by net-
work operators. Major router vendors now provide APIs
(OpenFlow or vendor specific) that provide various forms of
extensibility for traffic steering, on-demand network virtual-
ization, security policies, and dynamic service chaining. The
enhanced programming interface of SDN offers an opportu-
nity to design domain-specific programming abstractions for
network operators to take advantage of the flexibility to pro-
gram network policies.

To take advantage of this new wave of innovation, recently
proposed domain-specific languages or DSLs (e.g. declara-
tive networking [14], Frenetic [6], Pyretic [16], NetKAT [2],
NetCore [15], FlowLog [18], Merlin [20], FatTire [19]) make
it easier to program controllers with orders of magnitude re-
duction in code sizes by raising the level of abstraction.

A key challenge that has yet to be addressed is provid-
ing an intuitive programming abstraction that allows net-
work operators even with little programming experiences to
program their own protocols and policies, hence taking ad-
vantage of the new programming interface.

Motivated by recent work on programming by examples [10,
9, 11], we investigate an alternative approach aiming at pro-
viding network operators intuitive programming interfaces.
Our approach is based on synthesizing an implementation
automatically from example scenarios and providing a plat-
form whereby operators can observe the synthesized imple-
mentation at runtime, and then tweak their input scenarios to
refine the synthesized program.

Our proposed approach is based on the observation that
network operators typically like to use examples such as tim-
ing diagrams to design new network configurations and poli-
cies. In most cases, these examples would be generalized
into design documents, followed by pseudocode and then fi-
nally implementation. We aim to facilitate the entire process
by generating implementations directly from the examples
themselves, hence giving the power of network programma-

bility to all network operators. While the focus of this paper
is on SDN settings, the approach is general and can be ap-
plied to any network protocol design and implementation.

Specifically, this paper makes the following contributions:
Scenario-based programming framework. We propose
the framework of scenario-based programming (Section 4),
which allows network operators to specify network policies
using example behaviors. Instead of implementing a net-
work policy by programming, the network operator simply
specifies the desired network policy using scenarios, which
consist of examples of packet traces, and corresponding ac-
tions to each packet.
Proof-of-concept design and implementation. We have
developed the NetEgg tool, including a synthesis algorithm
(Section 5) and an interpreter for executing policies. Given
the scenarios as input, our synthesizer automatically gener-
ates a controller program that is consistent with example be-
haviors, including inferring the state that needs to implement
the network policy, relevant fields associated with the state
and rules for processing packets and updating states. The in-
terpreter executes the generated policy program for incom-
ing network events on the controller, as well as infers rules
that can be pushed onto switches (Section 6).
Validation. We validate the NetEgg tool by synthesizing
SDN programs that use the POX controller directly from
examples. Our tool is agnostic to the choice of SDN con-
trollers, and can also be used in non-SDN settings. We demon-
strate that using our approach, we are able to synthesize a
range of network policies using a small number of exam-
ples in seconds (Section 7). The synthesized controller pro-
gram has low performance overhead and achieves compara-
ble performance to equivalent imperative programs imple-
mented manually in POX (Section 8). Moreover, the exam-
ple scenarios are concise compared to equivalent imperative
programs.

NetEgg should be viewed as enabling a rapid prototyp-
ing platform where users can iterate through example sce-
narios, observe runtime behavior to determine correctness,
and tweak their scenarios otherwise. NetEgg is correct and
consistent with respect to the input scenarios. Synthesizing
the input scenarios themselves based on high-level correct-
ness properties is an avenue of future work.

2. ILLUSTRATIVE EXAMPLE
To illustrate the use of NetEgg, we consider the exam-

ple where a network operator wants to program a learning
switch policy supporting migration of hosts on top of the
controller for a single switch. The learning switch learns
incoming ports for hosts. For an incoming packet, if the des-
tination MAC address is learnt, it sends this packet out to the
port associated with the destination MAC address; otherwise
it floods the packet. To support migration of hosts, the learn-
ing switch needs to remember the latest incoming port of a
host.

To program the policy, the network operator simply de-

scribes example behaviors of the policy in representative sce-
narios, in the form of network timing diagrams. Figure 1
shows a scenario described by network operators.

Scenario 1

flood
<P1,h1,h2>

<P2,h3,h1>

send(P1)

<P3,h2,h3>

send(P2)

Figure 1: A scenario describing the learning switch. In
the scenario, a packet is denoted by a 3-tuple: 〈incoming
port, source MAC, destination MAC〉.

The scenario. In this scenario, the network operator de-
scribes example behaviors of the policy using three packets.
The first packet arriving on port P1 with source MAC ad-
dress h1 and destination MAC address h2 is flooded by the
switch, since no port has been learnt for h2. The second
packet from h3 to h1 should be sent directly to the port P1,
according to the port learnt from the first packet. The third
packet from h2 to h3 should be sent to the port P2, since
the second packet indicts that h3 is associated with port P2.
Note that instead of using real port numbers and MAC ad-
dresses in the packet, the network operator uses variables
for each field. The variables stand for a variety of concrete
values.

Given this scenario, NetEgg automatically synthesizes the
desired program. The synthesized program can be executed
on the SDN controller, as well as install flow table rules onto
switches. As part of the program generation, NetEgg auto-
matically generates the data structures and code necessary to
implement the policy.

Network operators may further test the synthesized pro-
gram using existing verification and testing techniques, and
refine the program if needed. As part of refinement, network
operators simply illustrate new scenarios (e.g. obtained from
counter examples) to NetEgg, and NetEgg automates the re-
finement by synthesizing a new program from the new set of
scenarios. We will demonstrate more use cases in Section 7.

3. TOOL OVERVIEW
Figure 2 provides a high-level overview of NetEgg. The

network operator describes example behaviors about the de-
sired network policy in representative scenarios (network
timing diagrams, which we refer to as scenarios) to NetEgg.
These network timing diagrams are written in a configura-
tion language, which we will describe in Section 4. The tool
first checks whether there exist conflicts among the scenar-
ios. If two scenarios conflict with one another, NetEgg dis-
plays the conflict to the network operator. After the operator
resolves all conflicts, NetEgg tries to generate a policy de-
scribed in the scenarios.

The generated policy uses a set of state tables and a pol-
icy table. State tables are used to remember the history of
a policy execution. The policy table dictates the actions for
processing incoming network events and updates to state ta-

bles for various cases.
When executing the policy, the interpreter, sitting on top

of the controller, looks up the policy table for incoming net-
work events (e.g. packetin, connectionup and other events),
which will determine state table updates and actions to be
applied to the network events. Moreover, NetEgg automati-
cally infers rule updates to the data plane from current state
of the policy execution, thus reducing controller overhead
and network delay.

Network

 Example
behaviors

Synthesizer
Policy table

Controller
Interpreter

Policy

Conflicts

Network events
Packet instruction/
Rule installation

State tables

Bad network behaviors

Figure 2: Tool architecture.
While NetEgg is general to handle any network events, we

focus on packetin events in this paper in order to simplify our
presentation.

Revisiting the learning switch example from the previous
section, we first describe the state tables that are generated
by our tool, before describing the policy.

3.1 State Tables
In our example, the learning switch needs to remember

whether a port is learnt for a MAC address, and if learnt,
which port is associated with the MAC address. Hence, the
generated policy maintains a state table ST , which stores a
state and a value (in this case a port number) for each MAC
address. An example of the snapshot of ST is shown below.

MAC state value
A 1 2

OP...

Our tool automatically derives the facts that for a given
MAC address macaddr, the state of macaddr in ST is ei-
ther 0 or 1, indicating that the port associated with macaddr
is unknown yet, or learnt, respectively. ST also stores a port
for MAC addresses with state 1. Initially, the program as-
signs all states in the table to be 0. The program accounts
for two cases: 1) When the destination port is unknown, it
floods the packet through all ports; 2) When the incoming
packet’s destination port is known, it sends the packet out
through the port associated with the destination MAC ad-
dress. In both cases, the state associated with the source
MAC address is set to be 1, and the incoming port for the
source MAC address is remembered.

3.2 Policy Tables
The state table is manipulated by rules implementing the

desired policy. These rules are captured in a policy table, as
shown in Table 1 for the learning switch example. We delay
the discussion of its generation to Section 5.

match test actions update

* ST (dstmac)
.state=0 flood ST (srcmac)

:=(1, port)

* ST (dstmac)
.state=1

send(
ST (dstmac)

.value)

ST (srcmac)
:=(1, port)

Table 1: The policy table for the learning switch.

The policy table contains two rules, represented as the
two rows in the table, corresponding to the two cases in
the program described above. Every rule has four compo-
nents: match, test, actions and update. The match speci-
fies the packet fields and corresponding values that a packet
should match. In this example, no matches need to be spec-
ified and we use ∗ to denote the wildcard. The test is a
conjunction of checks, each of which checks whether the
state associated with some fields in a state table equals a
certain value. For example, the test in the second rule has
one check ST (dstmac).state=1, which checks whether the
state associated with the dstmac address of the packet is 1
in ST . The actions define the actions that are applied to
matched packets. In this example, the action in the first
rule floods the matched packet to all ports and the action
send(ST (dstmac).value) in the second rule first reads the
value (in this case, the port) stored in ST for the dstmac
address of the matched packet, and sends the packet to that
port. The update is a sequence of writes, each of which
changes the state and value associated with some fields in a
state table to certain values. For example, the write
ST (srcmac):=(1,port) changes the state associated with the
srcmac address of the packet to 1 in ST , and stores the value
associated with the srcmac address of the packet to the port
of it.

3.3 Interpreter
The interpreter processes incoming packets at the con-

troller using the policy table. The pseudocode of the inter-
preter is shown in Figure 3. The interpreter matches each
incoming packet against each rule in the policy table in or-
der. A rule is matched, if the packet fields match the match
and all checks in the test of the rule are satisfied. The first
matched rule applies actions to the packet, and state tables
are updated according to the update of the rule. Moreover,
NetEgg automatically infers the rules that can be installed
on the data plane from the latest configuration of state ta-
bles. The corresponding function is update_flowtable in the
pseudocode. We will describe policy execution in more de-
tail in Section 6.
Example. Figure 4 shows an illustrative execution for the
incoming packet trace in subfigure (a). Since the purpose
of this example is to illustrate how a policy table is exe-
cuted, we assume that every packet is processed on the con-
troller. Initially, all states in the state table ST are 0, and
all values are ⊥, meaning unknown, as shown in subfigure
(b). The first packet p1 is matched against each rule in Ta-
ble 1 in order at the controller. The first matched rule is

Input: a packet p
for i = 1 to n do

if rule ri matches p then
execute the actions and update of rule ri on p
update_flowtable(p)
return

end if
end for
apply default actions to p

Figure 3: The interpreter.

the first rule, since p1 matches the match (∗) and the state
of the field dstmac of p1 in ST is 0, satisfying the check
(ST (dstmac).state=0) in test of the rule. Therefore, the rule
applies the action which instructs the switch to flood p1,
and updates the state table as in subfigure (c). The second
packet p2 in the trace matches the second rule in the policy
table, since the state of its dstmac is 1. The program sends
p2 out to port 2, which is stored in the state table associated
with MAC address A. Applying the update of the rule, we
get the state table as in subfigure (d). The third packet p3
matches the second rule in the policy table, and the updated
state table remains the same and thus not shown here. The
last packet p4 suggests that the host with MAC A has mi-
grated to port 3, and it matches the second rule in the policy
table and gets sent to port 1. Subfigure (e) shows the state
table after applying the update.

p2:<port=1, srcmac=B, dstmac=A>
p3:<port=2, srcmac=A, dstmac=B>
p4:<port=3, srcmac=A, dstmac=B>

p1:<port=2, srcmac=A, dstmac=B> MAC state value

A 0 ⊥

B 0 ⊥

(a) An example packet trace (b) The initial state table (c) The state table after p1

MAC state value

A 1 2

B 0 ⊥

(d) The state table after p2

MAC state value

A 1 2

B 1 1

(e) The state table after p4

MAC state value

A 1 3

B 1 1

Figure 4: An illustrative execution.

4. NetEgg MODEL
In this section, we first describe the scenario-based pro-

gramming model of NetEgg, and explain how this model
allows the operator to describe example network behaviors
in representative scenarios. Second, we define the policy
model, which includes the model of state tables and policy
tables. We will show how to generate a policy from scenar-
ios in the next section.

4.1 Programming Language

Packet-type P ::= 〈f1 : T1, .., fk : Tk〉
Symbolic packet sp ::= 〈sv1, .., svk〉

Action a ::= drop|flood|send(port)
|modify(f,v)|..

Event e ::= sp⇒ [a1, .., ai]
Scenario sc ::= [e1, .., ej]
Program prog ::= {sc1, .., scn}

Figure 5: Scenario-based programming model.
NetEgg provides a configuration language for expressing

network timing diagrams. In this language, variables and

fields of packets are typed. Examples of base types we use
are bool, PORT, IP_ADDR (set of IP addresses), MAC_ADDR
(set of MAC addresses). A packet-type consists of a list
of names of fields of the packet along with their types. In
our example, the packet-type consists of three fields and
is given by 〈port : PORT, srcmac : MAC_ADDR, dstmac :
MAC_ADDR〉.

A (concrete) packet specifies a value for each field of type
corresponding to that field. A symbolic value of a type T is
either a concrete value of type T, or a variable x of type T.
A symbolic packet specifies a symbolic value for each field.

We use Act to denote the set of action primitives for pro-
cessing packets. For the action primitives with parameters,
the user can use either concrete values or variables of the
corresponding type.

In NetEgg, we provide a library that supports standard
packet fields and actions such as drop, flood, send(port) (send
to a port), modify(f,v) (modify the value of field f to v).
Our tool also supports user-defined packet-type using cus-
tomized field names and types, as well as user-defined ac-
tions. One can generalize it by providing handlers for user-
defined fields and action primitives.

An event is a pair of a symbolic packet sp and a list of
actions [a1, ..al], denoted as sp ⇒ [a1, .., al]. A scenario is
a finite sequence of events. A scenario-based program is a
finite set of scenarios.

With the notation, the scenario of Figure 1 corresponds to:

P1, h1, h2⇒flood
P2, h3, h1⇒send(P1)
P3, h2, h3⇒send(P2)

A scenario is concrete if all the symbolic packets and ac-
tions appearing in the scenario have only concrete values.
A scenario-based program with symbolic scenarios can be
viewed as a short-hand for a set of concrete scenarios. This
set is obtained by replacing each variable by every possi-
ble value of the corresponding type with the following re-
quirements. First, a variable can only take values that have
not appeared in the scenario-based program. Second, if the
same variable appears in multiple symbolic packets and ac-
tions in the program, then it gets replaced by the same value.
Third, different variables in a program get replaced by dif-
ferent values. Thus, the symbolic scenario of Figure 1 cor-
responds to Πi=0,1,2(n − i)(l − i) concrete scenarios if the
type MAC_ADDR and PORT contain n and l distinct values,
respectively.

The language itself is simple and can be viewed more as
a configuration language rather than a general-purpose pro-
gramming language. One can even build a visual tool that
takes as input scenarios drawn as actual network timing dia-
grams, and generate the configuration.

4.2 Policy Model
A policy consists of a policy table along with state tables

that store the history of policy execution.

State Tables. A state table is a key-value map that main-
tains states and values for relevant fields. Let Tij be some
base type appearing in the packet-type, S be a state set with
finitely many states, and the packet-type be 〈f1 : T1,..,fk :
Tk〉. A d-dimensional state table ST stores a state in S and
a value of type Tid+1

, for all keys of type Ti1 × ..× Tid

The operations we allow on a state table are reads, checks
and writes.

Let ST be a state table of type T1× ..× Td → S × Td+1,
let f1,..fd be field names of type T1,..,Td, respectively. A
read of ST indexes some entry in ST , and is of the form
ST (f1,..,fd). A check of ST checks whether the state asso-
ciated with some key is a particular state. Syntactically, it is
a pair of a read and a state, written as ST (f1,..,fd).state=s,
where s ∈ S is a state. In our example, ST (dstmac).state=0
is a check with the field dstmac. In contrast to a check, a
write of a state table changes the state along with the value
associated with some key. A write of ST is of the form
ST (f1,..,fd):=(sv,fv). Here, sv is either a state, or - represent-
ing no change. fv is either a concrete value of type Td+1, -
representing no change, or a field name of type Td+1. In our
example, ST (srcmac):=(1,port) is a write of ST with the
field srcmac.

We use the term configurations for the snapshots of state
tables. For example, the initial configuration of the state ta-
ble in our example maps every MAC address to (0,⊥) as
shown in figure 4(b). Here, we use ⊥ to represent the fact
that no value is stored. A read ST (f1,..,fd) for a packet
p at a configuration c returns the state-value pair stored in
ST for the key (p.f1, .., p.fd) at c. We use ST (f1,..,fd).state
and ST (f1,..,fd).value to denote the state and value in the re-
turned pair. A check ST (f1,..,fd).state=s is true for a packet
p at a configuration c if the state read from ST at the configu-
ration c is s. In the example in Figure 4, ST (dstmac).state=0
is true for p1 at the initial configuration (subfigure (b)) of
ST . A write ST (f1,..,fd):=(sv,fv) for a packet p writes the
state-value pair to the corresponding entry indexed by the
read. Note that if sv(fv, resp.) is -, the write does not write
any state(value, resp.) to ST , and if fv specifies a field name,
the value of p.fv should be written.

Policy Tables. Given a set of state tables T , a rule r based
on T has four components, namely, match, test, actions
and update. match is of the form 〈f1=v1,..,fk=vk〉, where
fi is a name of a packet field, and vi is a concrete value or
a wildcard. A packet p matches 〈f1=v1,..,fk=vk〉 iff vi is a
wildcard, or p.fi = vi for all i = 1 to k. The actions is
a list of actions using action primitives in Act. In the case
where an action primitive accepts parameters, the parameters
can be concrete values or values read from state tables in T
using reads. test is a conjunction of checks and update
is a sequence of writes, where each check/write is of some
state table in T . As an example, last two rows in Table 1 are
two rules. A policy table based on T is an ordered list of
rules, and every rule is based on T .

A configuration C of a policy consists of all the configu-

rations of each state table in T , on which the policy table is
based. A packet p matches a rule at a configuration C iff p
matches match and every check in test is true for p at the
corresponding configuration in C. Suppose the first matched
rule for a packet p at a configuration C is r. Then actions
of r will be executed on p and every write in update of r
will be executed. We denote the execution for packet p as

C p/as−−−→PT C′, with C′ the new configuration, and as the
actions applied to p.

5. POLICY GENERATION
Given a set of scenarios describing a policy, our synthe-

sizer first checks if there are conflicts among scenarios. This
process is straightforward and thus omitted due to the space
constraint. In this section, we focus on how to generate a
policy, consisting of a set of state tables and a policy table,
given a set of scenarios without conflicts. We start this sec-
tion by discussing the objective policies NetEgg aims to gen-
erate. Then we present the synthesis algorithm in steps.

5.1 The Policy Learning Problem
First, we note that, since the input scenarios describe the

behaviors of the desired policy in representative scenarios,
the generated policy should be consistent with all the behav-
iors described in all scenarios.

DEFINITION 1 (CONSISTENCY). Given a concrete sce-
nario SC = [sp1 ⇒ as1, .., spk ⇒ ask], a policy table PT

is consistent with SC iff Ci−1
spi/asi−−−−−→PT Ci for i = 1, .., k,

where C0 is the initial configuration in which every state ta-
ble maps every key to the initial state 0 and a value of ⊥. A
policy table is consistent with a scenario-based program, iff
it is consistent with all the concrete scenarios represented by
the scenario-based program.

As an example, the policy given in Table 1 is consistent
with the scenario in Figure 1. However, the following policy
is not consistent with the scenario, since it floods the third
packet in the scenario instead of sending it to P2.

match test actions update

* ST (dstmac)
.state=0 flood ST (srcmac)

:=(1, port)

* ST (dstmac)
.state=1

send(
ST (dstmac)

.value)

ST (srcmac)
:=(-, -)

Table 2: An inconsistent policy table.
In addition to consistency, NetEgg also aims to generate a

generalized policy from input scenarios. For this, we aim to
generate a consistent policy with minimal number of rules.
To see how this heuristic can help to generate a general pol-
icy, let us consider the 3-rule policy table in Table 3. It can be
verified that the policy is consistent with the scenario in Fig-
ure 1. However, this policy overfits the input scenario and
will not generalize to a fourth packet such as 〈P1, h4, h2〉,
because this packet would be flooded by the policy. On the

other hand, the desired policy in Table 1 only uses two rules,
and can handle the fourth packet mentioned above correctly.

match test actions update

* ST (dstmac)
.state=0 flood ST (srcmac)

:=(1, port)

* ST (dstmac)
.state=1

send(
ST (dstmac)

.value)

ST (srcmac)
:=(2, port)

* ST (dstmac)
.state=2

send(
ST (dstmac)

.value)

ST (srcmac)
:=(-, -)

Table 3: A consistent yet restrictive policy table.
We summarize the major computational problem as the

following policy learning problem.
Policy learning problem. Given scenarios SC1, ..., SCn,

the policy learning problem seeks a set of state tables T and
a policy table PT based on T , such that (1) PT is consistent
with all scenarios SCi. (2) PT has the smallest number of
rules among all consistent policy tables.

A simple reduction from DFA learning problem [7] shows
the following theorem.

THEOREM 1. The policy learning problem is NP-hard.

In the following sections, we break our synthesis algo-
rithm into steps, and discuss each step separately.

5.2 Policies without tests

First, let us consider the simplest case where the desired
policy table does not have tests. In this case, each rule in
the policy table only consists of a match and actions. Thus,
it suffices to generate an ordered list of matches, together
with the corresponding list of actions.
Generate ordered match list. We first describe the algo-
rithm which generates a list of matches from the input sce-
narios, shown in Algorithm 1. As defined in our scenario-
based programming model, a symbolic packet represents a
set of concrete packets, which is obtained by replacing sym-
bolic values by concrete field values. Therefore, Algorithm 1
generates a match for each symbolic packet in the scenar-
ios, by replacing symbolic values by ∗ (line 3). Moreover, to
ensure that the generated match does not mismatch unrepre-
sented packets, the algorithm inserts the generated match to
the list, such that no match under it is completely covered
(line 4). Note that for two generated matches which are
overlapping with each other, we can order either one above
the other. We will explain this through an example later in
this subsection.
Search for actions. With the ordered list of matches, it is
straightforward to search for the actions for every match in
the list: we can simply search the first matched match in the
list for each symbolic packet and check consistency between
the actions with the packet and actions with the match. If
actions for the match are not set, we can set them to the ac-
tions associate with the symbolic packet. A consistent policy
table is returned when all actions in every symbolic events

Algorithm 1 generate_ordered_match_list([SCi])
1: L = ∅
2: for all packet sp = 〈fi=vi〉 in every scenario SCi do
3: let m = 〈fi=mi〉, where mi = vi if vi is a concrete value

else ∗
4: insert m to L
5: end for
6: return L

are consistent.
Examples. Consider a scenario describing a firewall, shown
in Figure 6a. Here a symbolic packet is expressed by 〈srcip,

A, ip1⇒ send(1)
ip2, B ⇒ send(2)
A,C ⇒ drop

(a) A scenario.

match actions
srcip=A, dstip=C drop
srcip=A, dstip=∗ send(1)
srcip=∗, dstip=B send(2)

(b) The policy table.

Figure 6: A firewall example.

dstip〉. The generated policy table is shown in Figure 6b.
The match column of the policy table is generated by Algo-
rithm 1. We note that if the second rule is swapped with the
third rule in the policy table, the resulted policy table is still
consistent with the scenario. The reason is that by definition
the variables ip1 and ip2 only represent values other than
A,B,C. Thus, the packet 〈A,B〉 is not represented by any
symbolic packets in the scenario.

5.3 Policies with tests

Now we consider synthesizing policies that use tests. As
an example, consider the scenario for the learning switch in
Figure 1. One can verify that a consistent policy table for the
scenario requires tests. In fact, the only match in the match
list generated by Algorithm 1 is 〈∗〉, and every packet in the
scenario matches it. However, their actions differ from each
other. Therefore, in addition to the only match 〈∗〉, a con-
sistent policy table must have tests. In this subsection, we
will assume that all tests in the policy table are given, and
show the algorithm to synthesize the policy. We will relax
this assumption in the next subsection.
Sketch. Suppose the tests used in the policy for learning
switch are ST (dstmac).state=0 and ST (dstmac).state=1. Com-
posing the match and test, we know that the policy table has
the form as shown in Table 4.

match test actions update

* ST (dstmac)
.state=0 ax1

ST (srcmac)
:=(sx1, ux1)
ST (dstmac)
:=(sx2, ux2)

* ST (dstmac)
.state=1 ax2

ST (srcmac)
:=(sx3, ux3)
ST (dstmac)
:=(sx4, ux4)

Table 4: A policy table sketch for the learning switch.

Table 4 is a symbolic representation of policy tables. It

represents actions and update in rules using variables. We
call such symbolic representations policy table sketches (or
sketches in short). In this sketch, we derive all possible
writes in update from the state tables that are used in each
rule’s tests. In this example, since the only state table ac-
cepts keys of type MAC_ADDR, the state table can be updated
using either srcmac or the dstmac of a packet. Therefore, we
have two writes per rule in its update, and sx’s range over
all states (in this example, {0,1}) plus a special symbol -
meaning no update, and ux’s range over all field names plus
-. For ease of presentation, we intentionally ignore potential
overwrittings due to the two writes in each rule’s update.
In practice, we need to consider other orders of writes as
well. We use variables ax’s to represent possible actions
for each rule. In this example, ax’s can range from {flood,
send(ST (srcmac)), send(ST (dstmac))}, which are obtained
from actions appearing in the scenario. To distinguish vari-
ables appearing in sketches from variables appearing in the
scenarios, we will call these variables appearing in a sketch
as sketch variables.

Algorithm 2 shows the algorithm of generating sketches
given the match list L and tests. The set C contains all pos-
sible reads to the state tables appearing in TESTS (line 1-
line 4), and this set is used to derive writes in each rule (line
7). The sketch is generated by composing each match and
test in TESTS (line 5-line 6), and every rule has all possi-
ble writes derived from reads in C (line 7).

Algorithm 2 generate_sketch(L, TESTS)
1: let C = ∅
2: for all state table ST appearing in TESTS do
3: add all reads ST (f1,..,fk) to C, where fi is a field name of

the corresponding type.
4: end for
5: for all match match in L in order do
6: for all test test in TESTS do
7: construct a rule r = (match, test, ax, update), where

ax is a new variable for actions, and update =
[readi:=(sxi,uxi)],∀readi ∈ C, sxi, uxi fresh vari-
ables.

8: add rule r to sketch
9: end for

10: end for

Search for sketch variables. Using the sketch, we can search
concrete values for sketch variables, with the goal that the
obtained policy table is consistent with all scenarios. To
search for a consistent policy table, we perform a simple
backtracking search algorithm over all sketch variables. The
algorithm is shown in Algorithm 3.

The algorithm maintains a stack of sketch variables to-
gether with the values assigned to them. Whenever a sketch
variable is assigned a value, it ensures that the sketch vari-
able is pushed to the stack (line 5, 7). For each symbolic
event in every scenario, the algorithm checks consistency
of the first matching rule’s actions (line 6). Whenever in-
consistency encountered (line 9), it performs standard back-

Algorithm 3 search_sketch([SCi], sketch)
1: stack = []
2: for all scenarios SCi do
3: for all events ej in SCi do
4: let r be the first matching rule
5: initialize actions of r and push the sketch variable to

stack, if r’s actions are not set
6: if actions of ri are consistent then
7: initialize any sketch variables in r’s update and push

them to stack, if they are not assigned values yet
8: apply update of r
9: else

10: backtrack(stack)
11: return FAILED if stack is empty else restart from

line 2
12: end if
13: end for
14: end for
15: return sketch

tracking procedure on the stack (line 10-11); and when it
is consistent, the algorithm executes the update of the rule
(line 8) and carry on to the next symbolic event.

5.4 Putting it together
Now we describe the overall synthesis algorithm (Algo-

rithm 4), using the procedures described in previous subsec-
tions. At a high level, the synthesis algorithm enumerates
sketches by increasing the number of rules, in order to gen-
erate a consistent policy table using as few rules as possible.
For each sketch, it invokes Algorithm 3 to search for a con-
sistent policy using the sketch.

Algorithm 4 synthesize({SCi})
1: L = generate_ordered_match _list([SCi])
2: let A contain all possible reads
3: for all (c, m) with ascending order of mc do
4: for all subset B ⊂ A with size c do
5: TESTS = {

∧
i readi.state=vi|∀readi ∈ B,∀vi ∈

[0, ..,m-1]}
6: generate_sketch(L, TESTS)
7: if search_sketch(sketch) returns a consistent policy table

then
8: return the policy table
9: end if

10: end for
11: end for

Example. We use the learning switch example in Figure 1
to illustrate how Algorithm 4 works. For the scenario in
Figure 1, the set A contains 2|fields| = 23 = 8 possible
reads, each of which corresponds to a combination of field
names, and a state table with the corresponding type. Be-
cause two state tables with the same type can be merged into
a single state table with larger states, we only construct one
state table per type. Then the algorithm constructs a sketch,
where each rule has c checks, and its state ranges from 0
to m-1. Thus the generated sketch has mc|L| rules. Note
that, when m is 1 or c is 0, the generated sketch does not use
tests essentially, hence enumeration of the pair (c,m) can

start from (1,2). When picking reads from A (line 4), we
pick reads with high dimension first. As an example for the
learning switch, the first generated set B with size 1 in line 4
is {ST (port,srcmac,dstmac)}, followed by other reads with
dimension two.

5.5 Additional Heuristics
In addition to the basic synthesis algorithm described above,

the synthesizer has implemented other heuristics.
Lazy initialization. Algorithm 3 initializes sketch variables
and pushes them to the stack as soon as applying update of
the matching rule. This eager initialization could push irrel-
evant sketch variables to the stack and increase the search
depth. For example, the variables sx2, ux2 in Table 4 are
not used when checking consistency for any symbolic packet
in Figure 1, and hence irrelevant to the consistency check-
ing. Thus, the synthesizer takes a lazy initialization heuris-
tic. That is, only when an uninitialized sketch variable is
read from state tables, the synthesis algorithm initializes it
and pushes it to the stack.
Post processing. After synthesizing a consistent policy, the
synthesizer applies additional post processing to the policy
table in order to simplify the policy table. These includes:
(1) If a rule in the policy table is not matched by any sym-
bolic packet in the input scenarios, this rule can be removed;
(2) The synthesizer removes writes in each rule’s update, if
they do not change the state table; (3) When multiple rules
can be merged into one without causing inconsistency, the
synthesizer will merge these rules.

6. POLICY EXECUTION
Given the synthesized policy, our tool uses the interpreter

to process packets on the controller. As described in Section
3.3, the interpreter simply iterates through all rules in the
policy table and picks the first matched rule for the incoming
packet. Then it updates all state tables based on the update
of the matched rule, and instructs the switch to apply the
action of the rule to the packet.

While processing packets on the controller is sufficient
for executing the policy, it is not practically efficient and
degrades the performance of the network. In this section,
we show how the tool infers flow table rules which can be
installed onto switches, thus reducing the overhead of con-
troller and delay of packet delivery.

Our key observation is the following theorem.

THEOREM 2. A packet can be handled on switches if and
only if handling this packet on the controller does not change
any state tables.

Indeed, if a packet p is handled on switches, the controller
will not be aware of the packet and thus the state tables re-
main unchanged. On the other hand, if p is sent to the con-
troller for execution and the updated state tables remain the
same as before, we know handling p on switches would not
affect future packets execution. Therefore, it is sufficient and

necessary to install rules on switches for the packets whose
execution will not change current configuration of state ta-
bles.

Based on this observation, we have implemented a reac-
tive installation approach which installs flow table rules that
only match necessary fields. Moreover, to keep the installed
rules up to date, we update installed rules when the policy
configuration changes, and remove invalid rules on switches.
Note that, one can also infer flow table rules in a proactive
way based on this observation. We leave the implementation
of proactive approaches to future work.

Algorithm 5 update_flowtable(p)
1: let rule r be the matched rule for p in the policy table
2: if r does not update state tables, or the updated state tables

remain unchanged then
3: match← 〈fi1=p.fi1 ,..,fik=p.fik 〉, for all field fij appearing

in the policy table
4: add match → r.actions to the flow table, if the actions aj

applied to p by r is supported by the switch
5: end if
6: for all installed rule match′ → [a′

1, .., a
′
l] in the flow table do

7: let p′ be a packet matches match′

8: let rule r be the matched rule in the policy table for p′

9: if r does not update state tables or the updated state tables
remain unchanged then

10: update the installed rule to match′ → r.actions, if the
actions aj applied to p by r is supported by the switch

11: else
12: remove the installed rule from the flow table
13: end if
14: end for

Algorithm 5 shows the installation strategy. First the al-
gorithm checks whether the matched rule r for p will change
the configuration of state tables. The rule r will not change
the configuration, if r does not have writes, or the updated
states and values remain the same as the old ones (line 2).
If executing p would not change the configuration, the algo-
rithm installs a flow table rule match → [a1, .., al] onto the
switch, where match specifies the values for fields related
to the policy, and aj’s are the actions that should be applied
to p (line 3-4). The algorithm also needs to check whether
previously installed rules are still correct. For this, the algo-
rithm repeats a similar process for each installed rule (line
6-14).
Example. Revisit the example run in Figure 4. By the in-
terpreter’s algorithm shown in Figure 3, the first packet is
processed on the controller, and the state table is updated to
the one shown in subfigure (c). Applying Algorithm 5, the
matching rule r for p1 would be the first rule in the policy ta-
ble shown in Table 1. Since port 2 is already remembered for
the srcmac A, r would not change the state table. Therefore,
a flow table rule fr1 = 〈port=2,srcmac=A,dstmac=B〉 →flood,
which matches the port, srcmac and dstmac of p1 is pushed
down to the switch. After processing the second packet p2,
the state table is updated as in subfigure (d) and a flow table
rule matching p2 can be pushed down. Moreover, the algo-

rithm checks the installed flow table rule fr1. Since now
p1 would match the second rule in the policy table, and the
applied action to p1 is different from the installed flow table
rule, the action of fr1 is updated to send(1).

7. USE CASES
In this section, we demonstrate scenario-based program-

ming for four policies. For each policy, we will show the
packet-type we use, the scenarios that can be used to synthe-
size the desired policy, and the policy table generated from
the scenarios. To this end, we manually validate that the syn-
thesized policy is the correct policy. One can also formally
verify the correctness of the generated policy against logical
specifications using control plane verification tools such as
Vericon [3] and Nice [5]. We plan to explore light-weight
verification tools for the custom policy abstraction in the fu-
ture.

7.1 Learning Switch
First, we revisit our motivating example. Recall that we

can program the learning switch application for a single switch
using a scenario in Figure 1. Now we show how to adapt
the scenario to program the learning switch for a network.
That is, the policy needs to maintain the port of each switch
for hosts. To program this policy, we need a field specify-
ing which switch the packet is located. Therefore, we use
the packet-type 〈switch : SWITCH, port : PORT, srcmac
: MAC_ADDR, dstmac : MAC_ADDR 〉. For the scenario,
we simply add the switch field to each symbolic packet in
the scenario in Figure 1. This modified scenario suffices for
NetEgg to synthesize the network-wide learning switch pol-
icy. The scenario and synthesized policy table is shown in
Figure 7 and Table 5.

scenario 1:
s1,P1,h1,h2⇒ flood
s1,P2,h3,h1⇒ send(P1)
s1,P3,h2,h3⇒ send(P2)

Figure 7: Scenario-based program for the learning
switch.

match test actions update

*
ST (switch,

dstmac)
.state=0

flood
ST (switch,

srcmac)
:=(1, port)

*
ST (switch,

dstmac)
.state=1

send(
ST (switch,

dstmac)
.value)

ST (switch,
srcmac)

:=(1, port)

Table 5: The policy table for the learning switch.

7.2 Stateful Firewall
Now, we show how to use scenarios to program stateful

firewall policies inductively.
First firewall. First, we consider a stateful firewall which
protects hosts connecting to port 1 by blocking untrusted

traffic from port 2. The firewall should allow all outbound
packets from port 1, and only allow inbound packets from
port 2 if the sender of the packet has received packets from
the receiver before. For this policy, we use the packet-type
〈port:PORT, srcip:IP_ADDR, dstip:IP_ADDR〉. We start by
giving two of the most intuitive scenarios shown in Figure 8.
In the first scenario, the switch blocks the traffic from port
2, and the second scenario demonstrates the case where the
firewall allows the traffic from port 2. It turns out that these
two scenarios are sufficient to generate the desired policy,
shown in Table 6.

scenario 1:
2,h2,h1⇒ drop

scenario 2:
1,h1,h2⇒ send(2)
2,h2,h1⇒ send(1)

Figure 8: Scenario-based program for the first stateful
firewall.

match test actions update

port=1 True send(2) ST (dstip,srcip)
:=(1, -)

port=2 ST (srcip,
dstip).state=0 drop -

port=2 ST (srcip,
dstip).state=1 send(1) -

Table 6: The policy table for the first stateful firewall.

Second firewall. Now suppose we want to specify a policy
such that it allows inbound traffic if the sender has received
packets from any protected hosts before. One may notice
that the policy should maintain a state for each host, instead
of a pair of hosts. Using the scenario-based programming,
we can simply adapt scenarios from Figure 8 and change the
dstip of the second packet in scenario 2, as following:

modified scenario 2:
1,h1,h2⇒ send(2)
2,h2,h3⇒ send(1)

Figure 9: The modified scenario for the second stateful
firewall.

The synthesized policy maintains a 1-dimension state ta-
ble, and is shown in Table 7.
Third firewall. While we mostly focus on packetin events,
NetEgg can be generalized to handle arbitrary events. In this
use case, we will demonstrate how to use fields in symbolic
packets to handle user-defined network events. Suppose we
want to further implement a policy such that inbound traffic
is allowed until a timeout event indicates the sender expires.
For the policy, we need to handle a timeout event, and the ex-
pired host ip specified in the event. We can use a packet-type
〈event:EVENT, eventip:IP_ADDR, srcip:IP_ADDR, dstip:
IP_ADDR〉. Here, the field named event specifies the type
of the network event, and the field named eventip specifies
the expired host. These two fields are set by the correspond-
ing field handlers. For this policy, we can add one more
scenario exhibiting the behavior of timeout, as in Figure 10.
The first symbolic packet is similar to above, but since this is

match test actions update

port=1 True send(2) ST (dstip)
:=(1, -)

port=2 ST (srcip).state
=0 drop -

port=2 ST (srcip).state
=1 send(1) -

Table 7: The policy table for the second stateful firewall.

a packetin event, its eventip field is not applicable (we use -
to denote its value). The second symbolic packet is the time-
out event, which specifies that host h2 is expired. Since the
controller does not need to apply any actions to this event,
we use nop for its action. The third packet from host h2

now gets dropped. Scenario 1 and Scenario 2 can be adapted
similarly from Figure 8 and Figure 9 respectively.

scenario 3:
packetin,-,1,h1,h2⇒ send(2)
timeout,h2,-,-⇒ nop
packetin,-,2,h2,h3⇒ drop

Figure 10: The added scenario for the third stateful fire-
wall.

Given the three scenarios, the desired policy can be syn-
thesized, as in Table 8.

match test actions update
event=

packetin,
port=1

True send(2) ST (dstip)
:=(1, -)

event=
packetin,
port=2

ST (srcip)
.state=0 drop -

event=
packetin,
port=2

ST (srcip)
.state=1 send(1) -

event=timeout True nop ST (eventip)
:=(0,-)

Table 8: The policy table for the third stateful firewall.

7.3 TCP Firewall
In this use case, we use scenarios to program the TCP fire-

wall that tracks the state transition of TCP handshake proto-
col, and only allows packets that follow the protocol. We
use the packet-type that contains 5 fields: 〈flag:TCP_FLAG,
srcip:IP_ADDR, dstip: IP_ADDR, srcport: TCP_PORT, dst-
port: TCP_PORT〉.

We first specify two scenarios describing two allowed packet
traces by the TCP firewall in Figure 11. A trivial policy
which allows all packets would be generated. Next, we add
two scenarios describing packets which should be denied
by the firewall. Checking the policy, we find an undesired
behavior of the generated policy, which allows the second
packet in scenario 5. We add the correct behavior as in sce-
nario 5, and the synthesizer generates the desired policy. The
generated policy table is shown in Table 9, and the state ta-

ble maintains states for each tuple of srcip,dstip,srcport and
dstport.

scenario 1:
SYN,ip1,ip2,port1,port2⇒ allow
ACK,ip2,ip1,port2,port1⇒ allow

scenario 2:
SYN,ip1,ip2,port1,port2⇒ allow
SYNACK,ip2,ip1,port2,port1⇒ allow
ACK,ip1,ip2,port1,port2⇒ allow

scenario 3:
ACK,ip1,ip2,port1,port2⇒ deny

scenario 4:
SYNACK,ip2,ip1,port2,port1⇒ deny

scenario 5:
SYN,ip1,ip2,port1,port2⇒ allow
ACK,ip1,ip2,port1,port2⇒ deny

Figure 11: Scenario-based program for the TCP firewall.

match test actions update

flag=SYN True allow

ST (dstip,
dstport,srcip,

srcport)
:=(1,-)

flag=
SYNACK

ST (srcip,
srcport, dstip,

dstport)
.state=0

deny -

flag=
SYNACK

ST (srcip,
srcport, dstip,

dstport)
.state=1

allow

ST (dstip,
dstport,srcip,

srcport)
:=(1,-)

flag=ACK

ST (srcip,
srcport, dstip,

dstport)
.state=0

deny -

flag=ACK

ST (srcip,
srcport,dstip,

dstport)
.state=1

allow -

Table 9: The policy table for the TCP firewall.

7.4 ARP Proxy
In this use case, we use user-defined action primitives to

program the ARP proxy in scenarios. An ARP proxy caches
MAC addresses associated with IP addresses, and responds
to ARP requests when the requested MAC is known. We
use the packet-type 〈 srcmac:MAC_ADDR, arpop:ARP_OP,
srcip:IP_ADDR, dstip:IP_ADDR〉 to specify this use case.
The first scenario we provide is similar to the scenario for
the learning switch example. In addition, we provide another
scenario which describes learning srcmac from ARP reply
messages. Note that in the scenarios, we use the user-defined
action primitive reply, which should construct an ARP reply
message with the requested MAC address.

scenario 1:
h1,request,ip1,ip2⇒ flood
h3,request,ip3,ip1⇒ reply(h1)
h4,request,ip4,ip3⇒ reply(h3)

scenario 2:
h2,reply,ip2,ip1⇒ flood
h3,request,ip3,ip2⇒ reply(h2)

Figure 12: Scenario-based program for the ARP proxy.
match test actions update
arpop=
request

ST (dstip)
.state=0 flood ST (srcip)

:=(1,srcmac)

arpop=
request

ST (dstip)
.state=1

reply(
ST (dstip)

.value)

ST (srcip)
:=(1,srcmac)

arpop=
reply True flood ST (srcip)

:=(1,srcmac)

Table 10: The policy table for the ARP proxy.

8. EVALUATION
We have developed a prototype of NetEgg written in Python.

We evaluate NetEgg along two dimensions: (1) the feasibil-
ity of NetEgg in its ability to implement a range of SDN
policies [3, 17, 12], (2) the performance and overhead of the
synthesized policies, and finally, (3) correctness of the flow
table rule installation strategy.

8.1 Feasibility
We explore two aspects of feasibility of NetEgg. First, is

the policy generation process efficient in terms of execution
time? Second, is NetEgg easy to use, in terms of the number
of input scenarios required and lines of configuration code?

Table 11 summarizes our findings in terms of execution
time and scenario size. We report the total number of events
in the scenarios used to program each policy, and the number
of scenarios. We also report the computation time of the
synthesizer to generate the policy from scenarios.

#EV #SC Time
maclearner1 3 1 11 ms
maclearner2 3 1 15 ms

auth 3 2 13 ms
gardenwall 5 3 52 ms

ids 3 2 15 ms
monitor 3 2 13 ms

ratelimiter 10 5 147 ms
serverlb 7 3 143 ms

stateful firewall1 3 2 12 ms
stateful firewall2 3 2 16 ms
stateful firewall3 6 3 107 ms

trafficlb 7 3 402 ms
ucap 3 2 13 ms

vmprov 3 2 24 ms
TCP firewall 9 5 64 ms
ARP proxy 5 2 49 ms

Table 11: Network policies generated from scenarios.
#SC is the number of scenarios used to synthesize the
policy, #EV is the total number of events in scenarios,
Time is the running time of the synthesizer.

We make the observation that most of the scenarios are

expressed in less than 5 events, with some outliers requiring
up to 10 events. NetEgg is also efficient, and in all examples,
requires no more than 402 ms.

We further perform a “code size” comparison, by counting
the number of lines in each of our NetEgg example config-
urations, and compare with corresponding policies that we
implemented in Pyretic and POX. Table 12 summarizes our
results. We observe that NetEgg is more concise, achieving
a 4× and 10× reduction in code size compared with Pyretic
and POX.

NetEgg Pyretic POX
maclearner2 3 17 29

stateful firewall1 3 21 58
TCP firewall 9 24 68

Table 12: Lines of code to implement policies in different
programming abstractions. We report the total number
of events in scenarios for NetEgg, lines of code for Pyretic
and POX implementations.

8.2 Performance Overhead
NetEgg uses the policy table as the policy abstraction,

and a generic interpreter to execute the policy table. Un-
like hand-crafted implementations which can be customized
to policies, generic execution of our abstraction of policies
may incur additional overhead. We evaluate the generic ex-
ecution engine of NetEgg using a combination of targeted
benchmarks and end-to-end evaluation.

8.2.1 Cbench Evaluation
We first use the Cbench [21] tool to evaluate the response

time of three policy implementations.
Experiments. We emulate one switch in Cbench, which

sends one packet-in request to the controller as soon as it
receives a reply for last sent request. The response time cor-
responds to the time between sending out a request and re-
ceiving its reply, which hence includes the execution time of
policy implementations. For comparison, we also evaluate
the policies’ implementations in POX.

Results. Figure 13 shows the response time for the pol-
icy implementations in POX and NetEgg. We note that in
all cases, the differences in response times between the POX
and NetEgg versions are within 12%. In the case of MAC
learning and stateful firewall, the differences are negligible
(<1%). We observe that the response time between imple-
mentations in POX and NetEgg is comparable, which sug-
gests our policy abstraction incurs reasonably small over-
head on execution.

8.2.2 End-to-end Performance
Our next set of experiments aim to validate that the syn-

thesized implementation closely matches the hand-crafted
implementation on end-to-end performance for network ap-
plications such as HTTP.

Experiments. We emulate a fattree topology [1] in Mininet,

0

0.5

1

1.5

2

2.5

mac learner stateful
firewall

tcp firewall

R
es

p
o

n
se

 t
im

e
(m

s)

netegg

pox

Figure 13: Response time for POX and NetEgg imple-
mentations.

200

400

800

1600

3200

0 5 10 15 20

H
TT

P
 c

o
n

n
ec

ti
o

n
 t

im
e

(m
s)

Connection rate (req/s)

netegg

pox

Figure 14: HTTP connection time.

which consists of 20 switches and 16 hosts. We setup a
HTTP server on one host, and run httperf on all other hosts
as clients. Httperf sends HTTP requests from the clients to
the server, and measures the HTTP connection time for each
request, which is the time between a TCP connection is ini-
tiated and it is closed. We run httperf with different rates
of sending requests, and the same number of connections
(e.g. at rate 5 request/second, httperf issues 5 requests per
client). Each run starts from the initial network state. On the
controller side, we run the MAC learner policy using two
implementations: POX and NetEgg.

Results. Figure 14 reports the average connection time
over all 15 clients. The x-axis is the rate of HTTP requests
issued by the clients. As expected, the connection time un-
der the NetEgg implementation matches closely to that un-
der hand-crafted POX implementation. These results sug-
gest our synthesized implementation is able to achieve com-
parable end-to-end performance as hand-crafted implemen-
tations. This also further verifies that execution of our policy
abstraction incurs small overhead, and our flow table rule in-
stallation is efficient.

8.3 Rule Installation
To achieve realistic performance, our interpreter infers and

installs flow table rules. We validate the correctness of our
rule installation strategy using emulation-based experiments.

Experiments. We run the synthesized MAC learner pol-
icy on the controller, and emulate a simple topology with
a single switch connected with 300 hosts in Mininet [13].
We partition these hosts into two groups, with 150 hosts per
group. Every host in a group sends 100 ping messages to
another host in the other group with 1 message per second.
For comparison, we run the set of experiments under two

settings, one with flow table installation and one without.
Results. We plot the average RTT for all ping messages

over time in Figure 15. The red line corresponds to the pol-
icy implementation without installing flow table rules. This
implementation has a high RTT consistently over time, due
to the fact that every packet is sent to the controller. The blue
line corresponds to the case with installation. We observe
that only the first message experiences high latency, and sub-
sequent messages has significantly smaller RTT below 0.1
ms. This fact suggests that our installation strategy is able
to infer flow table rules from the first incoming packet-in
event, and correctly install the rules onto the switch. Hence,
subsequent packets are all processed by the switch.

0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80 90

R
TT

 (
m

s)

Time line (second)

no-install

install

Figure 15: Effects of flow table rule installation.

9. RELATED WORK
This work builds upon our position paper [24] in several

significant ways. The NetEgg model presented in Section 4
is an extension of the earlier simplified model in our posi-
tion paper. We have added new extensions that automati-
cally push flow table rules from the synthesized policies to
the data plane. Moreover, we have developed a complete
prototype, added several use cases and experiments to vali-
date the NetEgg tool.

SDN programming languages. SDN domain-specific lan-
guages [6, 16, 23, 15, 2, 18, 20, 19] make programming
policies easier using high-level abstractions. Our approach
is different – we target at designing intuitive abstractions for
network operators who can take advantages of their domain
expertise and generate examples for our tool.

Programming by examples. Our work is motivated by
related work in the formal methods community in program-
ming by examples. [10, 9, 11] implement finite-state reac-
tive controllers from specification of behaviors. [8] gener-
ates string transformation macros in Excel from input/output
string examples. [22] uses both symbolic and concrete ex-
ample to synthesize distributed protocols.

Our work is similar in spirit to above works, but tech-
nically different. Our input examples and target program
are designed specific to the SDN domain, and have different
characteristics, which require different synthesis algorithms.

Policy abstractions. Recent work proposes new abstrac-
tions of policies based on state machines [17, 4, 12]. These
work shows the state machine abstraction benefits from fast
execution on data plane [17, 4], and conciseness of program-

ming [12]. Our abstraction of policy tables is similar in spirit
to these state machine abstractions and thus can benefit from
the advantages of previous work. But however, our work
focuses on providing an intuitive programming framework
which can generate policies directly from examples.

10. CONCLUSION
In this paper, we explore the design and implementation

of scenario-based programming that automatically generates
network policy implementations from example scenarios.

In our evaluation, we observe that NetEgg is expressive
and can support a wide range of policies at low overhead
compared to imperative implementations. Using NetEgg,
we are able to implement several policies in an intuitive and
concise manner that is significantly more compared than al-
ternative approaches. This approach lends itself naturally to
rapid prototyping and shortening the design/implementation
iteration cycle.

NetEgg is designed for state-oriented policies, and does
not suit well for objective-oriented policies, such as shortest-
path routing and traffic engineering. We leave the explo-
ration of programming such policies using scenarios to fu-
ture work.

Moving forward, we plan to carry out a user study to
gather feedback from a larger pool of users. We also observe
that NetEgg is slightly cumbersome for supporting policies
that depend on stateful aggregate values, for example, take
a particular action if a threshold is met. We plan to explore
the combination of imperative languages with NetEgg, or
using NetEgg with a database query language for enabling
such complex policies. We plan to explore the use of formal
verification techniques to check scenarios against high-level
properties. Finally, while the paper focuses on SDN polices,
the programming model is not restricted to SDN, and we
plan to apply this approach to other settings, for example
Internet and wireless routing policies.

11. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture.
SIGCOMM CCR, 2008.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,
D. Kozen, C. Schlesinger, and D. Walker. Netkat:
Semantic foundations for networks. In POPL, 2014.

[3] T. Ball, N. Bjørner, A. Gember, S. Itzhaky,
A. Karbyshev, M. Sagiv, M. Schapira, and
A. Valadarsky. Vericon: towards verifying controller
programs in software-defined networks. In PLDI,
2014.

[4] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
Openstate: programming platform-independent
stateful openflow applications inside the switch.
SIGCOMM CCR, 2014.

[5] M. Canini, D. Venzano, P. Peresini, D. Kostic,
J. Rexford, et al. A nice way to test openflow
applications. In NSDI, 2012.

[6] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A

network programming language. In ACM SIGPLAN
Notices, 2011.

[7] E. M. Gold. Complexity of automaton identification
from given data. Information and Control, 1978.

[8] S. Gulwani. Automating string processing in
spreadsheets using input-output examples. In ACM
SIGPLAN Notices, 2011.

[9] D. Harel. Can programming be liberated, period?
Computer, 2008.

[10] D. Harel and R. Marelly. Come, let’s play:
Scenario-based programming using LSCs and the
Play-Engine, volume 1. Springer, 2003.

[11] D. Harel, A. Marron, and G. Weiss. Behavioral
programming. CACM, 2012.

[12] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster,
and R. Clark. Kinetic: Verifiable dynamic network
control. In NSDI, 2015.

[13] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined
networks. In HotNets, 2010.

[14] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe,
and I. Stoica. Declarative Networking. In CACM,
2009.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A
compiler and run-time system for network
programming languages. ACM SIGPLAN Notices,
2012.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford,
D. Walker, et al. Composing software defined
networks. In NSDI, 2013.

[17] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and
R. Govindan. Flow-level state transition as a new
switch primitive for sdn. In HotSDN, 2014.

[18] T. Nelson, A. D. Ferguson, M. J. Scheer, and
S. Krishnamurthi. Tierless programming and
reasoning for software-defined networks. In NSDI,
2014.

[19] M. Reitblatt, M. Canini, A. Guha, and N. Foster.
Fattire: Declarative fault tolerance for
software-defined networks. In HotSDN, 2013.

[20] R. Soulé, S. Basu, P. J. Marandi, F. Pedone,
R. Kleinberg, E. G. Sirer, and N. Foster. Merlin: A
language for provisioning network resources. In
CoNEXT, 2014.

[21] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado,
and R. Sherwood. On controller performance in
software-defined networks. In HotICE, 2012.

[22] A. Udupa, A. Raghavan, J. V. Deshmukh,
S. Mador-Haim, M. M. Martin, and R. Alur. Transit:
specifying protocols with concolic snippets. In ACM
SIGPLAN Notices, 2013.

[23] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and
P. Hudak. Maple: Simplifying sdn programming using
algorithmic policies. In SIGCOMM, 2013.

[24] Y. Yuan, R. Alur, and B. T. Loo. Netegg:
Programming network policies by examples. In
HotNets, 2014.

