
Ranking Automata and Games
for Prioritized Requirements

Rajeev Alur, Aditya Kanade, and Gera Weiss

University of Pennsylvania

Abstract. Requirements of reactive systems are usually specified by
classifying system executions as desirable and undesirable. To specify
prioritized requirements, we propose to associate a rank with each exe-
cution. This leads to optimization analogs of verification and synthesis
problems in which we compute the “best” requirement that can be satis-
fied or enforced from a given state. The classical definitions of acceptance
criteria for automata can be generalized to ranking conditions. In par-
ticular, given a mapping of states to colors, the Büchi ranking condition
maps an execution to the highest color visited infinitely often by the
execution, and the cyclic ranking condition with cycle k maps an execu-
tion to the modulo-k value of the highest color repeating infinitely often.
The well-studied parity acceptance condition is a special case of cyclic
ranking with cycle 2, and we show that the cyclic ranking condition can
specify all ω-regular ranking functions. We show that the classical char-
acterizations of acceptance conditions by fixpoints over sets generalize to
characterizations of ranking conditions by fixpoints over an appropriately
chosen lattice of coloring functions. This immediately leads to symbolic
algorithms for solving verification and synthesis problems. Furthermore,
the precise complexity of a decision problem for ranking conditions is no
more than the corresponding acceptance version, and in particular, we
show how to solve Büchi ranking games in quadratic time.

1 Introduction

A requirement ϕ of a reactive system M can be formally described as a set Lϕ
of finite or infinite words over system states (or observations) [14]. Verification
of the system M with respect to the requirement ϕ corresponds to checking
whether there exists an execution of M that does not belong to Lϕ. When the
system has only finitely many states, and the requirement can be captured as an
ω-regular language, the verification problem can be solved algorithmically using
decision procedures for ω-automata [18]. When the choices within the system M
are partitioned into controllable and uncontrollable, then synthesis with respect
to the requirement ϕ corresponds to checking whether there exists a strategy to
resolve the controllable choices to ensure that the resulting execution belongs to
Lϕ. For the finite-state case, the synthesis question can be solved by algorithms
for solving games with ω-regular winning conditions [15, 17].

In this paper, we propose a framework for specification, verification, and syn-
thesis of prioritized requirements. Given a sequence ϕ0, . . . ϕk of requirements,

listed in increasing order of importance, we want to find the best requirement
that can be satisfied. For example, in Section 2, we describe a scheduling case
study which employs several identical buffers to ensure uninterrupted flow of
input messages, and using large buffers is expensive. We can specify prioritized
requirements ϕ0, . . . ϕk, where ϕi states that the maximal buffer size required
infinitely often during the execution is i or less. There are other potential sce-
narios where words can be naturally associated with ranks. For example, given
multiple requirements, the priority of a word can be the number of requirements
it satisfies. For software verification, we can associate different costs with differ-
ent types of bugs, and have the analysis tool compute a classification of program
statements grouped according to the worst bug that can manifest from them.

The optimization questions concerning prioritized requirements ϕ0, . . . ϕk
can, of course, be answered by solving k verification (or synthesis) questions
separately, one for each requirement ϕi, using known techniques. However, as
we establish in this paper, there is a better way of formulating and solving such
questions. We formalize a prioritized requirement as a ranking function r that
maps each word to a rank in an ordered set. We will focus only on ω-regular
ranking functions, namely, functions that use only finitely many ranks such that
the set of words with the same rank is an ω-regular language. For the case of
two ranks, these notions coincide with the classical definitions of ω-regular sets.

Automata with different types of acceptance conditions (such as final-state,
Büchi, Rabin, parity) are commonly used to specify ω-regular sets. To generalize
acceptance to ranking, we consider deterministic automata in which each state
is assigned a color. Then, given a run ρ of the automaton over a word w, the
reachability ranking condition maps w to the highest color appearing in ρ. It is
well-known that the set of states from which a target set can be reached can
be computed as a least-fixpoint computation over sets of states starting with
the target set. We show that this computation can be naturally generalized to
fixpoints over functions that assign a color to each state (coloring functions). If
the number of states is n and the number of colors (which captures the number of
disjoint prioritized reachability requirements) is k, then, even though the number
of iterations of the fixpoint computation is nk, we show that existing algorithm
for solving reachability games (see [5]) can be adopted to solve the reachability
ranking games in linear time.

Given a mapping of states to colors, the Büchi ranking condition maps a
word to the highest color that repeats infinitely often in the corresponding run.
The classical nested fixpoint characterization of Büchi acceptance [6] can now be
generalized to an analogous fixpoint over coloring functions, and this allows us to
compute the value of the corresponding verification/synthesis question at every
state. We show that the number of iterations of the outer greatest-fixpoint loop
is independent of the number of ranks. This gives us a quadratic-time algorithm
for solving games with respect to Büchi ranking conditions.

Our final set of results concerns generalizing parity acceptance to cyclic rank-
ing condition. Given an assignment of colors to states, the cyclic ranking con-
dition with cycle k maps a word to the modulo-k value of the highest color

2

that repeats infinitely often in the corresponding run. The well-studied parity
acceptance is a cyclic ranking condition with cycle 2. It is known that parity
acceptance can specify all ω-regular sets. We prove an analogous result: every
ω-regular ranking condition can be captured by a cyclic ranking condition. We
also show that the winning strategy in games with cyclic ranking condition is
memoryless, and the corresponding decision problem is in NP ∩ coNP.

Related Work: In scheduling literature, priorities are usually assigned with
tasks, and are used to make local decisions [3]. Our definition allows associ-
ating priorities with global executions, and can potentially be used to capture
high-level quality-of-service goals. In verification literature, various quantitative
generalizations of verification and synthesis questions have been studied, typi-
cally involving real-time and/or probabilities, and are orthogonal to our notion
of rankings. Parametric temporal logic allows capturing some versions of op-
timization problems, but the corresponding model checking problem has very
different technical flavor [1]. Lattice automata [12, 13] generalize the notions of
initialization, transitions, and acceptance from the Boolean case to a lattice, and
can be used to associate ranks with words. However, it does not consider the
problem of computing the optimum values of games, central to our motivation.
While the decision procedures studied in [12, 13] can be used for optimization, we
propose a faster algorithm. Similar to our result for reachability ranking games,
[4] proposes a linear-time algorithm for weak parity games. Finally, the games
literature considers models with costs associated with each state or transition.
The most widely studied ranking function for runs is the mean-payoff cost [20],
which is not ω-regular, and does not capture prioritization of requirements. The
work in [9] considers real valued ranking functions for stochastic games.

2 A motivating example

Our example is based on a case study in which scheduling policies are determined
for a signal processing board [8, 19]. We show that the problem of synthesizing
an optimal scheduler is naturally modeled as a ranking question.

A block diagram of the signal processing board is depicted in Fig. 1. The
board processes the two input streams shown at the top left and produces the
two output streams shown at the bottom left. As depicted in the figure, data is
stored in memory and is brought back when needed. The memory can only be
accessed via a shared bus that transports data in quantities of 128 bits. Nine
identical buffers are designed to allow uninterrupted flow of data when the bus is
not available. The main objective of the case study is to analyze and to design an
arbiter that schedules the use of the shared bus. A valid schedule must guarantee
that, after a finite initialization phase, none of the data streams are interrupted.
The optimal schedule is the one which minimizes the buffer size (the number of
bits per buffer).

A schedule for bus arbitration is represented by a word over the alphabet
Σ = {0, 1, . . . , 9}. If the ith letter of the word is B, the bus is used to transfer

3

Buffer 1
128 bit8 bit

Buffer 2
128 bit8 bit

Buffer 3
128 bit8 bit

Buffer 4
128 bit16 bit

Buffer 5
128 bit8 bit

Buffer 6
128 bit8 bit

Buffer 7
128 bit16 bit

Buffer 8
128 bit16 bit

Buffer 9
128 bit16 bit

Memory

Arbiter

Function 1

Function 2

Fig. 1. A signal processing board.

data to or from the Bth buffer at the ith clock cycle. Zero at the ith letter of
the word means that the bus is idle at the ith clock cycle. Our goal is to form
an automaton that accepts a word if and only if it represents a valid schedule
(no overflows or underflows). The automaton will also be used to assign ranks
(payoffs) to schedules and analyzed to determine the optimal schedule.

The automaton for the language of valid schedules is constructed as a com-
position of nine automata, one for each buffer. The automaton for a buffer B
is as follows. Let M be an upper bound on the size of the buffer and r ∈
{−16,−8, 8, 16} denote the inflow to the buffer (negative if B buffers a stream
from memory to a functional block). These parameters can be read from Fig. 1.
The states of the automaton are the numbers Q(B) = {0, |r|, 2|r|, . . . ,m} where
m ≤M and m+ |r| > M for the quantum of flow r associated with buffer B.

We define two types of transitions. First, if the buffer is not scheduled to use
the bus, it gets or loses a quantum of flow. This is modeled by δ(q, b) = q + r
if q + r ∈ Q(B) and b ∈ Σ \ {B}. Second, if the buffer is scheduled to use the
bus, it loses or gets 128 bits. This is modeled by δ(q,B) = q − 128 sgn(r) + r if
q− 128 sgn(r) + r ∈ Q(B) (where sgn(r) := r/|r|). All other transitions go to an
implicit sink which is the only non-accepting state. The initial state is q0 = 0.

Now, we use the product construction to get an automaton for the intersec-
tion of the languages of the nine automata. Clearly, a word is accepted by the
resulting automaton if and only if it is a valid schedule. Note that the intersection
may be empty, in which case we would take a larger M and recompute.

To analyze the schedules, we assign with a state q = (q1, . . . , q9) ∈ Q(1) ×
· · · × Q(9) a number c(q) = max{q1, . . . , q9}. We call this number the color of
the state and c the coloring function. Let the rank of an infinite word w ∈ Σω be

4

the maximal color visited infinitely often when the automaton reads the word.
The rank of a word is thus the maximal buffer size needed for valid execution of
the bus arbitration schedule identified by the word. The optimal buffer size thus
identified could be smaller than the buffer size required during the initialization
phase of the board (a finite prefix of a valid schedule). The potential loss of data
(overflow) during the initialization phase is acceptable in the case study.

To get an optimal schedule, we need to search for a word with the minimal
rank. A näıve approach is to solve this (quantitative) problem by solving a
series of (qualitative) decision problems. In particular, let Li be the set of valid
schedules where no state with color higher than i is visited infinitely often.
Then, one can check non-emptiness of Li to identify whether the buffer size i
is sufficient; until the minimal bound is found. In this paper we first study this
iterative approach and then present a direct and more efficient algorithm.

We also analyze the more general setting of games. In games, nondeterminism
is split into controllable and uncontrollable choices. The synthesis of an optimal
schedule for the signal processing board, in its full generality, requires game
based analysis. The memory needs to be refreshed periodically and this is not
in the control of the arbiter. The chip decides the refresh timings and, during
a memory refresh, the memory is not available. Specifically, the time between
consecutive refreshes varies nondeterministically between 100 and 200 clocks
and each refresh takes 10 clocks. Using the algorithms presented in this paper,
we can find an optimal schedule even in the presence of memory refreshes, by
considering the refresh mechanism as adversarial and finding the best strategy
against its worst-case behavior. Note that games are essential here since the
refresh mechanism is nondeterministic and the worst possible refresh (from the
perspective of the arbiter) cannot be identified independently.

3 Ranking functions and games

We introduce a generalization of ω-regular languages called ω-regular ranking
functions. Intuitively, languages specify qualitative properties of words by giving
the set of accepted words whereas rankings specify quantitative properties by
assigning numbers to words.

Definition 1. An ω-regular ranking function over a finite alphabet Σ is a func-
tion r : Σω → N with a finite range and {w : r(w) = n} is an ω-regular language
for every n in the range.

Note that the characteristic function of an ω-regular language is an ω-regular
ranking function with range {0, 1}.

A (deterministic) finite state automaton is a tuple (Q,Σ, δ, q0) where Q is
a set of states, Σ is an alphabet, δ : Q × Σ → Q is a transition function, and
q0 ∈ Q is an initial state. Define δ∗ : Σ∗ → Q, inductively, by δ∗(σ1 · · ·σl) =
δ(δ∗(σ1 · · ·σl−1), σl) and δ∗(ε) = q0 (where ε is the empty word). For w ∈ Σω,
define InfA(w) := {q ∈ Q : δ∗(w′) = q for infinitely many prefixes w′ of w}.

5

We introduce cyclic ranking conditions. A cyclic ranking condition with cycle
k maps a word to the modulo-k value of the highest color repeating infinitely
often. A parity acceptance condition is a cyclic ranking condition with k = 2.

Definition 2. A cyclic ranking condition for a finite automatonA = (Q,Σ, δ, q0)
is a pair (c, k) where c : Q → N is a coloring function and k ∈ N is the num-
ber of ranks. The corresponding ranking function is given by CyclicA,c,k(w) :=
max{c(q) : q ∈ InfA(w)}modulo k.

Analogous to the known result that parity acceptance conditions can capture
all ω-regular languages, we show that cyclic ranking conditions can capture all
ω-regular ranking functions.

Proposition 3 (Expressive completeness of cyclic ranking conditions). A rank-
ing function r : Σω → N is an ω-regular ranking function if and only if there is a
deterministic finite automaton A and a cyclic ranking condition (c, k) such that
CyclicA,c,k(w) = r(w), for all w ∈ Σω.

Proof. The if direction is straightforward. For the only-if direction, let the ω-
regular language {w : r(w) = s} be specified by a deterministic Muller automaton
As = (Qs, Σ, δs, q0s

,Fs) where s ∈ S and S is the range of r. For simplicity, let
S = {0, · · · , k−1}. Let AM = (QM , Σ, δM , q0M

) be the product of the automata
As, s ∈ S. For F ⊆ QM , let projs(F) = {qs ∈ Qs : ∃q = 〈. . . , qs, . . .〉 ∈ F}.
Consider a Muller ranking function MulAM

: 2QM → N defined as MulAM
(F) :=

max({s : projs(F) ∈ Fs} ∪ {0}).
Consider a ranking function rM : Σω → N where rM (w) = MulAM

(InfAM
(w)).

Suppose for an infinite word w ∈ Σω, r(w) = i. Clearly, InfAi
(w) ∈ Fi and for

j 6= i, InfAj
(w) 6∈ Fj . Thus rM (w) = MulAM

(InfAM
(w)) = i.

Using the latest appearance record (LAR) [10, 11] we construct an automaton
A = (Q,Σ, δ, q0) which simulates AM as follows:

Q = QM !× |QM | where QM ! is the set of all permutations of QM
q0 = ((p1, · · · , pn), 1) for some permutation (p1, · · · , pn) ∈ QM ! for p1 = q0M

δ(((p1, · · · , pn), h), σ) = ((δM (p1, σ), p1, · · · , ph′−1, ph′+1, · · · , pn), h′)
with h′ as the index for (p1, · · · , pn) called hit position s.t. δM (p1, σ) = ph′ ,

if δM (p1, σ) is defined.

Consider a cyclic ranking condition (c, k) where k = |S| and a coloring func-
tion c : Q→ N defined as follows:

c(((p1, · · · , pn), h)) :=

kh if {p1, · · · , ph} ∈ Mul−1

AM
(0)

kh+ 1 if {p1, · · · , ph} ∈ Mul−1
AM

(1)
...
kh+ k − 1 if {p1, · · · , ph} ∈ Mul−1

AM
(k − 1)

Let hmax be the maximal hit position occurring infinitely often on the run of
A on w. Eventually for any state ((p1, · · · , pn), h), h ≤ hmax and {p1, · · · , phmax} =

6

InfAM
(w). If rM (w) = i then {p1, · · · , phmax

} ∈ Mul−1
AM

(i). Thus the maxi-
mal color occurring infinitely often on the run of A on w is khmax + i. Hence
CyclicA,c,k(w) = i = rM (w) = r(w).

Similarly, we generalize reachability, Büchi, and coBüchi acceptance condi-
tions to reachability, Büchi, and coBüchi ranking conditions as follows.

Definition 4. Reachability, Büchi, and coBüchi ranking conditions for a finite
automaton A = (Q,Σ, δ, q0) are expressed by coloring functions c : Q→ N. The
corresponding ranking functions are defined as follows:

ReachA,c(w) := max{c(δ∗(w′)) : w′ is a prefix of w}
BuchiA,c(w) := max{c(q) : q ∈ InfA(w)}

coBuchiA,c(w) := min{c(q) : q ∈ InfA(w)}

Next, we extend ω-win-lose games to ω-ranking games. A game automaton
is a triplet (A, Q0, Q1) where A = (Q,Σ, δ, q0) is a finite state automaton and
(Q0, Q1) is a partition of Q into Player 0 and Player 1 states, respectively. In
figures, following the usual drawing convention, we use © to denote states in Q0

and � to denote states in Q1.

Definition 5. An ω-regular ranking game is a pair G = (A, r) where A is a
game automaton and r : Σω → N is an ω-regular ranking function (rewards for
Player 0, penalties for Player 1).

A strategy for a player p ∈ {0, 1} in an ω-regular ranking game is a function
sp : {w ∈ Σ∗ : δ∗(w) ∈ Qp} → Σ. The letter sp(w) models the move of player p
after observing w. Let Sp(G) be the set of all strategies for player p ∈ {0, 1}.

A pair of strategies (s0, s1) ∈ S0(G)×S1(G) induces an infinite word w whose
(i + 1)th letter is given by wi+1 := s0(w1..i) if δ∗(w1..i) ∈ Q0 and s1(w1..i) if
δ∗(w1..i) ∈ Q1, where w1..i is the prefix of length i of w and w1..0 = ε. We denote
this word by wG(s0, s1). The outcome of a pair of strategies is defined to be the
rank of this word and the value of the game is defined accordingly, as follows.

Definition 6. The value of a strategy s0 ∈ S0(G) in a game G = (A, r) is defined
by valG(s0) = min{r(wG(s0, s1)) : s1 ∈ S1(G)}. The value of the game is defined
by val(G) = max{valG(s0) : s0 ∈ S0(G)}.

If we think of Player 0 as the system and Player 1 as the environment, the
above definition captures the objective of Player 0 which is to maximize the
outcome against the worst-case behavior of Player 1.

4 Algorithms for ranking games

We analyze algorithms for solving ω-regular ranking games. In our context, solv-
ing means for each state of the automaton, determining the value of the game
starting at it and synthesizing a strategy that achieves these values.

7

4.1 Solving ranking games as a series of win-lose games

In this section we propose a simple scheme for solving ranking games as a series
of appropriately defined win-lose games. In lattice games (cf. [2, 13]), a similar
decomposition to join-irreducible elements is used but it only gives a sufficiency
condition. We show that for Büchi games such decomposition is also neces-
sary. We focus on Büchi games for simplicity. Generalization to other games is
straightforward.

For a game automaton A and a set of states B, let Buchi(A, B) be an al-
gorithm for win-lose Büchi games [11] which computes the states from which
Player 0 can force visiting B infinitely often (the winning region for Player 0).

Consider a game automaton whose set of states is Q, and a coloring function
c : Q → N that maps the states to colors. Algorithm 1 computes the function
r : Q→ N where r(q) is the maximal color such that Player 0 can force infinitely
many visits to states with color r(q), starting at q. In the first iteration, the
algorithm computes all the states from which Player 0 can force infinitely many
visits to the highest color. Then, it removes these nodes from the graph and
proceeds to the second highest color and the process is repeated.

Algorithm 1: IteratedMaxBuchi(A, c)
foreach q ∈ Q do mark r(q) as undefined1

foreach γ ∈ {c(q) : q ∈ Q} in decreasing order do2

Qγ := {q ∈ Q : r(q) is undefined}3

Aγ := the automaton A restricted to the states in Qγ4

Bγ := {q ∈ Qγ : c(q) ≥ γ}5

foreach q ∈ Buchi(Aγ , Bγ) do r(q) := γ6

return r7

Remark 7. For a color γ, it is necessary to also include the states (if any)
with color > γ from the set Qγ in the Büchi set Bγ . For example, consider the
following game automaton:

1

1 23

Player 0 cannot force infinite visits to color 3. Player 0 also cannot force infinite
visits to color 2. However, the objective of Player 1 is to minimize the value and
hence Player 1 will not choose color 3 over color 2. Hence the value that Player 0
can achieve starting from any state is 2. In terms of Büchi win-lose games, the

8

winning set corresponding to color 2 is identified correctly only if the Büchi set,
B2, contains states with colors 2 as well as 3.

Complexity analysis. For k, n ∈ N, consider the game automaton:

1 . . . k k . . . k 0

all k colorsz }| { n−k−1 timesz }| {

As the value for each state is 0, Algorithm 1 takes k iterations. Assuming the
standard implementation of Buchi, it can be verified that each iteration runs in
time O(|Bγ | · |δ|) (Buchi(Aγ , Bγ) starts with Bγ and, in its ith iteration, removes
the states from which Player 0 cannot force at least i visits to Bγ ; each iteration
takes O(|δ|)). Further, from Remark 7, |Bγ | =

∑k
i=γ |c−1(i)| and

∑1
γ=k |Bγ | is

O(k · |Q|). Hence the worst-case execution time of Algorithm 1 is O(k · |Q| · |δ|)
which is k times the worst-case execution time for solving a Büchi win-lose game.

Remark 8. Denote the leftmost state in the above automaton by q0. If we only
need to compute the value of q0, we can use binary search as follows. Check
if q0 ∈ Buchi(Ak/2, Bk/2) then if q0 ∈ Buchi(Ak/4, Bk/4) and so on until we
find that q0 ∈ Buchi(A0, B0). As only the last query is answered positively, the
algorithm takes log k steps. The total execution time is O(log k · |Q| · |δ|).

Remark 7 shows that in case of Büchi games, the decomposition to join-
irreducible elements (with respect to the order 1 ≤ . . . ≤ k) is necessary but the
complexity of the resulting algorithm is not optimal as shown by the example
above. In Section 4.4, we generalize the algorithm for solving Büchi win-lose
games to solve Büchi ranking games without any increase in complexity. The
advantage of the above algorithm, however, is that existing algorithms for Büchi
games can be directly used for solving Büchi ranking games.

4.2 Fixpoints over coloring functions

The solutions of win-lose games are typically defined as fixpoints of functions over
the lattice of the power-set of the set of states of the game automaton, ordered
by inclusion. For ranking games, we use coloring functions as a generalization of
sets of states and define the following lattice.

Definition 9. For a set Q, NQ is the set of all functions that map elements of Q
to natural numbers (coloring functions). Consider the lattice (NQ,v) where r1 v
r2 if r1(q) ≤ r2(q) for all q ∈ Q. The join and meet operations of the lattice are
(r1tr2)(q) = max{r1(q), r2(q)} and (r1ur2)(q) = min{r1(q), r2(q)}, respectively.

The lattice of coloring functions is infinite. However, the range of a coloring
function used for defining a ranking condition is a finite subset of the set of
natural numbers. We therefore identify a finite sub-lattice defined below.

9

Definition 10. For a coloring function c : Q → N, let Lat(c) be the lattice
(R(c)Q,v) where R(c) = {c(q) : q ∈ Q}. It is easy to verify that Lat(c) is closed
under join and meet, so it is a complete finite sub-lattice of (NQ,v). The bottom
of the lattice is ⊥ = Q× {minR(c)} and the top is > = Q× {maxR(c)}.

In the following subsections, we give fixpoint characterizations for ranking
games. It can be easily verified that the functions whose extremal fixpoints de-
termine the solutions of the games are monotonic and closed over the lattice
defined above. By finiteness of the lattice and by the Knaster–Tarski fixpoint
theorem, we know that the extremal fixpoints of the functions can be computed.

4.3 Solving reachability ranking games in linear time

For a game automaton A and a coloring function c, let the solution of the
reachability ranking game be given by the function rA,cReach that maps each state
q to the maximal color i such that Player 0 can force a visit to a state in
{q′ ∈ Q : c(q′) ≥ i}, starting from q. Let succ(q) := {δ(q, σ) : σ ∈ Σ} and
pred(q) := {q′ : q ∈ succ(q′)}.

The fixpoint formulation of rA,cReach is given in Proposition 11 as the least
fixpoint (LFP) of the function f which assigns to a state q the highest color that
Player 0 can force in one step (or less) from q. Let apred(r)(q) := max{r(q′) : q′ ∈
succ(q)} for q ∈ Q0 and apred(r)(q) := min{r(q′) : q′ ∈ succ(q)} for q ∈ Q1.

Proposition 11. rA,cReach = LFP(f) where f : Lat(c) → Lat(c) is given by
f(r) := r t apred(r) t c.

The function apred can be computed in time O(|δ|), where δ is the transition
function of the game automaton. Hence, the function f can also be computed
in time O(|δ|). Further, f is defined such that if, starting at a state q, Player 0
can force a visit to a color ≥ γ (with respect to a coloring function r) within
i steps, it can do so within max{0, i − 1} steps with respect to the coloring
function f(r). Since the length of an acyclic path in A can be at most |Q| − 1,
the effective height of the lattice Lat(c) for f is |Q| − 1. The overall complexity
of computing the fixpoint appears to be quadratic. However, we now specify a
suitable traversal of the automaton and also propose to keep a record of the
transitions already processed. This ensures that any transition of the automaton
is processed only once and we get a linear-time algorithm.

With each state q ∈ Q1 associate a number count(q) = | succ(q)|. Also let all
states be marked as not visited. Consider the following evaluation order: Starting
with the highest color, for each color γ, perform a preorder backwards traversal
starting with the states with color γ that are not marked as visited. Let q be the
state being processed. If q ∈ Q0 and not marked as visited then its color is set to
γ and is marked as visited. Let q ∈ Q1. If count(q) = 1 then all other outgoing
transitions of q have been explored during processing of colors > γ. Hence the
minimal color that Player 1 can force is γ. Set the color of q to γ and mark it
as visited. Otherwise, set count(q) to count(q)− 1.

10

Theorem 12. Reachability ranking games can be solved in O(|δ|) time, where
δ is the transition function of the game automaton.

Remark 13. The memoryless optimal winning strategy for Player 0 can be
identified during the computation of values described above. If q ∈ Q0 has color
γ and is not marked as visited until the processing of color γ then the value at
q is γ, that is, its own color. Thus the strategy for Player 0 at q is to select the
label of any outgoing transition. Otherwise, the strategy is to select the label of
the outgoing transition of q that lead to q being marked as visited (note that
the game automaton is deterministic).

4.4 An efficient quadratic-time algorithm for Büchi ranking games

For a game automaton A and a coloring function c, the solution to the Büchi
ranking problem is a function rA,cBuchi that maps each state q to the maximal
color i such that Player 0 can force infinitely many visits to {q′ ∈ Q : c(q′) ≥ i},
starting from q. We present a fixpoint formulation of the solution function and
show that it can be computed in quadratic-time. Its complexity is independent
of the number of colors, as opposed to Algorithm 1.

The fixpoint formulation of rA,cBuchi is given in Proposition 14. The function
g identifies for each state q the maximal color that Player 0 can force to visit
at least once, starting at q. The greatest fixpoint (GFP) of g computes for each
state q the maximal color (less than or equal to c(q)) that Player 0 can force to
visit infinitely many times. Finally, the solution of the reachability ranking for
the coloring function given by GFP(g) determines the solution rA,cBuchi.

Proposition 14. rA,cBuchi = r
A,GFP(g)
Reach where g : Lat(c) → Lat(c) is defined by

g(r) = r u c u LFP(fr) and fr : Lat(r) → Lat(r) is defined by fr(r′) = r′ t
apred(r′ t r).

Note that the function fr is defined analogously to the function f given in
Proposition 11 but considers states reachable in one or more steps instead of zero
or more steps. From Theorem 12, we can deduce that LFP(fr) can be computed
in time O(|δ|). Consequently, the function g can be computed in time O(|δ|).

Complexity analysis. We now show that in each iteration of the fixpoint
computation GFP(g), at least one additional state gets its final color. Thus, the
fixpoint computation GFP(g) takes no more than |Q| steps. This gives quadratic-
time complexity for solving Büchi ranking games.

Let r0 = c and r0 w r1 w · · · w rl be the sequence of functions computed in
the fixpoint computation GFP(g). Let Wj(ri) := {q ∈ Q : ri(q) = j > rl(q)} be
the set of states whose color in the ith iteration (given by coloring function ri)
is j which is larger than their final color given by coloring function rl.

In Lemma 15, we show that if Wj(ri) 6= ∅ then, in the next iteration, at least
one state from

⋃k
j′=jWj′(ri) gets a color smaller than j or is assigned to its final

color; and this is true for each color j.

11

Lemma 15. If Wj(ri) 6= ∅ then
⋃k
j′=jWj′(ri) \

⋃k
j′=jWj′(ri+1) 6= ∅.

Proof. Since Wj(ri) 6= ∅ there exists a state q such that ri(q) = j > rl(q).
Because rl(q) is the final color of q and r0 = c, Player 0 cannot force infinitely
many visits to {q′ : r0(q′) > rl(q)} starting from q. Since r0 w ri and ri(q) >
rl(q), we have r0(q) ≥ ri(q) > rl(q). Thus, Player 0 cannot force infinitely many
visits to S := {q′ : ri(q′) ≥ ri(q)}, starting at q. Because q ∈ S, there exists at
least one ‘exit’ state q′ ∈ S from which Player 1 cannot be forced to visit S
again. In particular, Player 0 cannot force visiting S starting at q′ which means
that LFP(fri)(q

′) < j ≤ ri(q′). Since ri+1(q′) = min{ri(q′),LFP(fri)(q
′)} we

get that ri+1(q′) < j ≤ ri(q′).

In Lemma 16, we show that if Wj(ri) = ∅ then in the next iteration, no state
gets color j unless it is its final color.

Lemma 16. If Wj(ri) = ∅ then Wj(ri+1) = ∅.

Proof. Assume that Wj(ri+1) 6= ∅, that is there exists a state q such that
ri+1(q) = j > rl(q). Let S := {q′ ∈ Q : ri(q′) = ri+1(q)}. By the definition
of LFP(fri), there is S′ ⊆ S that Player 0 can force visiting, starting from q.
Consider also the set S′′ = {q′ ∈ S′ : rl(q′) = ri+1(q)}. If S′′ = S′, starting
at q, Player 0 can force infinite visits to S′ which contradicts our assumption
that ri+1(q) > rl(q). Therefore, there exists q′ ∈ S′ \ S′′. As q′ ∈ {q′′ : ri(q′′) >
rl(q′′) = j}, we can infer that Wj(ri) 6= ∅.

Theorem 17. Büchi ranking games can be solved in O(|Q| · |δ|) time, where Q
is the set of game states and δ is the transition function.

Proof. The function g can be computed in time O(|δ|). We show that the number
of iterations of the fixpoint computation GFP(g) is bounded by |Q| by proving
that in each iteration at least one additional state gets its final color.

For an iteration i, let j = min{j′ : Wj′(ri) 6= ∅}. By Lemma 15,
⋃k
j′=jWj′(ri)\⋃k

j′=jWj′(ri+1) 6= ∅. By minimality of j,
⋃j−1
j′=0Wj′(ri) = ∅. By Lemma 16,⋃j−1

j′=0Wj′(ri+1) = ∅. Therefore we have
⋃k
j′=jWj′(ri) \

⋃k
j′=0Wj′(ri+1) 6= ∅.

This means that at least one state whose color in ri was not its final color gets
its final color in ri+1.

Remark 18. The memoryless optimal winning strategy for Player 0 can be
identified during the computation of values described above. In the final reach-
ability computation with the coloring function as GFP(g), if q ∈ Q0 has color
γ and is not marked as visited until the processing of color γ then the strategy
for Player 0 at q is same as the strategy determined in the last LFP(fr) step (a
one or more step reachability computation). Otherwise, the strategy is to select
the label of the outgoing transition of q that lead to q being marked as visited
in the reachability computation for the coloring function GFP(g).

12

4.5 Cyclic ranking games

For a cyclic ranking game, consider the following decision problem. Given a
number i ∈ N, determine if Player 0 can force a word with rank ≥ i.

Proposition 19. The decision problem is in NP∩ coNP.

Proof. Assume that the game is defined by the automaton A and the pair (c, k)
where c : Q → N is a coloring function and k ∈ N is the number of ranks.
Consider a parity game over A using the coloring function

c′(q) = 2 · bc(q)/kc+
{

1 if c(q) ≥ i(modulo k)
0 if c(q) < i(modulo k).

Player 0 wins if the maximal color appearing infinitely often is odd. Clearly,
Player 0 can force a win in this game if and only if the answer to the decision
problem is affirmative. The proof follows from the known result that deciding
the winner of a parity game is in NP∩ coNP [7].

Using the above reduction, we can determine the value of a game with a cyclic
ranking condition by repeated queries. Once we know the value, any strategy
that wins the parity game also assures the value in the cyclic game. Since parity
games have memoryless optimal strategies, we get the following proposition.

Proposition 20. Cyclic ranking games have memoryless optimal strategies.

5 Conclusions

We have proposed a framework for specifying prioritized requirements by asso-
ciating ranks with executions and shown how to generalize classical automata-
theoretic notions of acceptance to rankings. The resulting optimization analogs
of verification and synthesis problems can naturally be solved by adopting sym-
bolic fixpoint algorithms to an appropriately chosen lattice of coloring functions.
In particular, we have identified the cyclic ranking condition as a means of spec-
ifying all ω-regular ranking functions, and shown that Büchi ranking games
can be solved in quadratic time. Implementation using binary decision diagrams
(BDDs) and algebraic decision diagrams (ADDs) [16] is planned for future work.

Acknowledgments. This research was partially supported by NSF grants 0541149
and 0524059, and by General Motors India Science Lab.

References

1. R. Alur, K. Etessami, S. L. Torre, and D. Peled. Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Log, 2(3):388–407, 2001.

2. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In J. Dı́az,
J. Karhumäki, A. Lepistö, and D. Sannella, editors, ICALP, volume 3142 of Lecture
Notes in Computer Science, pages 281–293. Springer, 2004.

13

3. G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, Boston, USA, 2000.

4. K. Chatterjee. A linear-time algorithm for weak parity games. Technical Report
UCB/EECS-2006-153, University of California, Berkeley, 2006.

5. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. In Proc. 3rd Conference on Computer Aided
Verification, pages 48–58, 1991.

6. E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier Science Pub-
lishers, 1990.

7. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the µ-calculus
and its fragments. Theor. Comput. Sci, 258(1-2):491–522, 2001.

8. J. P. Ernits. Memory arbiter synthesis and verification for a radar memory interface
card. Nord. J. Comput, 12(2):68–88, 2005.

9. H. Gimbert and W. Zielonka. Perfect information stochastic priority games. In
L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, editors, ICALP, volume 4596
of Lecture Notes in Computer Science, pages 850–861. Springer, 2007.

10. Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. 14th Annual
ACM Symposium on Theory of Computing, pages 60–65, 1982.

11. J.R. Büchi. State-strategies for games in Fσδ ∩ Gσδ. Journal of Symbolic Logic,
48:1171–1198, 1983.

12. O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th Int. Conf. on Veri-
fication, Model Checking, and Abstract Interpretation, pages 199 – 213, 2007.

13. O. Kupferman and Y. Lustig. Latticed simulation relations and games. In Proc.
5th symp. on Aut. Technology for Verification and Analysis, pages 316–330, 2007.

14. A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on
Foundations of Computer Science, pages 46–77, 1977.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symposium on Principles of Programming Languages, 1989.

16. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic Decision Diagrams and Their Applications. In Proc. 9th
International Conference on CAD, pages 188–191, 1993.

17. W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Symp.
on Theoretical Aspects of Computer Science, pages 1–13, 1995.

18. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1–37, 1994.

19. G. Weiss. Optimal scheduler for a memory card. Research report, Dep. of Computer
Science and Applied Mathematics, The Weizmann Institue of Science, 2002.

20. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theor. Comput. Sci., 158(1-2):343–359, 1996.

14

