
Symboli
 Compositional Veri�
ation byLearning Assumptions ?
Rajeev Alur1, P. Madhusudan2, and Wonhong Nam11 University of Pennsylvania2 University of Illinois at Urbana-Champaignalur�
is.upenn.edu, madhu�
s.uiu
.edu, wnam�
is.upenn.edu

Abstra
t. The veri�
ation problem for a system 
onsisting of 
ompo-nents 
an be de
omposed into simpler subproblems for the 
omponentsusing assume-guarantee reasoning. However, su
h 
ompositional reason-ing requires user guidan
e to identify appropriate assumptions for 
om-ponents. In this paper, we propose an automated solution for dis
over-ing assumptions based on the L� algorithm for a
tive learning of reg-ular languages. We present a symboli
 implementation of the learningalgorithm, and in
orporate it in the model 
he
ker NuSMV. Our experi-ments demonstrate signi�
ant savings in the 
omputational requirementsof symboli
 model 
he
king.
1 Introdu
tionIn spite of impressive progress in heuristi
s for sear
hing the rea
hable state-spa
e of system models, s
alability still remains a 
hallenge. Compositional ver-i�
ation te
hniques address this 
hallenge by a \divide and 
onquer" strategyaimed at exploiting the modular stru
ture naturally present in system designs.One su
h prominent te
hnique is the assume-guarantee rule: to verify that astate property ' is an invariant of a system M 
omposed of two modules M1and M2, it suÆ
es to �nd an abstra
t module A su
h that (1) the 
ompositionof M1 and A satis�es the invariant ', and (2) the module M2 is a re�nement ofA. Here, A 
an be viewed as an assumption on the environment of M1 for it tosatisfy the property '. If we 
an �nd su
h an assumption A that is signi�
antlysmaller than M2, then we 
an verify the requirements (1) and (2) using auto-mated sear
h te
hniques without having to exploreM . In this paper, we proposean approa
h to �nd the desired assumption A automati
ally in the 
ontext ofsymboli
 state-spa
e exploration.If M1 
ommuni
ates with M2 via a set X of 
ommon boolean variables,then the assumption A 
an be viewed as a language over the alphabet 2X . We
ompute this assumption using the L� algorithm for learning a regular languageusing membership and equivalen
e queries [6, 21℄. The learning-based approa
hprodu
es a minimal DFA, and the number of queries is only polynomial in? This resear
h was partially supported by ARO grant DAAD19-01-1-0473, and NSFgrants ITR/SY 0121431 and CCR0306382.



the size of the output automaton. The membership query is to test whethera given sequen
e � over the 
ommuni
ation variables belongs to the desiredassumption. We implement this as a symboli
 invariant veri�
ation query that
he
ks whether the module M1 
omposed with the sequen
e � satis�es ' [16℄.For an equivalen
e query, given a 
urrent 
onje
ture assumption A, we �rst testwhetherM1 
omposed with A satis�es ' using symboli
 state-spa
e exploration.If not, the 
ounter-example provided by the model 
he
ker is used by the learningalgorithm to revise A. Otherwise, we test if M2 re�nes A, whi
h is feasible sin
eA is represented as a DFA. If the re�nement test su

eeds, we 
an 
on
lude thatM satis�es the invariant, otherwise the model 
he
ker gives a sequen
e � allowedby M2, but ruled out by A. We then 
he
k if the module M1 stays safe whenexe
uted a

ording to �: if so, � is used as a 
ounter-example by the learningalgorithm to adjust A, and otherwise, � is a witness to the fa
t that the originalmodel M does not satisfy '.While the standard L� algorithm is designed to learn a parti
ular language,and the desired assumption A belongs to a 
lass of languages 
ontaining alllanguages that satisfy the two requirements of the assume-guarantee rule, weshow that the above strategy works 
orre
tly. The learning-based approa
h toautomati
 generation of assumptions is appealing as it builds the assumptionin
rementally guided by the model-
he
king queries, and if it en
ounters anassumption that has a small representation as a minimal DFA, the algorithm willstop and use it to prove the property. In our 
ontext, the size of the alphabet itselfgrows exponentially with the number of 
ommuni
ation variables. Consequently,we propose a symboli
 implementation of the L� algorithm where the requireddata stru
tures for representing membership information and the assumptionautomaton are maintained 
ompa
tly using ordered BDDs [9℄ for pro
essing the
ommuni
ation variables.For evaluating the proposed approa
h, we modi�ed the state-of-the-art sym-boli
 model 
he
ker NuSMV [10℄. In Se
tion 5, we report on a few exampleswhere the original models 
ontain around 100 variables, and the 
omputationalrequirements of NuSMV are signi�
ant. The only manual step in the 
urrentprototype involves spe
ifying the synta
ti
 de
omposition of the model M intomodules M1 and M2. While the proposed 
ompositional approa
h does not al-ways lead to improvement (this 
an happen when no \good" assumption existsfor the 
hosen de
omposition into modules M1 and M2), dramati
 gains are ob-served in some 
ases redu
ing either the required time or memory by one or twoorders of magnitude, or 
onverting infeasible problems into feasible ones.Finally, it is worth pointing out that, while our prototype uses BDD-basedstate-spa
e exploration, the approa
h 
an easily be adopted to permit othermodel 
he
king strategies su
h as SAT-based model 
he
king [8, 18℄ and 
ounter-example guided abstra
tion re�nement [15, 11℄.Related Work Compositional reasoning using assume-guarantee rules has along history in the formal veri�
ation literature [22, 13, 1, 4, 17, 14, 19℄. Whilesu
h reasoning is supported by some tools (e.g. Mo
ha [5℄), the 
hallengingtask of �nding the appropriate assumptions is typi
ally left to the user and only



a few attempts have been made to automate the assumption generation (in [3℄,the authors present some heuristi
s for automati
ally 
onstru
ting assumptionsusing game-theoreti
 te
hniques).Our work is inspired by the re
ent series of papers by the resear
hers atNASA Ames on 
ompositional veri�
ation using learning [12, 7℄. Compared tothese papers, we believe that our work makes three 
ontributions. First, wepresent a symboli
 implementation of the learning algorithm, and this is essentialsin
e the alphabet is exponential in the number of 
ommuni
ation variables.Se
ond, we address and explain expli
itly how the L� algorithm designed to learnan unknown, but �xed, language is adapted to learn some assumption from a
lass of 
orre
t assumption languages. Finally, we demonstrate the bene�ts ofthe method by in
orporating it in a state-of-the-art publi
ly available symboli
model 
he
ker.It is worth noting that re
ently the L� algorithm has found appli
ations informal veri�
ation besides automating assume-guarantee reasoning: our softwareveri�
ation proje
t JIST uses predi
ate abstra
tion and learning to synthesize(dynami
) interfa
es for Java 
lasses [2℄; [23℄ uses learning to 
ompute the set ofrea
hable states for verifying in�nite-state systems; while [20℄ uses learning forbla
k box 
he
king , that is, verifying properties of partially spe
i�ed implemen-tations.
2 Symboli
 modulesIn this se
tion, we formalize the notion of a symboli
 module, the notion of
omposition of modules and explain the assume-guarantee rule we use in thispaper.Symboli
 modules In the following, for any set of variables X, we will denotethe set of primed variables of X as X 0 = fx0 j x 2 Xg. A predi
ate ' over Xis a boolean formula over X, and for a valuation s for variables in X, we write'(s) to mean that s satis�es the formula '.A symboli
 module is a tuple M(X;XI ; XO; Init ; T ) with the following 
om-ponents:{ X is a �nite set of boolean variables 
ontrolled by the module,{ XI is a �nite set of boolean input variables that the module reads from itsenvironment; XI is disjoint from X,{ XO � X is a �nite set of boolean output variables that are observable to theenvironment of M ,{ Init(X) is an initial state predi
ate over X,{ T (X;XI ; X 0) is a transition predi
ate over X [XI [X 0 where X 0 representsthe variables en
oding the su

essor state.Let XIO = XI [XO denote the set of 
ommuni
ation variables. A state s ofM is a valuation of the variables in X; i.e. s : X ! ftrue; falseg. Let S denotethe set of all states of M . An input state sI is a valuation of the input variables



XI and an output state sO is a valuation of XO. Let SI and SO denote the setof input states and output states, respe
tively. Also, SIO = SI �SO. For a states over a set X of variables, let s[Y ℄, where Y � X denote the valuation over Yobtained by restri
ting s to Y .The semanti
s of a module is de�ned in terms of the set of runs it exhibits. Arun ofM is a sequen
e s0; s1; � � �, where ea
h si is a state over X[XI , su
h thatInit(s0[X℄) holds, and for every i � 0, T (si[X℄; si[XI ℄; s0i+1[X 0℄) holds (wheres0i+1(x0) = si+1(x), for every x 2 X). For a moduleM(X;XI ; XO; Init ; T ) and asafety property '(XIO), whi
h is a boolean formula over XIO , we de�ne M j= 'if, for every run s0; s1; � � �, for every i � 0, '(si) holds. Given a run s0; s1; � � �of M , the tra
e of M is a sequen
e s0[XIO ℄; s1[XIO ℄; � � � of input and outputstates. Let us denote the set of all the tra
es of M as L(M). Given two modulesM1 = (X1; XI ; XO; Init1; T1) and M2 = (X2; XI ; XO; Init2; T2) that have thesame input and output variables, we say M1 is a re�nement of M2, denotedM1 vM2, if L(M1) � L(M2).Composition of modules The syn
hronous 
omposition operator k is a 
om-mutative and asso
iative operator that 
omposes modules. Given two modulesM1 = (X1; XI1 ; XO1 ; Init1; T1) andM2 = (X2; XI2 ; XO2 ; Init2; T2), with X1\X2 =;, M1kM2 = (X;XI ; XO; Init ; T ) is a module where:{ X = X1 [X2, XI = (XI1 [XI2 ) n (XO1 ℄XO2 ), XO = XO1 ℄XO2 ,{ Init(X) = Init1(X1) ^ Init2(X2),{ T (X;XI ; X 0) = T1(X1; XI1 ; X 01) ^ T2(X2; XI2 ; X 02).We 
an now de�ne the model-
he
king problem we 
onsider in this paper:Given modules M1 = (X1; XI1 ; XO1 ; Init1; T1) and M2 = (X2; XI2 ; XO2 ;Init2; T2), with X1 \ X2 = ;, XI1 = XO2 and XO1 = XI2 (let XIO =XIO1 = XIO2 ), and a safety property '(XIO), does (M1kM2) j= '?Note that we are assuming that the safety property ' is a predi
ate over the
ommon 
ommuni
ation variables XIO . This is not a restri
tion: to 
he
k aproperty that refers to private variables of the modules, we 
an simply de
larethem to be outputs.Assume-guarantee rule We use the following assume-guarantee rule to provethat a safety property ' holds for a module M =M1kM2. In the rule below, Ais a module that has the same input and output variables as M2:M1kA j= 'M2 v AM1kM2 j= 'The rule above says that if there exists (some) module A su
h that the 
om-position ofM1 and A is safe (i.e. satis�es the property ') andM2 re�nes A, thenM1jjM2 satis�es '. We 
an view su
h an A as an adequate assumption betweenM1 and M2: it is an abstra
tion of M2 (possibly admitting more behaviors thanM2) that is a strong enough assumption for M1 to make in order to satisfy '.Our aim is to 
onstru
t su
h an assumption A to show that M1kM2 satis�es '.This rule is sound and 
omplete [19℄.



3 Assumption Generation via Computational LearningGiven a symboli
 module M = M1kM2 
onsisting of two sub-modules anda safety property ', our aim is to verify that M satis�es ' by �nding anA that satis�es the premises of the assume-guarantee rule explained in Se
-tion 2. Let us �x a pair of su
h modules M1 = (X1; XI1 ; XO1 ; Init1; T1) andM2 = (X2; XI2 ; XO2 ; Init2; T2) for the rest of this se
tion.Let L1 be the set of all tra
es � = s0; s1; � � �, where ea
h si 2 SIO , su
h thateither � 62 L(M1) or '(si) holds for all i � 0. Thus, L1 is the largest languagefor M1's environment that 
an keep M1 safe. Note that the languages of the
andidates for A that satisfy the �rst premise of the proof rule is pre
isely theset of all subsets of L1.Let L2 be the set of tra
es ofM2, that is, L(M2). The languages of 
andidatesfor A that satisfy the se
ond premise of the proof rule is pre
isely the set of allsupersets of L2. Sin
e M1 and M2 are �nite, it is easy to see that L1 and L2 arein fa
t regular languages. Let B1 be the module 
orresponding to the minimumstate DFA a

epting L1.The problem of �nding A satisfying both proof premises hen
e redu
es to
he
king for a language whi
h is a superset of L2 and a subset of L1. To dis
oversu
h an assumption A, our strategy is to 
onstru
t A using a learning algorithmfor regular languages, 
alled the L� algorithm. The L� algorithm is an algorithmfor a learner trying to learn a �xed unknown regular language U through mem-bership queries and equivalen
e queries. Membership queries ask whether a givenstring is in U . An equivalen
e query asks whether a given language L(C) (pre-sented as a DFA C) equals U ; if so, the tea
her answers `yes' and the learner haslearnt the language, and if not, the tea
her provides a 
ounter-example whi
h isa string that is in the symmetri
 di�eren
e of L(C) and U .We adapt the L� algorithm to learn some language from a range of languages,namely to learn a language that is a superset of L2 and a subset of L1. We donot, of 
ourse, 
onstru
t L1 or L2 expli
itly, but instead answer queries usingmodel-
he
king queries performed on M1 and M2 respe
tively.Given an equivalen
e query with 
onje
ture L(C), the test for equivalen
e
an be split into two| 
he
king the subset query L(C) � U and 
he
king thesuperset query L(C) � U . To 
he
k the subset query, we 
he
k if L(C) � L1,and to 
he
k the superset query we 
he
k whether L(C) � L2. If these two testspass, then we de
lare that the learner has indeed learnt the language as the
onje
ture is an adequate assumption.The membership query is more ambiguous to handle. When the learner askswhether a word w is in U , if w is not in L1, then we 
an 
learly answer in thenegative, and if w is in L2 then we 
an answer in the aÆrmative. However, if wis in L1 but not in L2, then answering either positively or negatively 
an ruleout 
ertain 
andidates for A.In this paper, the strategy we have 
hosen is to always answer membershipqueries with respe
t to L1. It is possible to explore alternative strategies thatinvolve L2 also.



generating CYes/No

Partitioning information(M1kM2)M;'

M1kC j= ' No
M1kM2 j= '

M1k� j= 'Yes; C No; � 2 L(M2) n L(C)M2 v C
M1kM2 6j= '� is a 
ounter-example.

Yes

Yes; �No; 
exequiv(C)
memb(�) L� algorithmM1k� j= '

Fig. 1. Overview of 
ompositional veri�
ation by learning assumptions
Figure 1 illustrates the high-level overview of our 
ompositional veri�
ationpro
edure. Membership queries are answered by 
he
king safety with respe
tto M1. To answer the equivalen
e query, we �rst 
he
k the subset query (by asafety 
he
k with respe
t toM1); if the query fails, we return the 
ounterexamplefound to L�. If the subset query passes, then we 
he
k for the superset queryby 
he
king re�nement with respe
t to M2. If this superset query also passes,then we de
lare M satis�es ' sin
e C satis�es both premises of the proof rule.Otherwise, we 
he
k if the 
ounter-example tra
e � (whi
h is a behavior of M2but not in L(C)) keepsM1 safe. If it does not, we 
on
lude thatM1kM2 does notsatisfy '; otherwise, we give � ba
k to the L� algorithm as a 
ounter-exampleto the superset query.One of the ni
e properties of the L� algorithm is that it takes time polyno-mial in the size of the minimal automaton a

epting the learnt language (andpolynomial in the lengths of the 
ounter-examples provided by the tea
her). Letus now estimate bounds on the size of the automaton 
onstru
ted by our al-gorithm, and simultaneously show that our pro
edure always terminates. Notethat all membership queries and all 
ounter-examples provided by the tea
her inour algorithm are 
onsistent with respe
t to L1 (membership and subset queriesare resolved using L1 and 
ounter-examples to superset queries, though derivedusing M2, are 
he
ked for 
onsisten
y with L1 before it is passed to the learner).Now, if M1kM2 does indeed satisfy ', then L2 is a subset of L1 and hen
eB1 is an adequate assumption that witnesses the fa
t that M1kM2 satis�es '.If M1kM2 does not satisfy ', then L2 is not a subset of L1. Again B1 is anadequate automaton whi
h if learnt will show that M1kM2 does not satisfy '(sin
e this assumption when 
he
ked with M2, will result in a run � whi
h isexhibited by M2 but not in L1, and hen
e not safe with respe
t to M1).Hen
e B1 is an adequate automaton to learn in both 
ases to answer themodel-
he
king question, and all answers to queries are 
onsistent with B1. TheL� algorithm has the property that the automata it 
onstru
ts monotoni
allygrow with ea
h iteration in terms of the number of states, and are always min-



1: R := f"g; E := f"g;2: forea
h (a 2 �) f G["; "℄ := member("�"); G["�a; "℄ := member("�a�"); g3: repeat:4: while ((rnew := 
losed(R;E;G)) 6= null) f5: add(R; rnew );6: forea
h (a 2 �); (e 2 E) f G[rnew �a; e℄ := member(rnew �a�e); g7: g8: C := makeConje
tureMa
hine(R;E;G);9: if ((
ex := equivalent(C)) = null) then return C;10: else f11: enew := �ndSuÆx (
ex);12: add(E; enew );13: forea
h (r 2 R); (a 2 �) f14: G[r; enew ℄ := member(r �enew ); G[r �a; enew ℄ := member(r �a�enew);15: g g Fig. 2. L� algorithm
imal. Consequently, we are assured that our pro
edure will not 
onstru
t anyautomaton larger than B1.Hen
e our pro
edure always halts and reports 
orre
tly whether M1kM2satis�es ', and in doing so, it never generates any assumption with more statesthan the minimal DFA a

epting L1.
4 Symboli
 implementation of L� algorithm4.1 L� algorithmThe L� algorithm learns an unknown regular language and generates a mini-mal DFA that a

epts the regular language. This algorithm was introdu
ed byAngluin [6℄, but we use an improved version by Rivest and S
hapire [21℄. Thealgorithm infers the stru
ture of the DFA by asking a tea
her, who knows theunknown language, membership and equivalen
e queries.Figure 2 illustrates the improved version of L� algorithm [21℄. Let U be theunknown regular language and � be its alphabet. At any given time, the L�algorithm has, in order to 
onstru
t a 
onje
ture ma
hine, information about a�nite 
olle
tion of strings over �, 
lassi�ed either as members or non-membersof U . This information is maintained in an observation table (R;E;G) where Rand E are sets of strings over �, and G is a fun
tion from (R[R��) �E to f0; 1g.More pre
isely, R is a set of representative strings for states in the DFA su
hthat ea
h representative string rq 2 R for a state q leads from the initial state(uniquely) to the state q, and E is a set of experiment suÆx strings that are usedto distinguish states (for any two states of the automaton being built, there isa string in E whi
h is a

epted from one and reje
ted from the other). G mapsstrings � in (R[R��) �E to 1 if � is in U , and to 0 otherwise. Initially, R and Eare set to f"g, and G is initialized using membership queries for every string in



(R[R��) �E (line 2). In line 4, it 
he
ks whether the observation table is 
losed.The fun
tion 
losed(R, E, G) returns null (meaning true) if for every r 2 Rand a 2 �, there exists r0 2 R su
h that G[r �a; e℄ = G[r0; e℄ for every e 2 E;otherwise, it returns r �a su
h that there is no r0 satisfying the above 
ondition.If the table is not 
losed, ea
h su
h r �a (e.g., rnew is r �a in line 5) is simplyadded to R. The algorithm again updates G with regard to r�a (line 6). On
e thetable is 
losed, it 
onstru
ts a 
onje
ture DFA C = (Q; q0; F; Æ) as follows (line8): Q = R, q0 = ", F = fr 2 R j G[r; "℄ = 1g, and for every r 2 R and a 2 �,Æ(r; a) = r0 su
h that G[r �a; e℄ = G[r0; e℄ for every e 2 E. Finally, if the answerfor the equivalen
e query is `yes', it returns the 
urrent 
onje
ture ma
hine C;otherwise, a 
ounter-example 
ex 2 ((L(C) n U) [ (U n L(C)) is provided bythe tea
her. The algorithm analyzes the 
ounter-example 
ex in order to �ndthe longest suÆx enew of 
ex that witnesses a di�eren
e between U and L(C)(line 14). Intuitively, the 
urrent 
onje
ture ma
hine has guessed wrong sin
ethis point. Adding enew to E re
e
ts the di�eren
e in the next 
onje
ture bysplitting states in C. It then updates G with respe
t to enew .The L� algorithm is guaranteed to 
onstru
t a minimal DFA for the unknownregular language using only O(j�jn2+n logm) membership queries and at mostn � 1 equivalen
e queries, where n is the number of states in the �nal DFAand m is the length of the longest 
ounter-example provided by the tea
her forequivalen
e queries.As we dis
ussed in Se
tion 3, we use the L� algorithm to identify A(XA; XIA;XOA ; InitA; TA) satisfying the premises of the proof rule, where XIOA = XIO .A is hen
e a language over the alphabet SIO , and the L� algorithm 
an learnA in time polynomial in the size of A (and the 
ounter-examples). However,when we apply the L� algorithm to analyze a large module (espe
ially when thenumber of input and output variables is large), the large alphabet size posesmany problems: (1) the 
onstru
ted DFA has too many edges when representedexpli
itly, (2) the size of the observation table, whi
h is polynomial in � andthe size of the 
onje
tured automaton, gets very large, and (3) the numberof membership queries needed to �ll ea
h entry in the observation table alsoin
reases. To resolve these problems, we present a symboli
 implementation ofthe L� algorithm.4.2 Symboli
 implementationFor des
ribing our symboli
 implementation for the L� algorithm, we �rst explainthe essential data stru
tures the algorithm needs, and then present our impli
itdata stru
tures 
orresponding to them. The L� algorithm uses the following datastru
tures:{ string R[int℄: ea
h R[i℄ is a representative string for i-th state qi in the
onje
ture DFA.{ string E[int℄: ea
h E[i℄ is i-th experiment string.{ boolean G1[int℄[int℄: ea
h G1[i℄[j℄ is the result of the membershipquery for R[i℄�E[j℄.



{ boolean G2[int℄[int℄[int℄: ea
h G2[i℄[j℄[k℄ is the result of the mem-bership query for R[i℄�aj �E[k℄ where aj is the j-th alphabet symbol in �.Note that G of the observation table is split into two arrays, G1 and G2, whereG1 is an array for a fun
tion from R � E to f0; 1g and G2 is for a fun
tion fromR �� �E to f0; 1g. The L� algorithm initializes the data stru
tures as following:R[0℄=E[0℄=", G1[0℄[0℄=member (" � "), and G2[0℄[i℄[0℄=member (" �ai � ") (forevery ai 2 �). On
e it introdu
es a new state or a new experiment, it adds toR[℄ or E[℄ and updates G1 and G2 by membership queries. These arrays alsoen
ode the edges of the 
onje
ture ma
hine: there is an edge from state qi to qjon ak when G2[i℄[k℄[l℄=G1[j℄[l℄ for every l.For symboli
 implementation, we do not wish to 
onstru
t G2 in order to
onstru
t 
onje
ture DFAs by expli
it membership queries sin
e j�j is too large.While the expli
it L� algorithm asks for ea
h state r, alphabet symbol a andexperiment e, if r � a� e is a member, we 
ompute, given a state r and a booleanve
tor v, the set of alphabet symbols a su
h that for every j � jvj, member(r �a� ej) = v[j℄. For this, we have the following data stru
tures:{ int nQ: the number of states in the 
urrent DFA.{ int nE: the number of experiment strings.{ BDD R[int℄: ea
h R[i℄ (0 � i < nQ) is a BDD over X1 to represent the setof states of the module M1 that are rea
hable from an initial state of M1 bythe representative string ri of the i-th state qi: postImage(Init1(X1); ri).{ BDD E[int℄: ea
h E[i℄ (0 � i < nE) is a BDD over X1 to 
apture a setof states of M1 from whi
h some state violating ' is rea
hable by the i-thexperiment string ei: preImage(:'(X1); ei).{ booleanVe
tor G1[int℄: Ea
h G1[i℄ (0 � i < nQ) is the boolean ve
tor forthe state qi, where the length of ea
h boolean ve
tor always equals to nE. Notethat as nE is in
reased, the length of ea
h boolean ve
tor is also in
reased.For i 6= j, G1[i℄ 6= G1[j℄. Ea
h element G1[i℄[j℄ of G1[i℄ (0 � j < nE)represents whether ri � ej is a member where ri is a representative string forR[i℄ and ej is an experiment string for E[j℄: whether R[i℄ and E[j℄ haveempty interse
tion.{ booleanVe
tor Cd[int℄: every iteration of the L� algorithm splits somestates of the 
urrent 
onje
ture DFA by a new experiment string. Morepre
isely, the new experiment splits every state into two state 
andidates,and among them, only rea
hable ones are 
onstru
ted as states of the next
onje
ture DFA. The Cd[℄ ve
tor des
ribes all these state 
andidates andea
h element is the boolean ve
tor of ea
h 
andidate. jCdj = 2�nQ.Given M =M1kM2 and ', we initialize the data stru
tures as follows. R[0℄is the BDD for Init1(X1) and E[0℄ is the BDD for :' sin
e the 
orrespondingrepresentative and experiment string are ", and G1[0℄[0℄ = 1 sin
e we assumethat every initial state satis�es '. In addition, we have the following fun
tionsthat manipulate the above data stru
tures for implementing the L� algorithmimpli
itly (Figure 3 illustrates the pseudo-
ode for the important ones.):



BDD edges(int i, booleanVe
tor v)fBDD eds := true; // eds is a BDD over XIO .forea
h (0 � j < nE)f // In the below, XL1 = X1 nXIO .if (v[j℄) then eds := eds ^ :(9XL1 ; X10: R[i℄(X1)^T1(X1;XI1 ; X 01)^E[j℄(X 01));else eds := eds ^ (9XL1 ;X10: R[i℄(X1) ^ T1(X1;XI1 ;X 01) ^ E[j℄(X 01));greturn eds;gvoid addR(int i, BDD b, booleanVe
tor v)fBDD io := pi
kOneState(b); // io is a BDD representing one alphabet symbol.R[nQ℄ := (9X1;XI1 : R[i℄(X1) ^ io ^ T1(X1; XI1 ;X 01))[X 01 ! X1℄;G1[nQ++℄ := v;gvoid addE(BDD[℄ bs)fBDD b := '; // b is a BDD over X1.for (j := length(bs); j > 0; j--) f b := 9XI1 ;X 01: b(X 01) ^ bs[j℄ ^ T1(X1;XI1 ; X 01); gE[nE℄ := :b;forea
h (0 � i < nQ) fif ((R[i℄ ^ E[nE℄) = false) then G1[i℄[nE℄ := 1;else G1[i℄[nE℄ := 0;forea
h (0 � j < nE) f Cd[2i℄[j℄ := G1[i℄[j℄; Cd[2i+ 1℄[j℄ := G1[i℄[j℄; gCd[2i℄[nE℄ := 0; Cd[2i+ 1℄[nE℄ := 1;gnE++;g Fig. 3. Symboli
 implementation of observation table
{ BDD edges(int, booleanVe
tor): this fun
tion, given an integer i and aboolean ve
tor v (0 � i < nQ, jvj = nE), returns a BDD over XIO represent-ing the set of alphabet symbols by whi
h there is an edge from state qi to astate that has v as its boolean ve
tor.{ void addR(int, BDD, booleanVe
tor): when we introdu
e a new state(whose prede
essor state is qi, the BDD representing edges from qi is band the boolean ve
tor is v), addR(i, b, v) updates R, G1 and nQ.{ void addE(BDD[℄): given a new experiment string represented as an array ofBDDs (where ea
h BDD of the array en
odes the 
orresponding state in theexperiment string), this fun
tion updates E, G1 and nE. It also 
onstru
ts anew set Cd[℄ of state 
andidates for the next iteration.{ boolean isInR(booleanVe
tor): given a boolean ve
tor v, isInR(v) 
he-
ks whether v = G1[i℄ for some i.{ BDD[℄ findSuffix(BDD[℄): given a 
ounter-example 
ex (from equivalen
equeries) represented by a BDD array, findSuffix(
ex) returns a BDD ar-ray representing the longest suÆx that witnesses the di�eren
e between the
onje
ture DFA and A.



While the L� algorithm 
onstru
ts a 
onje
ture ma
hine by 
omputing G2and 
omparing between G1 and G2, we dire
tly make a symboli
 
onje
ture DFAC(XC ; XIO ; InitC ; FC ; TC) with the following 
omponents:{ XC is a set of boolean variables representing states in C (jXC j = dlog2nQe).Valuations of the variables 
an be en
oded from its index for R.{ XIO is a set of boolean variables de�ning its alphabet, whi
h 
omes fromM1 and M2.{ InitC(XC) is an initial state predi
ate over XC . InitC(XC) is en
oded fromthe index of the state q0: InitC(XC) = Vx2XC (x � 0).{ FC(XC) is a predi
ate for a

epting states. It is en
oded from the indi
es ofthe states qi su
h that G1[i℄[0℄=1.{ TC(XC ; XIO ; X 0C) is a transition predi
ate over XC [XIO [X 0C ; that is, ifTC(i; a; j) = true, then the DFA has an edge from state qi to qj labeled bya. To get this predi
ate, we 
ompute a set of edges from every state qi toevery state 
andidate with boolean ve
tor v by 
alling edges(i, v).This symboli
 DFA C(XC ; XIO ; InitC ; FC ; TC) 
an be easily 
onverted to asymboli
 moduleMC(XC ; XI ; XO; InitC ; TC). Now, we 
an 
onstru
t a symboli

onje
ture DFA C using impli
it membership queries by edges(). In addition,we have the following fun
tions for equivalen
e queries:{ BDD[℄ subsetQ(Symboli
DFA): our subset query is to 
he
k whether allstrings allowed by C make M1 stay in states satisfying '. Hen
e, given asymboli
 DFA C(XC ; XIO ; InitC ; FC ; TC), we 
he
k M1kMC j= (FC ! ')by rea
hability 
he
king, whereMC is a symboli
 module 
onverted from C.If so, it returns null ; otherwise, it returns a BDD array as a 
ounter-example.{ BDD[℄ supersetQ(Symboli
DFA): it 
he
ks that M2 v C. The return valueis similar with subsetQ(). Sin
e C is again a (symboli
) DFA, we 
an simplyimplement it by symboli
 rea
hability 
omputation for the produ
t of M2and MC . If it rea
hes the non-a

epting state of C, the sequen
e rea
hingthe non-a

epting state is a witness showing M2 6v C.{ boolean safeM1(BDD [℄): given a string � represented by a BDD array, itexe
utes M1 a

ording to �. If the exe
ution rea
hes a state violating ', itreturns false; otherwise, returns true.Figure 4 illustrates our symboli
 
ompositional veri�
ation (SCV) algorithm.We initialize nQ, nE, R, E, G1, Cd and C in lines 1{3. We then 
ompute aset of edges (a BDD) from every sour
e state qi to every state 
andidate withboolean ve
tor Cd[j℄. On
e we rea
h a new state, we update R, nQ and G1 byaddR() (line 9). This step makes the 
onje
ture ma
hine 
losed. If we have anon-empty edge set by edges(), then we update the 
onje
ture C (line 10).After 
onstru
ting a 
onje
ture DFA, we ask an equivalen
e query as dis
ussedin Se
tion 3 (lines 12{15). If we 
annot 
on
lude true nor false from the query,we are provided a 
ounter-example from the tea
her and get a new experimentstring from the 
ounter-example. E, nE, Cd and G1 are then updated based onthe new experiment string. We implement this algorithm with the BDD pa
kagein a symboli
 model 
he
ker NuSMV.



boolean SCV(M1;M2; ')1: nQ := 1; nE := 1; R[0℄ := Init1(X1); E[0℄ := :';2: G1[0℄[0℄ := 1; Cd[0℄ := 0; Cd[1℄ := 1;3: C := initializeC ();4: repeat:5: forea
h (0 � i < nQ) f6: forea
h (0 � j < 2�nQ) f7: eds := edges(i, Cd[j℄);8: if (eds 6= false) then f9: if (:isInR(Cd[j℄)) then addR(i, eds, Cd[j℄);10: C := updateC (i ; eds; indexofR(Cd[j℄));11: g g g12: if ((
ex := subsetQ(C)) = null) then f13: if ((
ex := supersetQ(C) = null) then return true;14: else if (:safeM1(
ex)) then return false;15: g16: addE(findSuffix(
ex));Fig. 4. Symboli
 
ompositional veri�
ation algorithm
5 ExperimentsWe �rst explain an arti�
ial example (
alled `simple') to illustrate our methodand then report results on `simple' and four examples from the NuSMV pa
kage.Example: simple Module M1 has a variable x (initially set to 0 and updatedby the rule x0 := y in ea
h round where y is an input variable) and a dummyarray that does not a�e
t x at all. Module M2 has a variable y (initially set to0 and is never updated) and also a dummy array that does not a�e
t y at all.For M1kM2, we want to 
he
k that x is always 0. Both dummy arrays are froman example swap known to be hard for BDD en
oding [18℄. Our tool exploresM1 and M2 separately with a two-state assumption (whi
h allows only y = 0),while ordinary model 
he
kers will sear
h whole state spa
e of M1kM2.For some examples from the NuSMV pa
kage, we slightly modi�ed them be-
ause our tool does not support the full syntax of the NuSMV language. The pri-mary sele
tion 
riterion was to in
lude examples for whi
h NuSMV takes a longtime or fails to 
omplete. All experiments were performed on a Sun-Blade-1000workstation using 1GB memory and SunOS 5.9. The results for the examplesare shown in Table 1. We 
ompare our symboli
 
ompositional veri�
ation tool(SCV) with the invariant 
he
king (with early termination) of NuSMV 2.2.2.The table has the number of variables in total, in M1, in M2 and the numberof input/output variables between the modules, exe
ution time in se
onds, thepeak BDD size and the number of states in the assumption we learn (for SCV).Entries denoted `{' mean that a tool did not 
omplete within 2 hours.The results of simple are also shown in Table 1. For simple1 throughsimple4, we just in
reased the size of dummy arrays from 8 to 11, and 
he
ked



example tot M1 M2 IO SCV NuSMVname spe
 var var var var time peak BDD assumption states time peak BDDsimple1 69 36 33 4 19.2 607,068 2 269 3,993,976simple2 true 78 41 37 5 106 828,842 2 4032 32,934,972simple3 86 45 41 5 754 3,668,980 2 { {simple4 94 49 45 5 4601 12,450,004 2 { {guidan
e1 false 135 24 111 23 124 686,784 20 { {guidan
e2 true 122 24 98 22 196 1,052,660 2 { {guidan
e3 true 122 58 64 46 357 619,332 2 { {barrel1 false 20.3 345,436 3 1201 28,118,286barrel2 true 60 30 30 10 23.4 472,164 4 4886 36,521,170barrel3 true { { too many { {msi1 45 26 19 25 2.1 289,226 2 157 1,554,462msi2 true 57 26 31 25 37.0 619,332 2 3324 16,183,370msi3 70 26 44 26 1183 6,991,502 2 { {robot1 false 92 8 84 12 1271 4,169,760 11 654 2,729,762robot2 true 92 22 70 12 1604 2,804,368 42 1039 1,117,046Table 1. Experimental results
the same spe
i�
ation. As we expe
ted, SCV generated a 2-state assumptionand performed signi�
antly better than NuSMV.The se
ond example, guidan
e, is a model of a spa
e shuttle digital autopilot.We added redundant variables to M1 and M2 and did not use a given variableordering information as both tools �nished fast with the original model andthe ordering. The spe
i�
ations were pi
ked from the given pool: guidan
e1,guidan
e2, guidan
e3 have the same models but have di�erent spe
i�
ations.For guidan
e1, our tool found a 
ounter-example with an assumption having 20states (If this assumption had been expli
itly 
onstru
ted, the 23 I/O variableswould have 
aused way too many edges to store expli
itly).The third set, barrel, is an example for bounded model 
he
king and novariable ordering works well for BDD-based tools. barrel1 has an invariant de-rived from the original, but barrel2 and barrel3 have our own ones. barrel1,barrel2 and barrel3 have the same model s
aled-up from the original, but withdi�erent initial predi
ates.The fourth set, msi, is a MSI 
a
he proto
ol model and shows how the toolss
ale on a real example. We s
aled-up the original model with 3 nodes: msi1 has 3nodes, msi2 has 4 nodes and msi3 has 5 nodes. They have the same spe
i�
ationthat is related to only two nodes, and we �xed the same 
omponent M1 in all ofthem. As the number of nodes grew, NuSMV required mu
h more time and theBDD sizes grew more qui
kly than in our tool.robot1 and robot2 are roboti
s 
ontroller models and we again added re-dundant variables to M1 and M2, as in the 
ase of guidan
e example. Eventhough SCV took more time, this example shows that SCV 
an be applied tomodels for whi
h non-trivial assumptions are needed. More details about theexamples are available at http://www.
is.upenn.edu/�wnam/
av05/.



Referen
es1. M. Abadi and L. Lamport. Conjoining spe
i�
ations. ACM TOPLAS, 17:507{534,1995.2. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interfa
e spe
i�
a-tions for Java 
lasses. In Pro
. 32nd ACM POPL, pages 98{109, 2005.3. R. Alur, L. de Alfaro, T.A. Henzinger, and F. Mang. Automating modular veri�-
ation. In CONCUR'99: Con
urren
y Theory, LNCS 1664, pages 82{97, 1999.4. R. Alur and T.A. Henzinger. Rea
tive modules. Formal Methods in System Design,15(1):7{48, 1999. A preliminary version appears in Pro
. 11th LICS, 1996.5. R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.MOCHA: Modularity in model 
he
king. In 10th CAV, pages 516{520, 1998.6. D. Angluin. Learning regular sets from queries and 
ounterexamples. Informationand Computation, 75:87{106, 1987.7. H. Barringer, C.S. Pasareanu, and D. Giannakopolou. Proof rules for automated
ompositional veri�
ation through learning. In Pro
. 2nd SVCBS, 2003.8. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symboli
 model 
he
king withoutBDDs. In Pro
. 5th TACAS, pages 193{207, 1999.9. R.E. Bryant. Graph-based algorithms for boolean-fun
tion manipulation. IEEETransa
tions on Computers, C-35(8):677{691, 1986.10. A. Cimatti, E. Clarke, E. Giun
higlia, F. Giun
higlia, M. Pistore, M. Roveri, R. Se-bastiani, and A. Ta

hella. NuSMV Version 2: An OpenSour
e Tool for Symboli
Model Che
king. In Pro
. CAV 2002, LNCS 2404, pages 359{364, 2002.11. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guidedabstra
tion re�nement. In Computer Aided Veri�
ation, pages 154{169, 2000.12. J.M. Cobleigh, D. Giannakopoulou, and C.S. Pasareanu. Learning assumptions for
ompositional veri�
ation. In Pro
. 9th TACAS, LNCS 2619, pages 331{346, 2003.13. O. Gr�umberg and D.E. Long. Model 
he
king and modular veri�
ation. ACMTransa
tions on Programming Languages and Systems, 16(3):843{871, 1994.14. T.A. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Method-ology and 
ase studies. In Pro
. CAV 98, LNCS 1427, pages 521{525, 1998.15. R.P. Kurshan. Computer-aided Veri�
ation of Coordinating Pro
esses: theautomata-theoreti
 approa
h. Prin
eton University Press, 1994.16. K.L. M
Millan. Symboli
 model 
he
king. Kluwer A
ademi
 Publishers, 1993.17. K.L. M
Millan. A 
ompositional rule for hardware design re�nement. In CAV 97:Computer-Aided Veri�
ation, LNCS 1254, pages 24{35, 1997.18. K.L. M
Millan. Applying SAT methods in unbounded symboli
 model 
he
king.In Pro
. 14th Computer Aided Veri�
ation, LNCS 2404, pages 250{264, 2002.19. K.S. Namjoshi and R.J. Tre
er. On the 
ompleteness of 
ompositional reasoning.In CAV 2000: Computer-Aided Veri�
ation, LNCS 1855, pages 139{153, 2000.20. D. Peled, M.Y. Vardi and M. Yannakakis. Bla
k box 
he
king. Journal of Au-tomata, Languages and Combinatori
s, 7(2): 225-246, 2002.21. R.L. Rivest and R.E. S
hapire. Inferen
e of �nite automata using homing se-quen
es. Information and Computation, 103(2):299{347, 1993.22. E.W. Stark. A proof te
hnique for rely-guarantee properties. In FST & TCS 85,LNCS 206, pages 369{391, 1985.23. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. A
tively learning to verifysafety properties for FIFO automata. In Pro
. 24th FSTTCS, pages 494{505, 2004.


