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Abstract. Nested words model data with both linear and hierarchical
structure such as XML documents and program traces. A nested word
is a sequence of positions together with a matching relation that con-
nects open tags (calls) with the corresponding close tags (returns). Vis-
ibly Pushdown Automata are a restricted class of pushdown automata
that process nested words, and have many appealing theoretical proper-
ties such as closure under Boolean operations and decidable equivalence.
However, like any classical automata models, they are limited to finite
alphabets. This limitation is restrictive for practical applications to both
XML processing and program trace analysis, where values for individual
symbols are usually drawn from an unbounded domain. With this mo-
tivation, we introduce Symbolic Visibly Pushdown Automata (SVPA)
as an executable model for nested words over infinite alphabets. In this
model, transitions are labeled with predicates over the input alphabet,
analogous to symbolic automata processing strings over infinite alpha-
bets. A key novelty of SVPAs is the use of binary predicates to model
relations between open and close tags in a nested word. We show how
SVPASs still enjoy the decidability and closure properties of Visibly Push-
down Automata. We use SVPAs to model XML validation policies and
program properties that are not naturally expressible with previous for-
malisms and provide experimental results for our implementation.
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1 Introduction

Nested words model data with both linear and hierarchical structure such as
XML documents and program traces. A nested word is a sequence of positions
together with a matching relation that connects open tags (calls) with the corre-
sponding close tags (returns). Visibly Pushdown Languages operate over nested
words, and are defined as the languages accepted by Visibly Pushdown Automata
(VPA) [1,2]. It can be shown that this class is closed under Boolean operations
and enjoys decidable equivalence. The model of VPA has been proven to be useful
in many computational tasks, from streaming XML processing [11, 13, 18] to ver-
ification of recursive programs [5,12]. As many classical models, VPAs build on
two basic assumptions: there is a finite state space; and there is a finite alphabet.
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While finiteness of the state-space is a key aspect that enables many decidable
properties, the finite alphabet assumption is in general not necessary. Moreover,
practical applications such as XML processing and program trace analysis, use
values for individual symbols that are typically drawn from an infinite domain.
This paper focuses on this limitation and proposes a way to extend VPAs to
infinite domains based on the recently proposed idea of symbolic automata.

Symbolic Finite Automata (SFAs) [3,9, 19] are finite state automata in which
the alphabet is given by a Boolean algebra that may have an infinite domain,
and transitions are labeled with predicates over such algebra. In order for SFAs
to be closed under Boolean operations and preserve decidability of equivalence,
it should be decidable to check whether predicates in the algebra are satisfiable.
SFAs accept languages of strings over a potentially infinite domain. Although
strictly more expressive than finite-state automata, Symbolic Finite Automata
are closed under Boolean operations and admit decidable equivalence.

We introduce Symbolic Visibly Pushdown Automata (SVPA) as an exe-
cutable model for nested words over infinite alphabets. In SVPAs transitions
are labeled with predicates over the input alphabet, analogous to symbolic au-
tomata for strings over infinite alphabets. A key novelty of SVPAs is the use
of binary predicates to model relations between open and close tags in a nested
word. Even though SVPAs completely subsume VPAs, we show how SVPAs still
enjoy the decidability and closure properties of VPAs. This result is quite sur-
prising since previous extensions of Symbolic Automata with binary predicates
have undecidable equivalence and are not closed under Boolean operations [7].

We finally investigate potential applications of SVPAs in the context of anal-
ysis of XML documents and monitoring of recursive programs over infinite do-
mains. We show how SVPAs can model XML validation policies and program
properties that are not naturally expressible with previous formalisms and pro-
vide experimental results on the performance of our implementation. For exam-
ple SVPAs can naturally express the following properties: an XML document is
well-matched (every close tag is the same as the corresponding open tag), every
person has age greater than 5, and every person’s name starts with a capital
letter. Using the closure properties of SVPAs, all these properties can then be
expressed as a single deterministic SVPAs that can be efficiently executed.

Contributions: In summary, our contributions are:

— the new model of Symbolic Visibly Pushdown Automata (Section 3);

— new algorithms for intersecting, complementing, and determinizing SVPAs,
and for checking emptiness of SVPAs, that extend classical algorithms to
the symbolic setting (Section 4); and

— a prototype implementation of SVPAs and its evaluation using XML pro-
cessing and program monitoring as case-studies (Section 5).

2 DMotivating Example: Dynamic Analysis of Programs

In dynamic analysis program properties are monitored at runtime. Automata
theory has come handy in specifying monitors. Let = be a global variable of



a program P. We can use Finite State Automata (FSA) to describe “correct”
values of x during the execution of P. For example if x has type bool, an FSA
can specify that x starts with value true and has value false when P terminates.

Infinite Domains. In the previous example, x has type bool. In practice, one
would want to express properties about variables of any type. If z is of type int
and has infinitely many possible values, FSAs do not suffice any more. For exam-
ple no FSA can express the property ., stating that x remains even throughout
the whole execution of P. One solution to this problem is that of using predicate
abstraction and create an alphabet of two symbols even(z) and —even(z). How-
ever, this solution causes the input alphabet to be different from the original
one ({even(z), ~even(z)} instead of the set of integers), and requires to choose
a priori which abstraction to use.

Symbolic Finite Automata (SFA) [9, 19] solve this problem by allowing tran-
sitions to be labeled with predicates over a decidable theory. Despite this, SFAs
enjoy all the closure and decidability properties of finite state automata. The
SFA A., for the property ., has one state looping on an edge labeled with
the predicate even(x) expressible in Presburger arithmetic. Unlike predicate ab-
straction, SFAs do not change the underlying alphabet and allow predicates to
be combined. For example, let A,,; be the SFA accepting all the sequences of
positive integers. When intersecting A,,s and A, the transitions predicates will
be combined, and we will obtain an SFA accepting all the sequences containing
only integers that are both even and positive. An important restriction is that
the underlying theory of the predicates needs to be decidable. For example, the
property ¢, which states that x is a prime number at some point in P, cannot
be expressed by an SFA.

SFAs allow only unary predicates and cannot relate values at different posi-
tions. Extended Symbolic Finite Automata (ESFA) [8] allow binary predicates
for comparing adjacent positions, but this extension causes the model to lose
closure and decidability properties [7]. Other models for comparing values over
infinite alphabets at different positions are Data Automata (DA) [4] and Reg-
ister Automata (RA) [6] where one can for example check that all the symbols
in an input sequence are equal. This property is not expressible by an SFA or
an ESFA, however Data Automata can only use equality and cannot specify
properties such as even(z).

Procedure Calls. Let x be of type bool and let’s assume that the program P
contains a procedure q. The following property ¢— can be specified by neither
an FSA nor a SFA: every time q is called, the value of x at the call is the same as
the value of  when ¢ returns. The problem is that none of the previous model is
able to “remember”’ which call corresponds to which return. Visibly Pushdown
Automata (VPA) [2] solve this problem by storing the value of = on a stack at a
call and then retrieve it at the corresponding return. Unlike classical pushdown
automata, this model still enjoys closure under Boolean operations and decidable
equivalence. This is achieved by making calls and returns visible in the input
and allowing the stack to push only at calls and to pop only at returns.



Bool. Closure and PPN Hierarchical Infinite Binary
Model Decidable Equiv. Determinizability Inputs Alphabets Predicates
FSA v v X X —
SFA v v X v
ESFA X X X v Adjacent Positions
DA, RA some variants X trees v Only Equality
VPA v v v X —
SVPA (this paper) v v v v Calls/Returns

Table 1. Properties of different automata models.

Procedure Calls and Infinite Domains. Let x be of type int and let’s assume
that the program P contains a procedure q. No VPA can express the property
1« requiring that, whenever q is called the value of = at the call is smaller than
the value of x at the corresponding return. Expressing this kind of property in
a decidable automaton model is the topic of this paper.

We introduce Symbolic Visibly Pushdown Automata (SVPA) that combine
the features of SFAs and VPAs by allowing transitions to be labeled with pred-
icates over any decidable theory and values to be stored on a stack at calls and
retrieved at the corresponding returns. The property 1~ can then be expressed
by an SVPA A_ as follows. At a procedure call of g, A. will store the value
c of x on the stack. When reading the value r of = at a procedure return of q,
the value ¢ of x at the corresponding call will be on top of the stack. Using the
predicate ¢ < r, the transition assures that the property ¥ is met. SVPAs still
enjoy closure under Boolean operations, determinizability, and decidable equiv-
alence, and the key to decidability is that binary predicates can only be used to
compare values at matching calls and returns (unlike ESFAs). Data Automata
and Register Automata have been extended to trees and grammars [4, 6, 14] but
their expressiveness, for the same reason we discussed for strings, is orthogo-
nal to that of SVPAs. Table 1 summarizes the properties of all the models we
discussed.

3 Symbolic Visibly Pushdown Automata

In this section we formally define Symbolic Visibly Pushdown Automata (SVPA).
We first provide some preliminary definitions for symbolic alphabets. Next we
recall the basic definition of tagged alphabet and nested words, and we extend
such definition to infinite alphabets. Last, we define SVPAs and their semantics.

3.1 Preliminaries

We use standard first-order logic and follow the notational conventions that are
consistent with the original definition of symbolic transducers [21]. We write X
for the input alphabet. A label theory is given by a recursively enumerable set ¥
of formulas that is closed under Boolean operations. We use P (¥) and P, (%) to
denote the set of unary and binary predicates in ¥ respectively. We assume that
every unary predicate in P, (%) contains x as the only free variable (similarly
P, ,(¥) with = and y). It is easy to observe that given two unary predicates



1,2 € P.(¥), the predicates ¢1 A po and —p; are also unary predicates in
P,(¥), and given a predicate ¢; € P, (¥) UP, ,(¥) and a binary predicate
w2 € P, ,(¥) the predicates @1 A w2 and o are also binary predicates in
P,y (¥). A predicate ¢ € P, (resp. ¢ € P, ,) is satisfiable, IsSat(y), if there
exists a witness a € X' (resp. (a,b) € X' x X) that when substituted to 2 makes
© true, [pla/x]] = true (resp. [¢la/x,b/y]] = true). A label theory ¥ is decidable
when, for any ¢ € ¥, checking whether IsSat(p) is true is decidable.

Nested words Data with both linear and hierarchical structure can be encoded
using nested words [2]. Given a set X of symbols, the tagged alphabet Y consists
of the symbols a, {(a, and a), for each a € X. A nested word over X is a finite
sequence over Y. For a nested word aj - --ay, a position j, for 1 < j < k, is
said to be a call position if the symbol a; is of the form (a, a return position
if the symbol a; is of the form a), and an internal position otherwise. The tags
induce a matching relation between call and return positions. Nested words can
naturally encode strings and ordered trees.

3.2 Model
We can now formally define the model of symbolic visibly pushdown automata.

Definition 1 (SVPA). A (nondeterministic) symbolic visibly pushdown au-
tomaton over an alphabet X' is a tuple A = (@, Qo, P, §;,0c, 0r, Qr), where

— Q is a finite set of states,

— Qo C Q is a set of initial states,

— P is a finite set of stack symbols,

—6; CQ xP, x Q is a finite set of internal transitions

— 0. CQxP, xQ x P, is a finite set of call transitions,

-0, CQxP,y, x PxQ, is a finite set of return transitions,

— 0, CQ x P, xQ, is a finite set of empty-stack return transitions, and
— Qr C Q is a set of accepting states.

A transition (g, p,q’) € &;, where ¢ € P,, when reading a symbol a such that
a € [¢], starting in state ¢, updates the state to ¢’. A transition (¢, ¢, q’,p) € .,
where ¢ € P, and p € P, when reading a symbol (a such that a € [¢], starting
in state ¢, pushes the symbol p on the stack along with the symbol a, and updates
the state to ¢’. A transition (g, ¢,p,q’) € 6, where ¢ € P, ,, is triggered when
reading an input b), starting in state ¢, and with (p,a) € P x X on top of the
stack such that (a,b) € [¢]; the transition pops the element on the top of the
stack and updates the state to ¢’. A transition (g, p,q’) € d, where ¢ € P, is
triggered when reading a tagged input a) such that a € [¢], starting in state g,
and with the current stack being empty; the transition updates the state to ¢’.

A stack is a finite sequence over P x Y. We denote by I" the set of all stacks.
Given a nested word w = a; ...a, in X*, a run of M on w starting in state g
is a sequence p,(w) = (q1,61),- - -, (qr+1,0k+1), where ¢ = q1, each ¢; € Q, each
0; € I, the initial stack 6; is the empty sequence ¢, and for every 1 < i < k the
following holds:



Internal if a; is internal, there exists (g, ¢, q’) € d;, such that ¢ = ¢;, ¢ = i1,
a; S [[QO]], and 91‘4_1 = 0,-;

Call if a; = {(a, for some a, there exists (¢q,p,¢,p) € J., such that ¢ = ¢;,
q' = qiy1, a € [¢], and 0;11 = 0;(p, a); and

Return if a; = a), for some a, there exists (¢, 9,p,q') € §,, b€ X, and 8’ € I,
such that ¢ = ¢;, ¢ = qi+1, 6; = 0'(p,b), 6,11 = 6, and (b,a) € [¢].

Bottom if a; = a), for some a, there exists (q,¢,q') € &, such that ¢ = ¢;,
q = qiy1, 0;i =041 =€, and a € [y].

A run is accepting if g1 is an initial state in Qg and gr41 is a final state in F. A
nested word w is accepted by A if there exists an accepting run of A on w. The
language L(A) accepted by A is the set of nested words accepted by A.

Definition 2 (Deterministic SVPA). A symbolic visibly pushdown automa-
ton A is deterministic iff |Qol = 1 and

— for each two transitions t1 = (q1,¢1,q1),t2 = (g2, 2, 45) € 6, if (1 = g2 and
IsSat(p1 A @2), then ¢ = ¢b;

— for each two transitions t1 = (g1, ¢1, 491, p1),t2 = (g2, V2, ¢4, P2) € ¢, if (1 = G2
and IsSat(p1 N p2), then ¢ = ¢4 and p1 = pa;

— for each two transitions t1 = (q1,91,01,41), t2 = (g2, 92,D02,45) € Or, if 1 =
G2, p1 = p2, and IsSat(v1 A p2), then ¢ = ¢5; and

— for each two transitions t1 = (q1, p1,q1),t2 = (g2, 92, 45) € 0, if 1 = g2, and
IsSat(p1 A w2), then ¢ = ¢b.

For a deterministic SVPA A we use gg to denote the only initial state of A.

Definition 3 (Complete SVPA). A deterministic symbolic visibly pushdown
automaton A is complete iff for each q € Q, a,b € X, and p € P, there exist 1)
a transition (q,¢,q') € 0;, such that a € [¢]; 2) a transition (q,,q ,p") € b,
such that a € [¢]; 3) a transition (q,p,p,q’) € 6., such that (a,b) € [¢]; and 4)
a transition (q,¢,q") € 0p, such that a € [¢].

4 Closure Properties and Decision Procedures

In this section we describe the closure and decidability properties of SVPAs.
We first introduce few preliminary concepts and then show how SVPAs are
equivalent in expressiveness to deterministic SVPAs, and complete SVPAs. We
then prove that SVPAs are closed under Boolean operations. Last, we provide an
algorithm for checking emptiness of SVPAs over decidable label theories and use
it to prove the decidability of SVPA language equivalence. For each construction
we provide a complexity parameterized by the underlying theory, and we assume
that transitions are only added to a construction when satisfiable.

4.1 Closure Properties

Before describing the determinization algorithm we introduce the concept of a
minterm. The notion of a minterm is fundamental for determinizing symbolic



automata, and it captures the set of equivalence classes of the input alphabet
for a given symbolic automaton. Intuitively, for every state ¢ of the symbolic
automaton, a minterm is a set of input symbols that ¢ will always treat in the
same manner. Given a set of predicates @ a minterm is a minimal satisfiable
Boolean combination of all predicates that occur in @. We use the notation
Mt(P) to denote the set of minterms of @. For example the set of predicates
& = {x > 2,z < 5} over the theory of linear integer arithmetic has minterms
Mi(@) ={z >2ANz <5 - >2ANx <5 z>2A-z <5} While in the
case of symbolic finite automata this definition is simpler (see [9]), in our setting
we need to pay extra attention to the presence of binary predicates. We need
therefore to define two types of minterms, one for unary predicates and one for
binary predicates. Given an SVPA A we define

— the set @{' of unary predicates of A as the set {¢ | 3¢,¢',p.(¢,,¢") € 6; V
(¢:¢:4',p) €6cV (¢, 0.4) € b}

— the set @4 of binary predicates of A as the set {¢ | 3¢,q¢', p-(q, ¢, 1,¢") € 6, };

— the set Mt‘l4 as the set Mt(®4') of unary predicate minterms of A; and

— the set Mt‘24 as the set Mt(®3') of binary predicate minterms of A.

The goal of minterms is that of capturing the equivalence classes of the
label theory in the current SVPA. Let & be the set of minterms of an SVPA
A. Consider two nested words s = ay...a, and t = by ...b, of equal length
and such that for every i, a; has the same tag as b; (both internals, etc.). Now
assume the following is true: for every 1 < i < n, if a; is internal there exists a
minterm ¢ € Mt‘l4 such that both a; and b; are models of ¢, and, if a; is a call
with corresponding return a;, then there exists a minterm ¢ € Mt‘24 such that
both (a;,a;) and (b;,b;) are models of ¢. If the previous condition holds, the
two nested words will be indistinguishable in the SVPA A, meaning that they
will have exactly the same set of runs. Following, this intuition we have that
even though the alphabet might be infinite, only a finite number of predicates
is interesting. We can now discuss the determinization construction.

Theorem 1 (Determinization). For every SVPA A there exists a determin-
istic SVPA B accepting the same language.

Proof. The main difference between the determinization algorithm in [2] and the
symbolic version is in the use of minterms. Similarly to the approach presented
in [9], we use the minterm computation to generate a finite set of relevant predi-
cates. After we have done so, we can generalize the determinization construction
shown in [2].

We now describe the intuition behind the construction. Given a nested word
n, A can have multiple runs over n. Thus, at any position, the state of B needs
to keep track of all possible states of A, as in case of classical subset construction
for determinization of nondeterministic word automata. However, keeping only
a set of states of A is not enough: at a return position, B needs to use the
information on the top of the stack and in the state to figure out which pairs of
states (starting in state ¢ you can reach state ¢’) belong to the same run. The
main idea behind the construction is to do a subset construction over summaries



(pairs of states) but postpone handling the call-transitions by storing the set of
summaries before the call, along with the minterm containing the call symbol,
in the stack, and simulate the effect of the corresponding call-transition at the
time of the matching return for every possible minterm.

The components of the deterministic automaton B equivalent to
A =(Q,Qo, P,6.,6;,6,,Qr) are the following. The states of B are Q' = 29%?.
The initial state is the set Q¢ x Qg of pairs of initial states. A state S € Q'
is accepting iff it contains a pair of the form (g,q’") with ¢’ € Q. The stack
symbols of B are P’ = Q' x Mt‘f‘. The internal transition function ¢, is given
by: for S € @', and ¢ € Mti', §/(S,p) consists of pairs (¢,¢") such that
there exists (¢,¢’) € S and an internal transition (¢’,¢’,¢”) € &; such that
IsSat(oAg'). The call transition function ¢’ is given by: for S € Q' and p € Mt
0L(S, ) = (57, (S, ¢)), where S’ consists of pairs (¢, ¢”) such that there exists
(q,q¢') € S, a stack symbol p € P, and a call transition (¢',¢’,q"”,p) € d. such
that IsSat(e A ¢'). The return transition function ¢, is given by: for 5,5 € Q’
and 1 € Mt} oy € Mt3', the state 8.(S, (S, 1), p2) consists of pairs (g, q")
such that there exists (¢,¢') € S, (q1,¢2) € S, a stack symbol p € P, a call tran-
sition (¢', ¥}, q1,p) € d¢, and a return transition (ga,p, ¢5,q”) € J, such that
IsSat(p1 A ) and IsSat(pa A ¢5). The empty-stack return transition function
d; is given by: for S € Q" and ¢ € Mt the state ;. (S, ¢) consists of pairs (g, ¢")
such that there exists (¢,¢’) € S and a return transition (¢’,¢’,¢”) € §, such
that IsSat(p A ¢’). Our construction differs from the one in [2] in two aspects:

— in [2] each stack symbol contains an element from X. This technique cannot
be used in our setting and in our construction each stack symbol contains a
predicate from the set of unary minterms.

— the construction in [2] builds on the notion of reachability and looks for match-
ing pairs of calls and returns. In our construction, this operation has to be
performed symbolically, by checking whether the unary predicate stored by
the call on the stack and the binary predicate at the return are not disjoint.

We finally discuss the complexity of the determinization procedure. Assume A

has n states, m stack symbols, and p different predicates of size at most £. We

first observer that the number of minterms is at most 2 and each minterm has
size O(pf).! If f(a) is the cost of checking the satisfiability of a predicate of size

a, then the minterm computation has complexity O(2P f(¢p)). The resulting au-

tomaton B has O(2"") states, and O(2P2"") stack symbols. The determinization

procedure has worst complexity O(2p2"2m + 2P f(p?)).

Theorem 2 (Completeness). For every SVPA A there exists a complete SVPA
B accepting the same language.

Proof. Since the procedure is trivial we only discuss its complexity. Assume A
has n states, m stack symbols, and p different predicates of size at most /.
Let f(a) be the cost of checking the satisfiability of a predicate of size a. The
procedure has complexity O(nmf(£p)). X

L If the alphabet is finite the number of minterms is bounded by min (27, |X|).



Theorem 3 (Boolean Closure). SVPAs are closed under Boolean operations.

Proof. We prove that SVPAs are closed under complement and intersection. We
first prove that SVPAs are closed under complement. Given an SVPA A we
construct a complete SVPA C such that C' accepts a nested word n iff n is
not accepted by A. First, we use Theorem 2 to construct an equivalent deter-
ministic SVPA B = (Q, qo, P, i, 6, 6, Qr). We can now construct the SVPA
C =(Q,qo, P, ;0. 0,,Q \ Qr) in which the set of accepting states is comple-
mented.

We next prove that SVPAs are closed under intersection. Given two determin-
istic SVPAs Ay = (Q', ¢¢, P, 6},6L,01, Q%) and Ay = (Q?,¢3, P%,62,62,62,Q%)
(using Theorem 1) we construct an SVPA B such that B accepts a nested word
n iff n is accepted by both A; and As. The construction of B is a classical prod-
uct construction. The SVPA B will have state set Q' = Q' x @2, initial state
qb = (g}, q3), stack symbol set P’ = P! x P2, and final state set Q% = QL x Q%,
The transition function will simulate both A; and A, at the same time.

— for each (q1,p1,q)) € 6}, and (ga, 2, ¢5) € 62, &, will contain the transition
((q1,92), 01 A 2, (41, 3));

— for each (q1,%1,¢;,p1) € 0L, and (qa, 2, ¢h, p2) € §2, and &, will contain the
transition ((q1,42), 1 A @2, (41, ¢2), (P1,p2));

— for each (q1,p1,p1,4) € 6, and (qa,¥2,p2,¢5) € 02, 8. will contain the
transition ((q1,¢2), 1 A @2, (P1,p2), (41, ¢5)); and

— for each (qi1,¢1,q;) € 6}, and (qz, 2, qd5) € 62, &, will contain the transition
((q1:42), 01 A @2, (41, 43));

Assume each SVPA A; has n; states, m; stack symbols, and p; different predi-

cates of size at most ¢;. Let f(a) be the cost of checking the satisfiability of a

predicate of size a. The intersection procedure has complexity O(ninomims +

pip2f (b + £2)).

4.2 Decision Procedures

We conclude this section with an algorithm for checking emptiness of SVPAs
over decidable label theories, which we finally use to prove the decidability of
SVPA equivalence.

Theorem 4 (Emptiness). Given an SVPA A over a decidable label theory it
is decidable whether L(A) = 0.

Proof. The algorithm for checking emptiness is a symbolic variant of the al-
gorithm for checking emptiness of a pushdown automaton. We are given an
SVPA A = (@, qo, P, di,0.,06,,Qr) over a decidable theory ¥. First, for every
two states q,¢' € @Q we compute the reachability relation Ry, € Q x @ such
that (¢, ¢’) € Rum iff there exists a run p,(w) that, staring in state ¢, after read-
ing a well matched nested word w, ends in state q’. We define R,,,, as follows:

— forall g € Q, (¢,9) € Rum;



—if (¢1,92) € Ruwm, and there exists ¢,¢ € Q, p € P, p1 € P, (¥), 0y €
P, (¥), such that (g, ¢1,q1,p) € Oc, (g2,%2,p,¢") € 6, and IsSat(p1 A @2),
then (¢,q¢') € Ruym. Observe that unary and binary predicates unify on the
first variable x;

— if (g1, 92) € Rym, and there exists ¢ € Q, ¢ € P, (¥), such that (¢, ¢,q1) € 6,
and IsSat(p), then (g, q2) € Rym; and

— if (q1,¢2) € Rym and (q2,q3) € Rym, then (q1,q3) € Rym-

The above reachability relation captures all the runs over well-matched nested

words. Unmatched calls and returns can be handled using a similar set of rules.

We can then compute therefore the reachability relation R C @ x @ such that

(¢,4¢") € R iff there exists a run p,(w) that ends in state ¢’ after reading a nested

word w. The SVPA A is empty iff (Qo x Qr) N R = (.

Assume A has n states, m stack symbols, ¢ transitions, and p predicates of
size at most £. Let f(a) be the cost of checking the satisfiability of a predicate
of size a. The emptiness procedure has complexity O(n3mt + p2f(¢)).

We can now combine the closure under Boolean operations and the decid-
ability of emptiness to show that equivalence of SVPAs is decidable.

Corollary 1 (Equivalence). Given two SVPAs A and B over a decidable label
theory it is decidable whether L(A) C L(B) and whether L(A) = L(B).

Complezity: In [2] it is shown that the VPA universality, inclusion, and equiva-
lence problems are EXpTIME-hard. If the function IsSat() can be computed in
polynomial time the same complexity bounds hold for SVPAs. X

5 Applications and Evaluation

In this section we present potential applications of SVPAs together with exper-
imental results. First, we illustrate how the presence of symbolic alphabets and
closure properties enables complex XML validation, HTML sanitization, and
runtime monitoring of recursive programs. Finally, we present some experimen-
tal results on SVPA’s execution and algorithms.?

5.1 XML Validation

XML (and HTML) documents are ubiquitous. Validating an XML document
is the task of checking whether such a document meets a given specification.
XML Schema is the most common language for writing XML specifications and
their properties have been studied in depth [17,22]. The XML schema S shown
in Figure 1 describes the format of XML documents containing first and last
names. In words the document should start with the tag people and then contain
a sequence of person each of which has a first and last name. First and last name
should be both strings belonging to the regular expression [A-Z] ([a-z]) *.

2 All the experiments were run on a 4 Cores Intel i7-2600 CPU 3.40GHz, with 8GB
of RAM. The library is configured for 32 bits architecture.



<xs:schema>
<people>
<xs:element name="people" type="PeopleType"/> <person>
<xs:complexType name="PeopleType"><xs:sequence> <firstname>
<xs:element name="person" minOccurs="0" maxOccurs="unbounded"> Mark
<xs:complexType><xs:sequence> </firstname>
<xs:element name="firstname"> <lastname>
<xs:simpleType><xs:restriction base="xs:string"> Red
<xs:pattern value="[A-Z] ([a-z])*"/> </lastname>
</xs:restriction></xs:simpleType> </person>
</xs:element> <person>
<xs:element name="lastname'"> <firstname>
<xs:simpleType><xs:restriction base="xs:string"> Mario
<xs:pattern value="[A-Z] ([a-z])*"/> </firstname>
</xs:restriction></xs:simpleType> <lastname>
</xs:element> Rossi
</xs:sequence></xs:complexType> </lastname>
</xs:element> </person>
</xs:sequence></xs:complexType> </people>
</xs:schema>
(1) XML Schema S (2) Document Example

R: x="lastname”, p

I: x€ [A-Z][a-2]* I: x€ [A-Z][a-2]*
(3) SVPA A,

Fig.1. (1) XML Schema S describing documents containing a person with a first and
last name, (2) an XML document accepted by S, and 3) an SVPA Ag accepting the
same XML documents as S.

Dealing with infinite alphabets. Although the XML Schema in Figure 1 only uses
a finite set of possible nodes (people, firstname, etc.), it allows the content of
the leaves to be any string accepted by the regular expression [A-Z] ([a-z])*.
This kind of constraints can be easily captured using an SVPA over the theory
of strings. Such a SVPA Ag is depicted in Figure 1.3.3 The letters I, C, and R
on each transition respectively stand for internal, call, and return transitions.

Although in this particular setting the alphabet could be made finite by
linearizing each string, such encoding would not be natural and would cause the
corresponding VPA to be very complex. Moreover previous models that use such
an encoding, such as [16, 17], require the parser to further split each node value
into separate characters. In the case of SVPAs; as it can be observed in Figure 1,
there is a clear separation between the constraints on the tree structure (captured
by the states), and the constraints on the leaves (captured by the predicates).

3 We encode each XML document as a nested word over the theory of strings. For
each open tag, close tag, attribute, attribute value, and text node the nested word
contains one input symbol with the corresponding value.



This natural representation makes the model more succinct and executable since
it reflects the typical representation of XML via events (SAX parser, etc.).

5.2 HTML Filters

A central concern for secure web application is untrusted user inputs. These lead
to cross-site scripting (XSS) attacks, which may echo an untrusted input verba-
tim back to the browser. HTML filters aim at blocking potentially malicious user
HTML code from being exe- I true - true I true

cuted on the server. For example, R: true, p R:true, p i true R:true, p

a security sensitive application crrse C*:t N’ ' c':tme'p
might want to discard all docu- 3 8 5
ments containing script nodes Cx="img’p  ix € Fjavascript.t

which might contain malicious
JavaScript code (this is com-
monly done in HTML sanitiza- Fig.2. The SVPA A rejects HTML documents

tion). Since HTML5 allows to de- that contain scripts, while the SVPA B accepts
fine custom tags, the set of pos- the documents containing malicious images.

SVPA A SVPAB

sible node names is infinite and cannot be known a priori. In this particular
setting, an HTML schema would not be able to characterize such an HTML
filter. This simple property can be checked using an SVPA over the theory of
strings. Such an SVPA A is depicted on the left of Figure 2. The SVPA A only
accepts nested words that do not contain script nodes. Notice that the call
transition is triggered by any string different from script and the alphabet is
therefore infinite.

Since SVPAs can be intersected, complemented, and determinized, we can
take advantage of these properties to make the design of HTML filters modular.
We now consider an example for which it is much simpler to specify what it
means for a document to be malicious rather than to be safe. On the right of
Figure 2 it is shown a non-deterministic SVPA B for checking whether a img tag
may call JavaScript code in one of its attributes. To compute our filter (the set
of safe inputs) we can now compute the complement B’ of B that only accepts
HTML documents that do not contain malicious img tags.

We can now combine A and B’ into a single filter. This can be easily done by
computing the intersection F = A N B’. If necessary, the SVPA F can then be
determinized, obtaining an executable filter that can efficiently process HTML
documents with a single left-to-right pass.

I: true

The power of binary predicates. The previous HTML fil- C:true, p
ter is meant to process only well-formed HTML docu- Rxvp
ments. A well-formed HTML document is one in which ‘
all the open tags are correctly matched (every open tag

is closed by a close tag containing the same symbol). In Fig.3. SVPA W ac-
practice the input documents goes first through a well- cepting HTML docu-
formedness checker and then through a filter. This causes ments with matching
the input HTML to be processed multiple times and in open and close tags.



performance critical applications this is not feasible. This check can however be
performed by the SVPA W in Figure 3.

5.3 Runtime Program Monitors

We already discussed in Section 2 how SVPAs are useful for defining monitors
for dynamic analysis of programs. In this section we present an example of how
SVPAs can be used to express complex properties about programs over infinite
domains such as integers. Consider the recursive implementation of Fibonacci
on the right. Let’s assume we are interested function Fib(int )

into monitoring the values of = at every call if = < 2 then return z

of Fib, and the values returned by Fib. For return Fib(z — 1) + Fib(z - 2)
example for the input 5, our monitored nested word will be (2 (1 1) (0 0) 1).
The following properties can all be expressed using SVPAs:

1. if the input of F'ib is greater or equal than 0, then the same hold for all the
subsequent inputs of F'ib;

2. if the output of F'ib is negative, than F'ib was called exactly once in the
whole execution and with a negative input;

3. the output of F'ib is greater or equal than the corresponding input.

We can then intersect the SVPAs corresponding to each property and generate
a single pass linear time monitor for Fib. As we discussed in Section 2, SVPAs
cannot express properties that relate all the values in the computation such as:
the value of a variable x increases monotonically throughout the computation.
However, thanks to the presence of binary predicates at returns, SVPAs provide a
model for describing pre and post conditions of programs over decidable theories
(see property 3). In particular, SVPAs can describe post conditions that relate
the values of the inputs and the outputs of a function.

5.4 Experimental results

Execution performance. We implemented the filter F = AN BN W and an-
alyzed the performance of filtering HTML documents with size between 8 and
1293 KB, depth between 3 and 11, number of tokens between 1305 and 84242,
and average token length between 11 and 14 characters.* Constructing the
SVPA F took 435 milliseconds. The running —
times per number of tokens (in seconds) are 3
shown in the figure on the right. We observed »

that the depth of the input does not affect the 15
running time, while the length affects it linearly. os
Surprisingly, the running time is also not af- °
fected by the average length of the tokens. This

is due to the fact that most tokens can be rejected by partially reading them.

Tokens
0 20000 40000 60000 80000 100000

4 To solve the underlying theory of equality plus regular constraints, we implemented
a solver on top of the Microsoft Automata library [20]. We decided not to use a full
blown solver such as Hampi [15], since it was not necessary in our setting.



Algorithms performance: data. We evaluated the determinization and equiva-
lence algorithms on a representative set of SVPAs over three different alphabet
theories: strings, integers, and bitvectors (characters).® For each theory t we
generated an initial set of SVPAs S? containing 5 nondeterministic SVPAs for
properties of the following form: 1) the input contains a call and matching re-
turn with different symbols; 2) the input contains an internal symbol satisfying a
predicate @g; 3) the input contains a subword (a b ¢) such that a € [p1], b € [p2],
and a = ¢; 4) the input contains a subword (a (b such that a € [p3], b € [¢4]; and
5) for every internal symbol a in the input, a € [p4], or a € [p5]. The predicates
@ = {yo,...,ps5} vary for each theory and are all different. For each theory we
then computed the set S = {ANB | A,B € S{}U{ANBNC | A,B,C € St}. We
then used the sets S¢ to evaluate the determinization algorithm, and computed
the corresponding set of deterministic SVPAs D&. Finally we checked equivalence
of any two SVPAs A and B in D§.

The results of our experiments are shown in Figure 4: the left column shows
the size of each test set and the number of instances for which the algorithms
timed out (5 minutes). The right column shows the running time for the instances
in which the algorithms did not time out. For both algorithms we plot against
number of states and number of transitions. For the determinization, the sizes
refer to the automaton before determinization, while in the case of equivalence,
the sizes refer to the sum of the corresponding metrics of the two input SVPAs.
The distribution of the sizes of the SVPAs differed slightly when varying the
theories, but since the differences are very small we show the average sizes. For
each theory we determinized a total of 65 SVPAs and checked for equivalence
241 pairs of SVPAs. For both operation, on average, 96% of the time is spent in
the theory solver. For the theory of characters we also compared our tool to the
VPALIb library, a Java implementation of VPAs.6 The application timed out for
all the inputs considered in our experiments.

Algorithms performance: data analysis. FExcept for few instances involving the
theory of integers, our implementation was able to determinize all the consid-
ered SVPAs in less than 5 minuets. The situation was different in the case of
equivalence, where most of the input pairs with more than 250 transitions or 13
states timed out. Most of such pairs were required to check satisfiability of more
than 15000 predicates that were generated when building the intersected SVPAs
necessary to check equivalence. We could observe that the theory of characters is
on average 6 times faster than the theory of strings and 10 times faster than the
theory of integers. However, we did observe that the theory of integers timed out
less often in the case of equivalence. We believe that this is due to the different
choices of predicates in @ and to the fact that Z3 uses a caching mechanism
that avoids checking for satisfiability of the same predicate twice. While during
the determinization such a technique is not very beneficial due to the limited

® The characters and strings solver are implemented on top of the Automata li-
brary [20] which is based on BDDs, while the integer solver is Z3 [10].
5 Available http://www.emn.fr/z-info/hnguyen/vpa,/



Test Set Size and # Timeout Running Times

40 DETERMINIZATION: TIME vs. #STATES

3 DETERMINIZATION: #SVPA, #TIMEOUT/#STATES 100

30 § 10 S

25 ]

2 g’

15 H 0.1

10

0.01

5

. = H — 0.001 states
g 110 10-20 2030 30-40%13t€8 0 5 10 15 20 25 30 35 40
i 1000

40
N DETERMINIZATION: #SVPA,#TIMEOUT vs. #TRANSITIONS 100
o 35
.E 30 % 10 -
E | s,
5] 20 g
*5 15 0.1
[a) 10 £

s 0.01 |,

. = ) 0001 e transitions

transitions
1-20 20-40 40-60 60-80 0 10 20 30 40 50 60 70

EQUIVALENCE: #SVPA, #TIMEOUT vs. #STATES

100

S A
Pt

80

60

Equivalence

40

20
transitions
1-250 250-500 500-1000 0 500 1000 1500 2000 2500

Otot-svpa Bto-string Eto-int Bto-char ——integer = —string <+« character

Fig. 4. Running times for equivalence and determinization.

number of different minterms, in the case of equivalence, especially for bigger
inputs, many of the predicates are repeated making caching useful in practice.

When comparing against an existing implementation of VPAs, we observed
that the benefit of using SVPA is immense: due to the large size of the alphabet
(216 characters), VPALib timed out for each input we considered.

6 Conclusion

We introduce Symbolic Visibly Pushdown Automata that extend VPAs with
predicates over a decidable input theory, while preserving the closure prop-
erties of VPAs. We show how XML/HTML processing and program moni-
toring can benefit from the expressiveness and closure properties of SVPAs.
We implemented SVPAs on top of different and potentially infinite input theo-
ries and observed that our implementation can handle reasonably big and com-
plex SVPAs. Moreover, we observed that thanks to their succinctness SVPAs
are able to handle large finite input alphabets, such as UTF16, that previous
implementations of VPAs cannot handle.
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