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Abstract. Deciding in�nite two-player games on �nite graphs with the
winning condition speci�ed by a linear temporal logic (Ltl) formula, is
known to be 2Exptime-complete. The previously known hardness proofs
encode Turing machine computations using the next and/or until oper-
ators. Furthermore, in the case of model checking, disallowing next and
until, and retaining only the always and eventually operators, lowers the
complexity from Pspace to Np. Whether such a reduction in complexity
is possible for deciding games has been an open problem. In this paper, we
provide a negative answer to this question. We introduce new techniques
for encoding Turing machine computations using games, and show that
deciding games for the Ltl fragment with only the always and eventually

operators is 2Exptime-hard. We also prove that if in this fragment we do
not allow the eventually operator in the scope of the always operator and
vice-versa, deciding games is Expspace-hard, matching the previously
known upper bound. On the positive side, we show that if the winning
condition is a Boolean combination of formulas of the form \eventually
p" and \in�nitely often p," for a state-formula p, then the game can
be decided in Pspace, and also establish a matching lower bound. Such
conditions include safety and reachability speci�cations on game graphs
augmented with fairness conditions for the two players.

1 Introduction

Linear temporal logic (Ltl) is a speci�cation language for writing correctness
requirements of reactive systems [13, 11], and is used by veri�cation tools such as
Spin [8]. The most studied decision problem concerning Ltl is model checking:
given a �nite-state abstraction G of a reactive system and an Ltl formula ', do
all in�nite computations of G satisfy '? The corresponding synthesis question
is: given a game graph G whose states are partitioned into system states and
environment states, and an Ltl formula ', consider the in�nite game in which
the protagonist chooses the successor in all system states and the adversary
chooses the successor in all environment states; then, does the the protagonist
have a strategy to ensure that all the resulting computations satisfy '? Such a
game-based interpretation for Ltl is useful in many contexts: for synthesizing
controllers from speci�cations [14], for formalizing compositionality requirements
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such as realizability [1] and receptiveness [6], for speci�cation and veri�cation
of open systems [3], for modular veri�cation [10], and for construction of the
most-general environments for automating assume-guarantee reasoning [2]. In
the contexts of open systems and modular veri�cation, this game is played in the
setting where a module is considered as the protagonist player, and its environ-
ment, which may consist of other concurrent modules in the system that interact
with this module, is taken as the adversary.

An Ltl formula is built from state predicates (�), Boolean connectives, and
temporal operators such as next, eventually, always, and until. While the model
checking problem for the full Ltl is known to be Pspace-complete, the fragment
L2;3;^;_(�) that allows only eventually and always operators (but no next or
until), has a small model property withNp-complete model checking problem [15].
Deciding games for the full Ltl is known to be 2Exptime-complete [14]. The
hardness proof, like many lower bound proofs for Ltl, employs the until/next
operators in a critical way to relate successive con�gurations. This raises the hope
that deciding games for L2;3;^;_(�) has a lower complexity than the full Ltl. In
this paper, we provide a negative answer to this question by proving a 2Exptime
lower bound.

The proof of 2Exptime-hardness is by reduction of the halting problem for
alternating exponential-space Turing machines to deciding games with winning
condition speci�ed by formulas that use only the always and eventually opera-
tors. The reduction introduces some new techniques for counting and encoding
con�gurations in game graphs and formulas. We believe that these techniques are
of independent interest. Using these techniques we show another hardness result:
deciding games for the fragment B(L3;^;_(�)) is Expspace-hard. This fragment
contains top-level Boolean combinations of formulas from L3;^;_(�), the logic of
formulas built from state predicates, conjunctions, disjunctions, and eventually
operators. B(L3;^;_(�)) is known to be in Expspace [4], while L3;^;_(�) is
known to be in Pspace [12], so our result closes this complexity gap.

Finally, we consider the fragment B(L23(�)) that contains Boolean combina-
tions of formulas of the form 23 p, where p is a state predicate. Complexity for
formulas of speci�c form in this class is well-known: generalized B�uchi games
(formulas of the form ^i23pi) are solvable in polynomial time, and Streett
games (^i(23pi ! 23qi)) are co-Np-complete (the dual, Rabin games are
Np-complete) [7]. We show that the Zielonka-tree representation of the win-
ning sets of vertices [17] can be exploited to get a Pspace-procedure to solve
the games for the fragment B(L23(�)). This logic is of relevance in modeling
fairness assumptions about components of a reactive system. A typical fairness
requirement such as \if a choice is enabled in�nitely often then it must be taken
in�nitely often," corresponds to a Streett condition [11]. Such conditions are com-
mon in the context of concurrent systems where it is used to capture the fairness
in the scheduling of processes. In games with fairness constraints, the winning
condition is modi�ed to \if the adversary satis�es all the fairness constraints
then the protagonist satis�es its fairness constraints and meets the speci�ca-
tion" [3]. Thus, adding fairness changes the winning conditions for speci�cations
from a logic L to Boolean combinations of L23(�) and L formulas. We show that
the Pspace upper bound holds for fair games for speci�cations in B(L3;^(�))
containing Boolean combinations of formulas that are built from state predi-



cates, conjunctions, and eventually operators, and can specify combinations of
invariant and termination properties. This result has been used to show that the
model checking of the game-based temporal logic Alternating Temporal Logic is
in Pspace under the strong fairness requirements [3]. We conclude by showing
that deciding games for formulas of the form \Streett implies Streett" (that is,
^i(23pi ! 23qi)! ^j(23rj ! 23sj)) is Pspace-hard.

2 Ltl fragments and game graphs

2.1 Linear Temporal Logic

We �rst recall the syntax and the semantics of linear temporal logic. Let P be a set
of propositions. Then the set of state predicates � is the set of boolean formulas
over P . We de�ne temporal logics by assuming that the atomic formulas are state
predicates. A linear temporal logic (Ltl) formula is composed of state predicates
(�), the Boolean connectives negation (:), conjunction (^) and disjunction (_),
the temporal operators next ( f), eventually (3), always (2), and until ( U).
Formulas are built up in the usual way from these operators and connectives,
according to the grammar

' := p j :' j' ^ ' j' _ ' j f' j 3' j 2' j' U ';

where p 2 � . Ltl formulas are interpreted on !-words over 2P in the standard
way [13].

In the rest of the paper we consider some fragments of Ltl. For a set of Ltl
formulas � , we denote by Lop1;:::;opk (� ) the logic built from the formulas in �
by using only the operators in the list op1; : : : ; opk. When the list of operators
contains only the Boolean connectives we use the notation B(� ), i.e., B(� ) =
L:;^(� ). In particular, � = B(P). As an example, the logic L3;^(�) is the
one de�ned by the grammar ' := p j' ^ ' j 3', where p 2 � , and the logic
B(L3;^(�)) contains Boolean combinations of the formulas from L3;^(�).

2.2 Ltl games

A game graph is a tuple G = (�; V; V0; V1; 
; �) where � is a �nite set of labels,
V is a �nite set of vertices, V0 and V1 de�ne a partition of V , 
 : V ! 2V is a
function giving for each vertex u 2 V the set of its successors in G, and � : V ! �
is a labeling function. For i = 0; 1, the vertices in Vi are those from which only
player i can move and the allowed moves are given by 
. A play starting at x0 is
a sequence x0x1 : : : in V

� or V ! such that xj 2 
(xj�1), for every j. A strategy

for player i is a total function f : V �Vi ! V mapping each �nite play ending in
Vi into V (it gives the moves of player i in any play ending in Vi). A play x0x1 : : :
is consistent with f if for all xj 2 Vi with j � 0, f(x0 : : : xj) = xj+1.

In this paper, we focus on determining the existence of strategies for player 0.
For this reason, player 0 is called the protagonist, while player 1 is the adversary.
Unless speci�ed otherwise, by `strategy' we mean a strategy for the protagonist.
Moreover, we consider game graphs along with winning conditions expressed by
Ltl formulas (Ltl games). Formally, an Ltl game is a triple (G;'; u), where G



is a game graph with vertices labeled with subsets of atomic propositions, ' is
an Ltl formula and u is a vertex of G. A strategy f in (G;'; u) is winning if all
in�nite plays consistent with f and starting at u satisfy '. The decision problem
for an Ltl game (G;'; u) is to determine if there exists a winning strategy for
the protagonist.

3 Lower bound results

When proving lower bounds for Ltl games, the usual technique is to code the
acceptance problem for alternating Turing machines [16, 12]. The crux in such
a proof is to detect, using the Ltl speci�cation, that the content of the ith cell
in a con�guration is in accordance with the (i � 1)th , ith and (i + 1)th cells
of the previous con�guration. In a reduction from 2Exptime (i.e. alternating
Expspace), typically, the cell numbers are explicitly encoded using a sub-word
of bits in the con�guration sequence; these numbers can be read by zooming into
the ith cell in some con�guration using the 3 operator, using the foperator
to read the cell numbers and using U operator to access the next con�guration.
Here the U operator can be used instead of f, but the U cannot be replaced
by 3. In an Expspace reduction (i.e. alternating Exptime), the con�guration
numbers are also encoded explicitly, and one can just use the 3 and foperators
to access three cells of a con�guration and the appropriate position in the next
con�guration. Hence both proofs use the foperator and the 2Exptime reduction
uses the U operator crucially.

The primary diÆculty in the lower bounds we present is in dealing with re-
ductions in the absence of the fand U operators. The 3 operator can basically
check only for subsequences and can hence \jump" arbitrarily far making it dif-
�cult to read the cell and con�guration numbers. The main idea to solve this,
which we call the matching trick below, is to introduce a \sandwiched" encoding
of addresses which forces the reading of cell numbers to be contiguous. This then
yields an Expspace lower bound for B(L3;^;_(�)).

Then we consider L2;3;^;_(�) where one can nest3 and2 operators. Though
this does not allow us to check the required property on an entire sequence of
con�gurations, it allows us to check it for the last two con�gurations in a sequence.
By giving the adversary the ability to stop the sequence of con�gurations at any
point, we can ensure that the entire sequence satis�es the property, which leads
to a 2Exptime lower bound for this fragment.

3.1 Alternating Turing Machines

An alternating Turing machine on words over an alphabet � is a Turing machine
M = (Q;Q9; Q8; qin ; qf ; Æ), where Q9 and Q8 are disjoint sets of respectively ex-
istential and universal states that form a partition of Q, qin is the initial state,
qf is the �nal state and Æ : Q�� �fD1; D2g �! Q�� �fL;Rg. For each pair
(q; �) 2 Q��, there are exactly two transitions that we denote respectively as the
D1-transition and the D2-transition. Suppose q is the current state and the tape
head is reading the symbol � on cell i, if the d-transition Æ(q; �; d) = (q0; �0; L)
is taken, M writes �0 on cell i, enters state q0 and moves the read head to the



left (L) to cell (i � 1). A con�guration of M is a word �1 : : : �i�1(q; �i) : : : �n
where �1 : : : �n is the content of the tape and where M is at state q with the
tape head at cell i. The initial con�guration contains the word w and the initial
state. An outcome of M is a sequence of con�gurations, starting from the initial
con�guration, constructed as a play in the game where the 9-player picks the
next transition (i.e. D1 or D2) when the play is in a state of Q9, and the 8-player
picks the next transition when the play is in a state of Q8. A computation of
M is a strategy of the 9-player, and an input word w is accepted i� there ex-
ists a computation such that all plays according to it reach a con�guration with
state qf . We recall that an alternating Turing machine is g(n) time-bounded if it
halts on all input words of length n within g(n) steps, and g(n) space-bounded
if it halts on all input words of length n using at most g(n) tape cells (see [9]).
We also recall that the acceptance problem is Expspace-complete for exponen-
tially time-bounded alternating Turing machines, and is 2Exptime-complete for
exponentially space-bounded alternating Turing machines [5].

3.2 The matching trick

Fix n (which we assume is a power of 2) and let m = log2 n. Let us �x a set
of propositions fp>1 ; : : : ; p

>
m; p

?
1 ; : : : p

?
mg and another set fq>1 ; : : : ; q

>
m; q

?
1 ; : : : q

?
mg.

Let us also �x a �nite alphabet � disjoint from these. The gadget we describe
allows us to access the ith element of a sequence of n letters over �, using a
formula which is polynomial in log n and which uses only the 3 modality. Let
[i; j] denote the set of numbers from i to j, both inclusive. Let [i] denote [1; i].

Let u = um : : : u1 denote a sequence of length m such that ub is either fp
>
b g

or fp?b g, for b 2 [m]. Similarly, let v = v1 : : : vm (note the reversal in indices)
denote a sequence where each vb is either fq

>
b g or fq

?
b g. We call these sequences

u-addresses and v-addresses, respectively. A u-address u = um : : : u1 is to be
seen as the binary representation of a number from 0 to n�1: the proposition
p>b belongs to ub if the bth bit of the number is 1, otherwise p?b belongs to ub
(um encodes the most-signi�cant bit). Similarly, a v-address v also represents a
number, but note that the representation is reversed with the most-signi�cant
bit vm at the end of the sequence. For i 2 f0; : : : ; n�1g, let u[i] and v[i] denote
the u-address and v-address representing the number i. For example, if m = 4,
u[5] = fp?4 g � fp

>
3 g � fp

?
2 g � fp

>
1 g and v[5] = fq>1 g � fq

?
2 g � fq

>
3 g � fq

?
4 g.

We encode a letter a 2 � at a position i 2 [0; n�1] as the string haii =
u[i] �a �v[n�1�i], i.e., haii has 'a' sandwiched between a u-address representing i
and a v-address representing n�1�i. Note that in haii, vb = fq>b g i� ub = fp?b g,
for every b 2 [m]. Now consider a sequence of such encodings in ascending order
ha0i0 � ha1i1 � : : : � han�1in�1. We call such a sequence a proper sequence. Note
that while the u-addresses run from 0 to n�1, the v-addresses run from n�1
to 0. Let w be a proper sequence, a 2 � and i 2 [0; n�1]. We say that a
matches i in w if haii is a (not necessarily contiguous) subsequence of w. The
main property of this encoding is that it allows us to check whether a letter a
is encoded at a position i by simply checking whether haii is a subsequence of
the proper sequence w, i.e. by checking if a matches i in w. For example, when
m = 4, consider w = u[0]a0v[15] : : : u[15]a15v[0]. Let us consider for which letters
a 2 �, the string u[5]av[10] is a subsequence of w. fp>3 g is in u[5] and the �rst



place where it occurs in w is in the address u[4]. After this, the �rst place where
fp>1 g occurs in w is in u[5]. Hence the shortest pre�x w0 of w such that u[5] is a
subsequence of w is u[0]a0v[15] : : : u[5]. Similarly the shortest suÆx w00 of w such
that v[10] is a subsequence of w00 is v[10] : : : u[15]a15v[0]. Hence if u[5]av[10] is a
subsequence of w, then a = a5. The following lemma captures this:

Lemma 1. Let w = ha0i0 � ha1i1 � : : : � han�1in�1 be a proper sequence, a 2 �
and i 2 [0; n�1]. Then, a matches i in w i� a = ai.

Finally, we show how to check whether a matches i in w using a formula in
B(L3;^;_(�)). If �1; : : : ; �k are state predicates, let Seq(�1; : : : ; �k) stand for the
formula 3(�1 ^3(�2 ^ : : :3(�k) : : :)). Intuitively, this checks if there is a subse-
quence along which �1 through �k hold, in that order. Let a 2 � and i 2 [0; n�1].
Let xm; : : : ; x1 be such that xb = true i� the bth bit in the binary representa-
tion of i is 1. Let Same(pb; xb) stand for the formula (p>b ^ xb) _ (p?b ^ :xb),
which asserts that the value of pb is the same as that of xb, where b 2 [m].
Similarly, let Di� (qb; xb) be the formula (q>b ^ :xb) _ (q?b ^ xb), which asserts
that the value of qb is the negation of xb. With Match(a; i) we denote the formula
Seq(Same(pm; xm); : : : ;Same(p1; x1); a;Di� (q1; x1); : : : ;Di� (qm; xm)). It is then
easy to see that for any proper sequence w, w satis�es Match(a; i) i� haii is a
subsequence of w, i.e i� a matches i in w.

3.3 Lower bound for B(L3;^;_(�))

We show in this section that deciding B(L3;^;_(�)) games is Expspace-hard.
The reduction is from the membership problem for alternating exponential-time
Turing machines. We show that for such a Turing machine M , given an input
word w, we can construct an instance of a game and a B(L3;^;_(�)) speci�cation
in polynomial time such that M accepts w if and only if the protagonist has a
winning strategy in the game.

Let us �x an alternating exponential-time Turing machine M =
(�;Q;Q9; Q8; qin; qf ; Æ) and an input word w 2 ��. Let us assume thatM takes
at most m units of time on w (m is exponential in jwj). The game we construct
will be such that the protagonist generates sequences of con�gurations beginning
with the initial con�guration (with w on its tape). During the game, after an exis-
tential con�guration the protagonist gets to choose the transition (i.e. D1 or D2)
while at a universal con�guration the adversary gets to pick the transition. The
speci�cation will demand that successive con�gurations do indeed correspond to
moves of M . Hence strategies of the protagonist correspond to runs on w.

Let � be any play according to a computation. Then � is a sequence of
con�gurations of length m and each con�guration can be represented using a
sequence of at most m symbols (since M cannot use space more than m). We
record � by encoding each cell of each con�guration by explicitly encoding the
number of the con�guration and the number of the cell within the con�guration.
Con�gurations are represented as strings over the alphabet �0 = � [ (Q � �),
namely from the set �� � (Q��) ���.

In order to describe the con�guration number and the cell number, each of
which ranges from 0 to m�1, we need k bits where m2 = 2k. Let us �x a set of
p-bits fpzl j l 2 [1; k]; z 2 f>;?g g and a set of q-bits fqzl j l 2 [1; k]; z 2 f>;?g g.



We employ the matching trick using these p-bits, q-bits and �0 (see Section 3.2
and recall the de�nitions).

For any i 2 [0;m2�1], the k=2 less signi�cant bits of i will represent the
cell number and the k=2 more signi�cant bits will represent the con�guration
number. Let u0[conf ; cell ], where conf ; cell 2 [0;m�1] denote the u-address
u[2k=2:conf + cell ]. Hence u0[conf ; cell ] encodes that the current con�guration
number is conf and the current cell number is cell . Similarly, de�ne v0[conf ; cell ]
as the v-address v[2k=2:conf + cell ]. A proper sequence hence is of the form:
u0[0; 0]a(0;0)v

0[m�1;m�1] : : : u0[0; m� 1]a(0;m�1)v
0[m�1; 0] u0[1; 0]a(1;0)v

0[m�2; m�1]

: : : : : : : : : : : : u0[m�1;m�1]a(m�1;m�1)v
0[0; 0]:

The game graph we construct is composed of three parts: a main part and two
sub-graphs G1 and G2. In the main part, the protagonists aim is to generate
sequences of letters from �0 sandwiched between a u-address and a v-address
that form a proper sequence. The adversary's aim is to check that the current
sequence is proper and conforms to the behavior of M . If the adversary claims
that one of these is not true, the game moves to the subgraphs G1 and G2 where
the adversary will have to provide witnesses to prove these claims.

The set of propositions we use includes the p-bits, q-bits and those in �0,
as well as a set of r-bits, s-bits, t-bits and e-bits frzb ; s

z
b ; t

z
b ; e

z
b j b 2 [1; k]; z 2

f>;?gg, and other new propositions fD1; D2; ok ; obj 1; obj 2g. The game graph
typically allows plays that look like:

u0a0v0
%

obj 1

ok : : : : : : uyayvy
%

obj 1

ok d u00a
0
0v

0
0 : : : : : : : : : ufafvf

%
obj 1

&
obj 2

ok ok ok : : :

The central line above shows how a play normally proceeds. The protagonist
generates sequences of triples consisting of a u-address, a letter in �0 and a v-
address. Note that each triple has 2k + 1 letters. After every such triple, the
adversary gets a chance where it can continue the normal course by choosing
ok or can generate an objection by choosing obj 1. Objection obj 1 leads the play
to the subgraph G1. Whenever the protagonist generates an address where the
last k=2 bits of the u-address is 1 (denoted uyayvy above), this denotes the end
of a con�guration, and the play reaches a protagonist state if the con�guration
generated was existential and an adversary state if it was universal. Accordingly,
the protagonist or the adversary choose the next letter d 2 fD1; D2g which
denotes the transition they wish to take from the current con�guration.

At the end of the whole sequence, when a u-address with all its k bits set
to 1 is generated (denoted ufafvf above), the adversary, apart from being able
to raise the �rst kind of objection, can also raise a second kind of objection by
choosing the action obj 2 that leads the play to the sub-graph G2. If the adversary
instead chooses not to raise an objection, the game enters a state where the action
ok occurs in�nitely often and no other actions are permitted.

Note that the game graph does not ensure that the sequence generated is a
proper sequence; in fact, it even allows triples of the form u[i] � a � v[j] where
j 6= 2k�1�i. The objections obj 1 and obj 2 will take care of this and make sure
that a proper sequence needs to be generated for the protagonist to win.

On the objection obj 1, the play moves to G1 where the adversary claims
that in the sequence generated thus far, there was a u-address for i which was



not followed by a u-address for i + 1, or there was a u-address for i which was
not followed by a v-address for 2k�1�i. The adversary chooses as a witness a
sequence of k r-bits xk : : : x1, where xb = fr>b g or xb = fr?b g. This denotes the
binary representation of a number �r, with xb = fr>b g i� the bth bit in the binary
representation of �r is 1 (with xk encoding the most signi�cant bit). Next, the
adversary chooses a sequence of k s-bits, encoding a number �s. The adversary
should choose these sequences such that �s = �r + 1.

The fact that �s = �r + 1 can be checked using the formula succ(�r; �s):

k_
j=1

0
@

j�1̂

h=1

(3r>h ^3s?h ) ^ (3r?j ^3s
>
j ) ^

k̂

h=j+1

((3r>h ^3s
>
h ) _ (3r?h ^3s

?
h ))

1
A

Let same(pi; ri) stand for the formula ((p>i ^3 r
>
i ) _ (p?i ^3 r

?
i )). Similarly

de�ne same(pi; si). Also, let di� (qi; ri) stand for the formula ((q>i ^ 3 r?i ) _
(q?i ^3 r

>
i )), which checks if the ith q-bit is the complement of the ith r-bit. The

speci�cation formula then has the following conjunct  1:

 1 =3obj 1 ! ([(succ(�r; �s) ^ '1)! '2] ^ ('01 ! '02)) where

'1 = Seq(same(pk; rk); : : : ; same(p1; r1); (p
>
1 _ p

?
1 ))

'2 = Seq(same(pk; rk); : : : ; same(p1; r1); same(pk; sk); : : : ; same(p1; s1))

'01 = Seq(same(pk; rk); : : : ; same(p1; r1))

'02 = Seq(same(pk; rk); : : : ; same(p1; r1); di� (q1; r1); : : : ; di� (qk; rk))

'1 says that there is a subsequence of p-bits matching �r and after this match-
ing there is a future point where some p-bit (and hence a u-address) is de�ned,
i.e. u[�r]:p>1 or u[�r]:p?1 is a subsequence of the play. '2 demands that there is a
subsequence of p-bits that match �r followed by a sequence of p-bits matching �s,
i.e. u[�r] � u[�s] is a subsequence.

The formula '01 checks whether there is a subsequence of p-bits matching �r and
'02 checks if there is a subsequence of p-bits matching r followed by a subsequence
of q-bits matching 2k�1��r, i.e. whether u[�r] � v[2k�1��r] is a subsequence of the
play.

Consider a strategy for the protagonist such that all plays according to the
strategy satisfy  1. If the sequence u[i0]a0v[j0] ok u[i1]a1v[j1] ok : : : is a play
according to this strategy, we can prove that this must be a proper sequence.
One can also show that if the protagonist plays only proper sequences, then she
cannot lose because of the conjunct  1.

In summary, we have so far managed to construct a game graph that lets the
protagonist generate cell contents at various addresses ranging from 0 to m2� 1.
The speci�cation  1 forces the protagonist to generate this in increasing order.
The game graph forces each contiguous block of declared cells to be a con�g-
uration and when a con�guration is �nished, the game graph ensures that the
correct player gets to choose the direction of how the computation will proceed.

Let us now turn to the second objection obj 2 that ensures that the con�gura-
tion sequences generated do respect the transitions of the Turing machine. After
raising objection obj 2, the play reaches the subgraph G2, where the adversary
picks four numbers �r, �s, �t and �e (using the r-, s-, t- and e-bits). The adversary



should generate these such that �s = �r + 1, �t = �s + 1 and �e = �s + 2k=2. Also,
�r, �s and �t will point to three consecutive cells of a particular con�guration and
hence �e will point to a cell in the successor con�guration where the cell number
is the same as that pointed to by �s. The adversary claims that the cell content
de�ned at �e is not correct (note that the cell content at �e solely depends on the
cell contents at �r, �s and �t).

First, the correctness of the values of �r, �s, �t and �e can be ensured using
a formula '3, similar to the way we check whether a number is the successor
of another. Also, let �D1

be the set of all elements of the form ha1; a2; a3; a
0
2i,

where a1; a2; a3; a
0
2 2 �0 and a02 is the expected value of the cell number cell ,

if a1, a2 and a3 are the cell contents of the cells (cell�1), cell and (cell + 1)
of the previous con�guration and the machine took the D1 transition. Similarly,
de�ne �D2

. Let match(a; r; '), where ' is a temporal formula, denote the for-
mula which checks whether a matches �r in w (where �r is the number encoded
by the r-bits that occur somewhere in the future of where the string is matched)
and after matching, the suÆx of w from that point satis�es '. More precisely, let
same(pb; rb) = ((p>b ^3 r

>
b )_(p

?
b ^3 r

?
b )), as de�ned before, and let di� (qb; rb) =

((q>b ^ 3 r?b ) _ (q?b ^ 3 r>b )), for every b 2 [1; k]. Then, match(a; r; ') =
Seq(same(pk; rk); : : : ; same(p1; r1); a; di� (q1; r1); : : : ; di� (qk ; rk); '). Note that if
' is in B(L3;^;_(�)), then so is match(a; r; '). De�ne similarly formulas for s, t
and e.

Now, we have in the speci�cation the conjunct  2 = (3obj 2 ^ '3) ! '4,
where '3 is as explained earlier and, denoting by �(a1; a2; a3; a

0
2; d) the formula

match(a1; r;match(a2; s;match(a3; t;3(d ^match(a02; e; true))))),
'4 =

W
d2fD1;D2g;ha1;a2;a3;a0

2
i2�d

�(a1; a2; a3; a
0
2; d):

'4 checks whether there is tuple ha1; a2; a3; a
0
2i in �D1

or �D2
such that a1

matches �r followed by a2 matching �s followed by a3 matching �t followed by the
corresponding direction D1 or D2 followed by a02 matching �e. It is easy to see
that a proper sequence that encodes a list of valid con�gurations interspersed
with direction labels satis�es  2 (for all possible values of �r, �s, �t and �e) i� it
corresponds to a correct evolution of M according to the direction labels.

The complete speci�cation is then  1^ 2 ^ 3, where  3 = 3obj 1_3 obj 2_W
a2� 3(qf ; a) which demands that if no objection is raised, then the play must

meet the �nal state.
We can show thus that there is a winning strategy for the protagonist i� M

accepts w. Since the main part of G is O(jwj+ k+ jM j), size of both G1 and G2

is O(k), and size of  1 ^  2 ^  3 is O(k (k + jM j)), we have:

Theorem 1. Deciding B(L3;^;_(�)) games is Expspace-hard.

3.4 Lower bound for L2;3;^;_(�)

In this section, we show that deciding games for speci�cations given by formulas
in L2;3;^;_(�) is 2Exptime-hard. The reduction is from the membership prob-
lem for alternating exponential-space Turing machines. We show that for such a
Turing machine M , given an input word w, we can construct in polynomial time
a game graph G0 and an L2;3;^;_(�) formula ' such that M accepts w if and
only if the protagonist has a winning strategy in the game.



LetG be the game graph constructed in Section 3.3. We give a reduction based
on the construction of a game graph G0 which is slightly di�erent from G. First,
the con�guration numbers are not encoded explicitly (since they can be doubly
exponential) but the cell numbers are encoded. However, for a con�guration
sequence c0c1 : : :, we want to count the con�gurations using a counter modulo 3.
For this, we introduce new propositions P 0 = f0; 1; 2g, and in the entire sequence
encoding ci, the proposition i mod 3 is true. This counter's behaviour is ensured
by the design of the game graph.

The role of obj 1 is similar as in G; using this the adversary ensures that
the sequence generated is proper and hence that the system does generate a
sequence of con�gurations with proper cell numbers. However, if it wants to
claim that the sequence of con�gurations is not according to the Turing machine,
note that it cannot provide an exact witness as con�gurations are not numbered.
We hence allow the adversary to raise the objection obj 2 after the end of every
con�guration. When the adversary chooses obj 2 it gives a cell number k and
claims that the contents of cell k in the last con�guration thus far is incorrect
with respect to the corresponding cells in the previous con�guration.

The crucial point is that one can check whether the cell in the last con-
�guration is correct with respect to the penultimate con�guration by using an
L2;3;^;_(�) formula that uses the modulo-3 counter. Intuitively, if we want to
check a formula '1 on the suÆx starting from the penultimate con�guration, we
can do so by the formulaW

j2f0;1;2g (3 (j ^ '1 ^3(j + 1) ^ :3(j + 2)))

Note that the formula is in L2;3;^;_(�), but not in B(L3;^;_(�)), because of
the subformula :3(j + 2) (which plays a vital role). Using such a formula, we
ensure that the protagonist must generate correct con�guration sequences to win
the game. The rest of the proof is in details and we omit them; we then have:

Theorem 2. Deciding L2;3;^;_(�) games is 2Exptime-hard.

4 Fairness games

In modeling reactive systems, fairness assumptions are added to rule out in�nite
computations in which some choice is repeatedly ignored [11]. A typical fairness
constraint is of the form \if an action is enabled in�nitely often, then it is taken
in�nitely often," and is captured by a formula of the form 23p ! 23p0. In
the game setting, fairness constraints can refer to both the players. Let  0 be
the formula expressing the fairness constraint for the protagonist and  1 be the
formula for the fairness constraints of the adversary. Then, the winning condition
' of a game is changed either to  1 ! ( 0 ^ ') (\if the adversary is fair then
the protagonist plays fair and satis�es the speci�cation") or  0 ^ ( 1 ! ') (\the
protagonist plays fair and if the adversary plays fair then the speci�cation is satis-
�ed") [3]. Thus, adding fairness changes the winning conditions for speci�cations
from a logic L to Boolean combinations of L23(�) and L formulas.

We consider adding fairness to B(L3;^(�)) games. The fragment B(L3;^(�))
contains Boolean combinations of formulas built from state predicates using even-
tualities and conjunctions, and includes combinations of typical invariants and
termination properties. A sample formula of this fragment is 2 p _ 3(q ^ 3 r).



In this section, we prove that games for this logic augmented with fairness con-
straints are still decidable in polynomial space. More precisely, we prove that
deciding B(L23(�)[L3;^(�)) games is Pspace-complete. We begin by consid-
ering B(L23(�)) games.

4.1 Boolean combinations of B�uchi conditions

In this section we give a polynomial space algorithm to solve B(L23(�)) games.
We adapt the technique proposed by Zielonka [17] for Muller games. Muller games
are game graphs with winning conditions given as a collection of sets of vertices
F with the meaning that a play � is winning if the set of the in�nitely repeating
vertices in � belongs to F .

Let V be a �nite set, F be a subset of 2V , and �F be 2V n F . A set U 2 F is
maximal for F if for all U 0 2 F , U 6� U 0. A Zielonka tree for the pair (F ; �F) is
a �nite tree T with vertices labeled by pairs of the form (0; U) with U 2 F or
(1; U) with U 2 �F . It is inductively de�ned as follows. The root of T is labeled
with (0; V ), if V 2 F , and by (1; V ) otherwise. Suppose x is a node labeled with
(0; U). If U1; : : : ; Um, m > 0, are the maximal subsets of U belonging to �F , then
x has m children respectively labeled with (1; U1); : : : ; (1; Um). If all subsets of
U belong to F , then x is a leaf. The case (1; U) is analogous. Notice that while
the number of children can be exponential in jV j, the depth of the tree is linear
in jV j.

Z-solve(Gx; x)
Let Vx be the set of Gx vertices and let (i; Ux) be the label of x
W  W 0  ;
if x is not a leaf then
repeat

W  W [W 0; W 0  ;
W  Attractor-set(W; 1� i)
for each child y of x do

Let (1� i; Uy) be the label of y
Gy  Sub-game(Gx;W;Uy)
W 0  W 0[ Z-solve(Gy; y)

until (W =W [W 0)
return (Vx nW )

Fig. 1. Algorithm for B(L23(�)) games.

Let V be the set of vertices of a game graph G and F denote a Muller winning
condition. The algorithm in Figure 1 implements the solution given by Zielonka
[17]. Let Gx be a sub-game of G (i.e. Gx is a game graph which is a subgraph
of G) and let x be a node of the Zielonka tree for (F ; �F), with x labeled with
(i; Ux). On the call Z-solve(Gx; x), the procedure computes the set of positions
in Gx from which player i has a winning strategy with respect to the Muller
condition restricted to Gx. The procedure is hence initially invoked with (G; x̂)
where x̂ is the root of the Zielonka tree.



The procedure works by growing the set W of the vertices from which player
1�i has a winning strategy on Gx. The main parts of Z-solve(Gx; x) are the
enumeration of the children of x, and the calls to procedures Attractor-set and
Sub-game. A call Attractor-set(Gx;W; 1�i) constructs the largest set of vertices
in Gx from which player 1�i has a strategy to reach W . For a set U � Vx,
let Z be the set of vertices constructed in the call Attractor-set(V n U; i). Then,
Sub-game(Gx;W;U) constructs a game graph contained in Gx, that is induced
by the vertices Vx n (W [Z). Each call to either Attractor-set or Sub-game takes
at most polynomial time. Note that the recursive depth of calls is bounded by
the depth of the tree.

It is worth noting that for an implicitly de�ned Muller condition, such as
the one de�ned by a formula in B(L23(�)), one can use the same procedure
above but without explicitly constructing the Zielonka tree. The algorithm just
needs to compute the children of a node of the tree, and, as we show below, this
can be done in polynomial space as long as the membership test U 2 F can be
implemented in polynomial space. Note that the recursive call depth is bounded
by V and hence the algorithm will run in polynomial space.

To explain the computation of children of a node of the Zielonka tree more
formally, consider a B(L23(�)) formula '. For a set U � V , let �U be the
mapping that assigns a sub-formula 23 p of ' to true if p holds in some vertex
in U , and assigns it to false otherwise. We say that U meets ' if under the
assignment �U , ' evaluates to true. Intuitively, if U is the set of the vertices that
repeat in�nitely often on a play � of G, then � satis�es ' if and only if U meets
'. Let F' be the set of U � V such that U meets ', and �F' be its complement
with respect to 2V . The Zielonka tree for ' is the Zielonka tree T for (F'; �F').
We observe that each child of a node x of T can be generated in polynomial
space simply from ' and the label (i; U) of x. For example, if i = 0, then for each
U 0 � U we can check if (1; U 0) is a child of x by checking whether it falsi�es '
and is maximal within the subsets of U that do not meet ' (which can be done in
polynomial space). Thus we can enumerate the children of a node in the Zielonka
tree using only polynomial space and we have the following:

Theorem 3. Deciding B(L23(�)) games is in Pspace.

4.2 Solving fairness games

The result from Section 4.1 can be extended to prove that when the winning
condition is a formula from B(L23(�) [ L3;^(�)), that is a Boolean combina-
tion of formulas from L23(�) and L3;^(�), then games can still be decided in
polynomial space.

We �rst describe a polynomial space algorithm to solve games for the simpler
fragment of the Boolean combinations of L23(�) formulas and formulas of the
form 3 p using the polynomial-space algorithm for B(L23(�)) above.

Let us explain the intuition behind the solution with an example. Consider
the formula ' = 23p1 _ (23p2 ^ 3 p3). The protagonist can win a play by
visiting a state satisfying p1 in�nitely. However, if it meets a state satisfying p3
then it wins using the formula '0 = 23 p1 _23p2. Now, assume that we know
the exact set Z of positions from which the protagonist can win the game G with



'0 as the winning condition. We construct a game graph G0 from G by adding
two vertices win and lose , that have self loops and let a new proposition pwin be
true only at win . Now, for a vertex u in G where p3 holds, we remove all the edges
from u and instead add an edge to either win or lose | we add an edge to win

if u is in Z, and an edge to lose otherwise. Then clearly the protagonist wins the
overall game if and only if it wins the game (G0;23 p1_23 p

win ). In general, we
need to de�ne and solve many such games. Each such game corresponds to some
subset X of the subformulas of the kind 3pi mentioned in '. In such a game,
when we meet a state that meets a new predicate p, where 3 p is a subformula
of ' but is not in X , we jump to win or lose depending on whether the game
corresponding to X [ f3pg is winning or losing.

Consider a B(L23(�)[L3(�)) game (G;') and let 3p1; : : : ;3pk be all the
sub-formulas of ' of the form 3 p that are not in the scope of the 2 operator.
For each assignment � of truth values to 3 p1; : : : ;3 pk, de�ne '� as the formula
obtained from ' by assigning 3 p1; : : : ;3 pk according to �. Clearly, '� is a
B(L23(�)) formula. For an assignment � and a vertex u, we denote by � + u
the assignment that maps 3pi to true i� either � assigns 3 pi to true or pi holds
true at u. We say that a vertex u meets an assignment � if whenever pi holds
true at u, then � also assigns 3 pi to true.

We denote by G� the game graph obtained from G removing all the edges
(u; v) such that u does not meet �, and adding two new vertices win and lose

along with new edges as follows. We use a new atomic proposition pwin that is
true only at win . We add a self loop on both win and lose , and there are no other
edges leaving from these vertices (i.e., they are both sinks). Denoting by X� the
set of vertices that meet �, we add an edge from each u 62 X� to win if there is
a winning strategy of the protagonist in (G�+u; '�+u _ 23 p

win ; u), and to lose

otherwise.
In order to construct G� , we may need to make recursive calls to construct

and solve (G�+u; '�+u_23 p
win ; u), for some u. However, note that the number

of elements set to true in � + u is more than those set in � to be true. Also, if
� assigns all elements to true, there will be no recursive call to construct games.
Hence the depth of recursion is bounded by the number of subformulas of the kind
3 p in '. Note however that there can be an exponential number of calls required
when constructing G� . Since any of the games (G� ; '

0), once constructed, can be
solved in polynomial space, it follows that G? can be constructed in polynomial
space, where ? is the empty assignment where every element is set to false.
Therefore, we have the following lemma.

Lemma 2. Given a B(L23(�)[L3(�)) game (G;'; u), there exists a winning

strategy of the protagonist in (G;'; u) if and only if there exists a winning strategy

of the protagonist in (G?; '? _ 23 p
win ; u).

To decide B(L23(�) [ L3;^(�)) games we need to modify the above proce-
dure. We know from [4] that for each formula  in B(L3;^(�)) there exists a
deterministic B�uchi automaton A accepting all the models of  such that: (1)
size of A is exponential in j j, (2) the automaton can be constructed \on-the-

y" | for any state of the automaton, the transitions from it can be found
in polynomial time, (3) the length of simple paths in A is linear in j j, and
(4) the only cycles in the transition graph of A are the self-loops. For a given



B(L23(�)[L3;^(�)) formula ', let  1; : : : ;  k be all the sub-formulas of ' from
B(L3;^(�)) that are not in the scope of the 2 operator. Let Ai be a deterministic
automaton accepting models of  i and satisfying the above properties. Let Q be
the product of the sets of states of A1; : : : ; Ak. For a tuple �q = hq1; : : : ; qki 2 Q,
we associate a truth assignment �[�q] such that �[�q]( i) is true if and only if qi
is an accepting state. Moreover, for i = 1; : : : ; k, let q0i be the state entered by
Ai starting from qi reading the label of a vertex u of G. We denote the tuple
hq01; : : : ; q

0
ki by �q(u). For a tuple of states �q = hq1; : : : ; qki 2 Q, the graph G�q is

constructed similar to G� . The main di�erences are that we solve games of the
form (G�q(v); '�[�q(v)] _ 23p

win ; v), we use the set X�q = fv j �q 6= �q(v)g instead of
X� and the recursion depth is bounded by O(k � j'j). Clearly, each such graph
can be constructed in polynomial space and thus we have the following result.

Theorem 4. Deciding B(L23(�) [ L3;^(�)) games is in Pspace.

We can also show that deciding B(L23(�)) games is Pspace-hard and hence,
from the results above, deciding B(L23(�) [ L3;^(�)) games and B(L23(�))
games is Pspace-complete. We in fact show a stronger result that a fragment of
B(L23(�)) is already Pspace-hard.

Let LR denote the set of formulas of the form
Wk
i=1 'i, where each 'i is of the

form (23pi ^32 p
0
i) (where each pi and p

0
i are state predicates). LR is then a

fragment of B(L23(�)) and represents Rabin conditions. Let LS denote the set

of formulas of the form
Vk
i=1 'i, where each 'i is of the form (23 pi ! 23 p0i).

LS is also a fragment of B(L23(�)) and represents Streett conditions, which are
the dual of Rabin conditions. Let LRS represent a disjunction of a Rabin and a
Streett condition, i.e. LRS contains formulas of the kind 'R_'S where 'R 2 LR
and 'S 2 LS . We can then show the that deciding games for formulas in LRS
is Pspace-hard. Note that it is known that deciding LR games is Np-complete
and, hence, deciding LS games is co-Np-complete.

Theorem 5. Deciding LRS games is Pspace-hard.

5 Conclusions

We have shown that games for the fragment L2;3;^;_(�) are 2Exptime-hard,
games for the fragment B(L3;^;_(�)) are Expspace-hard, games for B(L23(�))
are Pspace-hard, and games for B(L23(�) [ L3;^(�)) are in Pspace. Our
lower bound proofs introduce new techniques for counting and encoding using
game graphs and Ltl formulas without using next or until operators. Our upper
bound techniques are useful for combinations of safety/reachability games on
game graphs with strong fairness requirements on the choices of the two players.
The results in this paper complete the picture for the complexity bounds for
various fragments of Ltl and is summarized in Figure 2. Recall that model-
checking of L2;3;^;_(�) formulas isNp-complete, and becomes Pspace-complete
(as for the full Ltl) by allowing the until and/or the next operators [15]. As shown
in Figure 2, this does not hold for games. Note that allowing nested always and
eventually operators the complexity of games increases to the complexity of the
whole Ltl (i.e., 2Exptime-complete), while the use of the next and eventually
operators (with the negation only at the top level) that makes model checking
Pspace-hard, increases the complexity of games only to Expspace.



Lower bound Upper bound

B(L3;^(�)) Pspace-complete [4]

B(L23(�) [ L3;^(�)) Pspace-complete

L3;^;_(�) Pspace-hard [4] Pspace [12]

B(L3; c;^(�)) Exptime-complete [4]

B(L3;^;_(�)) Expspace-hard Expspace [4]

B(L3; c;^;_(�)) Expspace-hard [12] Expspace [4]

L2;3;^;_(�) 2Exptime-hard 2Exptime [14]

Ltl 2Exptime-complete [14]

Fig. 2. Complexity of Ltl games.
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