
Verification of Machine Learning Programs

Guy Katz

The Hebrew University of Jerusalem

Summer School on Foundations of Programming and Software
Systems

July 4, 2018

Guy Katz (HUJI) Verification of ML FoPSS 2018 1 / 115

Table of Contents

1 Introduction

2 Neural Networks

3 The Neural Network Verification Problem

4 State-of-the-Art Verification Techniques

5 Reluplex

6 Summary

Guy Katz (HUJI) Verification of ML FoPSS 2018 2 / 115

Background

Software systems are everywhere

Phones, airplanes, hospitals

Complexity is increasing

Autonomous driving

Manually creating software is very difficult

Guy Katz (HUJI) Verification of ML FoPSS 2018 3 / 115

Background

Software systems are everywhere

Phones, airplanes, hospitals

Complexity is increasing

Autonomous driving

Manually creating software is very difficult

Guy Katz (HUJI) Verification of ML FoPSS 2018 3 / 115

Background

Software systems are everywhere

Phones, airplanes, hospitals

Complexity is increasing

Autonomous driving

Manually creating software is very difficult

Guy Katz (HUJI) Verification of ML FoPSS 2018 3 / 115

Background

Software systems are everywhere

Phones, airplanes, hospitals

Complexity is increasing

Autonomous driving

Manually creating software is very difficult

Guy Katz (HUJI) Verification of ML FoPSS 2018 3 / 115

Machine Learning to the Rescue

Image recognition, game playing, autonomous driving, etc.

Guy Katz (HUJI) Verification of ML FoPSS 2018 4 / 115

Machine Learning to the Rescue

Image recognition, game playing, autonomous driving, etc.

Guy Katz (HUJI) Verification of ML FoPSS 2018 4 / 115

Machine Learning to the Rescue

Image recognition, game playing, autonomous driving, etc.

Guy Katz (HUJI) Verification of ML FoPSS 2018 4 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

Can Things go Wrong?

Black-box artifacts are useful

Technology is accessible to non-experts

But their opaqueness can be dangerous

Traditional quality-assurance techniques do not apply

Code reviews? Refactoring? Invariants?

How do we know what is going on inside the black box?

Guy Katz (HUJI) Verification of ML FoPSS 2018 5 / 115

When Things go Wrong...

Guy Katz (HUJI) Verification of ML FoPSS 2018 6 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Guy Katz (HUJI) Verification of ML FoPSS 2018 7 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Guy Katz (HUJI) Verification of ML FoPSS 2018 7 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Guy Katz (HUJI) Verification of ML FoPSS 2018 7 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Guy Katz (HUJI) Verification of ML FoPSS 2018 7 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 8 / 115

The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI) Verification of ML FoPSS 2018 9 / 115

The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI) Verification of ML FoPSS 2018 9 / 115

The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI) Verification of ML FoPSS 2018 9 / 115

The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI) Verification of ML FoPSS 2018 9 / 115

The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI) Verification of ML FoPSS 2018 9 / 115

The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI) Verification of ML FoPSS 2018 9 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds

Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification

Given program P and property ϕ, does P satisfy ϕ?

Option 1: prove that property ϕ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input

Not just a finite set that was tested

But, computational cost much higher

Guy Katz (HUJI) Verification of ML FoPSS 2018 10 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)

Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Verification (cnt’d)

A lot of work on “traditional” systems

Handling common software constructs (e.g., loops, conditions)
Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)

Guy Katz (HUJI) Verification of ML FoPSS 2018 11 / 115

Adversarial Inputs

In 2014, an intriguing property was observed:

Small perturbations of inputs lead to misclassification

Can usually find such inputs very easily

Guy Katz (HUJI) Verification of ML FoPSS 2018 12 / 115

Adversarial Inputs

In 2014, an intriguing property was observed:

Small perturbations of inputs lead to misclassification

Can usually find such inputs very easily

Guy Katz (HUJI) Verification of ML FoPSS 2018 12 / 115

Adversarial Inputs

In 2014, an intriguing property was observed:

Small perturbations of inputs lead to misclassification

Can usually find such inputs very easily

Guy Katz (HUJI) Verification of ML FoPSS 2018 12 / 115

Adversarial Inputs

In 2014, an intriguing property was observed:

Small perturbations of inputs lead to misclassification

Can usually find such inputs very easily

Guy Katz (HUJI) Verification of ML FoPSS 2018 12 / 115

Adversarial Inputs

In 2014, an intriguing property was observed:

Small perturbations of inputs lead to misclassification

Can usually find such inputs very easily

Guy Katz (HUJI) Verification of ML FoPSS 2018 12 / 115

Adversarial Inputs (cnt’d)

Even worse: can cause misclassification to a specific (targeted)
input

Attacks can be carried out in the real world

Dangers:

Natural malformation of input
Adversary changes “stop” sign into a “entering highway” sign?

Guy Katz (HUJI) Verification of ML FoPSS 2018 13 / 115

Adversarial Inputs (cnt’d)

Even worse: can cause misclassification to a specific (targeted)
input

Attacks can be carried out in the real world

Dangers:

Natural malformation of input
Adversary changes “stop” sign into a “entering highway” sign?

Guy Katz (HUJI) Verification of ML FoPSS 2018 13 / 115

Adversarial Inputs (cnt’d)

Even worse: can cause misclassification to a specific (targeted)
input

Attacks can be carried out in the real world

Dangers:

Natural malformation of input
Adversary changes “stop” sign into a “entering highway” sign?

Guy Katz (HUJI) Verification of ML FoPSS 2018 13 / 115

Adversarial Inputs (cnt’d)

Even worse: can cause misclassification to a specific (targeted)
input

Attacks can be carried out in the real world

Dangers:

Natural malformation of input
Adversary changes “stop” sign into a “entering highway” sign?

Guy Katz (HUJI) Verification of ML FoPSS 2018 13 / 115

Adversarial Inputs (cnt’d)

Even worse: can cause misclassification to a specific (targeted)
input

Attacks can be carried out in the real world

Dangers:

Natural malformation of input

Adversary changes “stop” sign into a “entering highway” sign?

Guy Katz (HUJI) Verification of ML FoPSS 2018 13 / 115

Adversarial Inputs (cnt’d)

Even worse: can cause misclassification to a specific (targeted)
input

Attacks can be carried out in the real world

Dangers:

Natural malformation of input
Adversary changes “stop” sign into a “entering highway” sign?

Guy Katz (HUJI) Verification of ML FoPSS 2018 13 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks
And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks
And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks
And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks
And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks

And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks
And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial
robustness

There exist hardening techniques for increasing robustness

But...

These usually defend against existing attacks
And then a new attack breaks them

Verification can be used to establish robustness guarantees

Guy Katz (HUJI) Verification of ML FoPSS 2018 14 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:

1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard

2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques

3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Roadmap

Machine-learned software becoming widespread

Problems with these systems already observed

Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1 See why neural network verification is hard
2 Survey state-of-the-art verification techniques
3 Discuss one technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 15 / 115

Table of Contents

1 Introduction

2 Neural Networks

3 The Neural Network Verification Problem

4 State-of-the-Art Verification Techniques

5 Reluplex

6 Summary

Guy Katz (HUJI) Verification of ML FoPSS 2018 16 / 115

Neural Networks

Input #1

Input #2

Input #3

Input #4

Input #5

Output #1

Output #2

Output #3

Output #4

Output #5

Typical sizes (number of neurons): between few hundreds and
millions

Guy Katz (HUJI) Verification of ML FoPSS 2018 17 / 115

Neural Networks

Input #1

Input #2

Input #3

Input #4

Input #5

Output #1

Output #2

Output #3

Output #4

Output #5

Typical sizes (number of neurons): between few hundreds and
millions

Guy Katz (HUJI) Verification of ML FoPSS 2018 17 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Neural Networks (cnt’d)

First layer is the input layer

In ACAS Xu example: sensor readings

Final layer is the output layer

In ACAS Xu example: scores for possible advisories

All other layers are called hidden layers

Each edge is assigned a weight, and these define the network’s
behavior

Guy Katz (HUJI) Verification of ML FoPSS 2018 18 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs

... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior

Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Training Neural Networks

Weights are determined during the training phase:

A network is trained on a finite set of inputs
... and then expected to generalize to other inputs

Training is about picking good weights:

If the network errs, change weights to correct that behavior
Topic of much research, well beyond our scope

We assume that the network has already been trained

Guy Katz (HUJI) Verification of ML FoPSS 2018 19 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given
Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given
Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given

Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given
Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given
Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given
Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

v4 = f(
3∑
i=1

wi · vi)

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Evaluating Neural Networks

Nodes evaluated layer by layer:

Input layer is given
Every layer computed from its predecessor, according to weights
and activation functions

v2

v1

v3

v4

w1

w2

w3

v4 = f(
3∑
i=1

wi · vi)

Guy Katz (HUJI) Verification of ML FoPSS 2018 20 / 115

Activation Functions

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x

Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

0

2

3

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x

Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

0

2

3

1

2

−1

0 · 1 + 2 · 2 + 3 · (−1) = 1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x

Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

0

2

3

1

1

2

−1

0 · 1 + 2 · 2 + 3 · (−1) = 1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x

Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x

Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

0

3

1

2

−1

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

0

3

1

2

−1

1 · 1 + 0 · 2 + 3 · (−1) = −2

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions

1

0

3

0

1

2

−1

1 · 1 + 0 · 2 + 3 · (−1) = −2

Rectified Linear Unit (ReLU): f(x) = max(x, 0)

Active phase: x ≥ 0, output is x
Inactive phase: x < 0, output is 0.

Guy Katz (HUJI) Verification of ML FoPSS 2018 21 / 115

Activation Functions (cnt’d)

Pooling layers:

Max pooling: f(x1, . . . , xn) = max(x1, . . . , xn)
Average pooling: f(x1, . . . , xn) = 1

n

∑n
i=1 xi

Sigmoid function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x)

Guy Katz (HUJI) Verification of ML FoPSS 2018 22 / 115

Activation Functions (cnt’d)

Pooling layers:

Max pooling: f(x1, . . . , xn) = max(x1, . . . , xn)
Average pooling: f(x1, . . . , xn) = 1

n

∑n
i=1 xi

Sigmoid function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x)

Guy Katz (HUJI) Verification of ML FoPSS 2018 22 / 115

Activation Functions (cnt’d)

Pooling layers:

Max pooling: f(x1, . . . , xn) = max(x1, . . . , xn)

Average pooling: f(x1, . . . , xn) = 1
n

∑n
i=1 xi

Sigmoid function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x)

Guy Katz (HUJI) Verification of ML FoPSS 2018 22 / 115

Activation Functions (cnt’d)

Pooling layers:

Max pooling: f(x1, . . . , xn) = max(x1, . . . , xn)
Average pooling: f(x1, . . . , xn) = 1

n

∑n
i=1 xi

Sigmoid function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x)

Guy Katz (HUJI) Verification of ML FoPSS 2018 22 / 115

Activation Functions (cnt’d)

Pooling layers:

Max pooling: f(x1, . . . , xn) = max(x1, . . . , xn)
Average pooling: f(x1, . . . , xn) = 1

n

∑n
i=1 xi

Sigmoid function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x)

Guy Katz (HUJI) Verification of ML FoPSS 2018 22 / 115

Activation Functions (cnt’d)

Pooling layers:

Max pooling: f(x1, . . . , xn) = max(x1, . . . , xn)
Average pooling: f(x1, . . . , xn) = 1

n

∑n
i=1 xi

Sigmoid function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x)

Guy Katz (HUJI) Verification of ML FoPSS 2018 22 / 115

Table of Contents

1 Introduction

2 Neural Networks

3 The Neural Network Verification Problem

4 State-of-the-Art Verification Techniques

5 Reluplex

6 Summary

Guy Katz (HUJI) Verification of ML FoPSS 2018 23 / 115

Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : x̄→ ȳ, an input property P (x̄) and an
output property Q(ȳ), does there exist an input x̄0 with output
ȳ0 = N(x̄0), such that x̄0 satisfies P and ȳ0 satisfies Q?

P (x̄) characterizes the inputs we are checking

Q(ȳ) characterizes undesired behavior for those inputs

Negative answer (UNSAT) means property holds

Positive answer (SAT) includes a counterexample

Guy Katz (HUJI) Verification of ML FoPSS 2018 24 / 115

Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : x̄→ ȳ, an input property P (x̄) and an
output property Q(ȳ), does there exist an input x̄0 with output
ȳ0 = N(x̄0), such that x̄0 satisfies P and ȳ0 satisfies Q?

P (x̄) characterizes the inputs we are checking

Q(ȳ) characterizes undesired behavior for those inputs

Negative answer (UNSAT) means property holds

Positive answer (SAT) includes a counterexample

Guy Katz (HUJI) Verification of ML FoPSS 2018 24 / 115

Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : x̄→ ȳ, an input property P (x̄) and an
output property Q(ȳ), does there exist an input x̄0 with output
ȳ0 = N(x̄0), such that x̄0 satisfies P and ȳ0 satisfies Q?

P (x̄) characterizes the inputs we are checking

Q(ȳ) characterizes undesired behavior for those inputs

Negative answer (UNSAT) means property holds

Positive answer (SAT) includes a counterexample

Guy Katz (HUJI) Verification of ML FoPSS 2018 24 / 115

Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : x̄→ ȳ, an input property P (x̄) and an
output property Q(ȳ), does there exist an input x̄0 with output
ȳ0 = N(x̄0), such that x̄0 satisfies P and ȳ0 satisfies Q?

P (x̄) characterizes the inputs we are checking

Q(ȳ) characterizes undesired behavior for those inputs

Negative answer (UNSAT) means property holds

Positive answer (SAT) includes a counterexample

Guy Katz (HUJI) Verification of ML FoPSS 2018 24 / 115

Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : x̄→ ȳ, an input property P (x̄) and an
output property Q(ȳ), does there exist an input x̄0 with output
ȳ0 = N(x̄0), such that x̄0 satisfies P and ȳ0 satisfies Q?

P (x̄) characterizes the inputs we are checking

Q(ȳ) characterizes undesired behavior for those inputs

Negative answer (UNSAT) means property holds

Positive answer (SAT) includes a counterexample

Guy Katz (HUJI) Verification of ML FoPSS 2018 24 / 115

Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : x̄→ ȳ, an input property P (x̄) and an
output property Q(ȳ), does there exist an input x̄0 with output
ȳ0 = N(x̄0), such that x̄0 satisfies P and ȳ0 satisfies Q?

P (x̄) characterizes the inputs we are checking

Q(ȳ) characterizes undesired behavior for those inputs

Negative answer (UNSAT) means property holds

Positive answer (SAT) includes a counterexample

Guy Katz (HUJI) Verification of ML FoPSS 2018 24 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: ACAS Xu

Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

P (x̄):

x̄[0] ≥ 40000

Q(ȳ):

(ȳ[0] ≤ ȳ[1]) ∨ (ȳ[0] ≤ ȳ[2]) ∨ (ȳ[0] ≤ ȳ[3]) ∨ (ȳ[0] ≤ ȳ[4])

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 25 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ

Equivalent to:
∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):

∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Example: Adversarial Robustness

Want to ensure: for a given input x̄0 and a given amount of
noise δ, classification remains the same

P (x̄):

‖x̄− x̄0‖L∞ ≤ δ
Equivalent to:

∧
i(−δ ≤ x̄[i]− x̄0[i] ≤ δ)

Q(ȳ):∨
i(ȳ[i0] ≤ ȳ[i]), where ȳ[i0] is the desired label

UNSAT means the system behaves as expected

Guy Katz (HUJI) Verification of ML FoPSS 2018 26 / 115

Verification Complexity

Theorem (Neural Network Verification Complexity)

For a neural network with ReLU activation functions, and for
properties P () and Q() that are conjunctions of linear constraints,
the verification problem is NP-complete in the number of ReLU nodes

Membership in NP: can check in polynomial time that a given x
satisfies P (x) and Q(N(x))

NP-Hardness: by reduction from 3-SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 27 / 115

Verification Complexity

Theorem (Neural Network Verification Complexity)

For a neural network with ReLU activation functions, and for
properties P () and Q() that are conjunctions of linear constraints,
the verification problem is NP-complete in the number of ReLU nodes

Membership in NP: can check in polynomial time that a given x
satisfies P (x) and Q(N(x))

NP-Hardness: by reduction from 3-SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 27 / 115

Verification Complexity

Theorem (Neural Network Verification Complexity)

For a neural network with ReLU activation functions, and for
properties P () and Q() that are conjunctions of linear constraints,
the verification problem is NP-complete in the number of ReLU nodes

Membership in NP: can check in polynomial time that a given x
satisfies P (x) and Q(N(x))

NP-Hardness: by reduction from 3-SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 27 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck
Each clause Ci is q1i ∨ q2i ∨ q3i

q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck
Each clause Ci is q1i ∨ q2i ∨ q3i

q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck

Each clause Ci is q1i ∨ q2i ∨ q3i
q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck
Each clause Ci is q1i ∨ q2i ∨ q3i

q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck
Each clause Ci is q1i ∨ q2i ∨ q3i

q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck
Each clause Ci is q1i ∨ q2i ∨ q3i

q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Verification Complexity (cnt’d)

Boolean variables: x1, . . . , xn

Input to 3-SAT: C1 ∧ C2 ∧ . . . ∧ Ck
Each clause Ci is q1i ∨ q2i ∨ q3i

q’s are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is
satisfiable iff the formula is satisfiable

Guy Katz (HUJI) Verification of ML FoPSS 2018 28 / 115

Reduction: Handling Negations

xj qji

1

−1

1

qji gets 1− xj, i.e. qji = ¬xj

Guy Katz (HUJI) Verification of ML FoPSS 2018 29 / 115

Reduction: Handling Negations

xj qji

1

−1

1

qji gets 1− xj, i.e. qji = ¬xj

Guy Katz (HUJI) Verification of ML FoPSS 2018 29 / 115

Reduction: Handling Negations

xj qji

1

−1

1

qji gets 1− xj, i.e. qji = ¬xj

Guy Katz (HUJI) Verification of ML FoPSS 2018 29 / 115

Reduction: Handling Disjunctions

q1i

q2i

q3i

ti

1

−1

−1

−1
1

yi
−1

1

At least one input is 1: ti is 0, yi is 1

All inputs are 0: ti is 1, yi is 0

In other words: yi = q1i ∨ q2i ∨ q3i

Guy Katz (HUJI) Verification of ML FoPSS 2018 30 / 115

Reduction: Handling Disjunctions

q1i

q2i

q3i

ti

1

−1

−1

−1
1

yi
−1

1

At least one input is 1: ti is 0, yi is 1

All inputs are 0: ti is 1, yi is 0

In other words: yi = q1i ∨ q2i ∨ q3i

Guy Katz (HUJI) Verification of ML FoPSS 2018 30 / 115

Reduction: Handling Disjunctions

q1i

q2i

q3i

ti

1

−1

−1

−1
1

yi
−1

1

At least one input is 1: ti is 0, yi is 1

All inputs are 0: ti is 1, yi is 0

In other words: yi = q1i ∨ q2i ∨ q3i

Guy Katz (HUJI) Verification of ML FoPSS 2018 30 / 115

Reduction: Handling Disjunctions

q1i

q2i

q3i

ti

1

−1

−1

−1
1

yi
−1

1

At least one input is 1: ti is 0, yi is 1

All inputs are 0: ti is 1, yi is 0

In other words: yi = q1i ∨ q2i ∨ q3i

Guy Katz (HUJI) Verification of ML FoPSS 2018 30 / 115

Reduction: Handling Disjunctions

q1i

q2i

q3i

ti

1

−1

−1

−1
1

yi
−1

1

At least one input is 1: ti is 0, yi is 1

All inputs are 0: ti is 1, yi is 0

In other words: yi = q1i ∨ q2i ∨ q3i

Guy Katz (HUJI) Verification of ML FoPSS 2018 30 / 115

Reduction: Handling Conjunctions

y1

yn

...
y

1

1

y is the final output of the network

We define the output property, Q(y), to be y = n

This is satisfied only if all conjuncts are 1

Guy Katz (HUJI) Verification of ML FoPSS 2018 31 / 115

Reduction: Handling Conjunctions

y1

yn

...
y

1

1

y is the final output of the network

We define the output property, Q(y), to be y = n

This is satisfied only if all conjuncts are 1

Guy Katz (HUJI) Verification of ML FoPSS 2018 31 / 115

Reduction: Handling Conjunctions

y1

yn

...
y

1

1

y is the final output of the network

We define the output property, Q(y), to be y = n

This is satisfied only if all conjuncts are 1

Guy Katz (HUJI) Verification of ML FoPSS 2018 31 / 115

Reduction: Handling Conjunctions

y1

yn

...
y

1

1

y is the final output of the network

We define the output property, Q(y), to be y = n

This is satisfied only if all conjuncts are 1

Guy Katz (HUJI) Verification of ML FoPSS 2018 31 / 115

Reduction: Handling Conjunctions

y1

yn

...
y

1

1

y is the final output of the network

We define the output property, Q(y), to be y = n

This is satisfied only if all conjuncts are 1

Guy Katz (HUJI) Verification of ML FoPSS 2018 31 / 115

Reduction: Putting it all Together

x1

x2

...

xn

1

...

t1 y1
−1

1

1

tk yn
−1

1

1

y

1

1

Input property P (x): ∀i. xi ∈ {0, 1}

Output property Q(y): y = n

Verification property SAT iff original formula is SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 32 / 115

Reduction: Putting it all Together

x1

x2

...

xn

1

...

t1 y1
−1

1

1

tk yn
−1

1

1

y

1

1

Input property P (x): ∀i. xi ∈ {0, 1}

Output property Q(y): y = n

Verification property SAT iff original formula is SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 32 / 115

Reduction: Putting it all Together

x1

x2

...

xn

1

...

t1 y1
−1

1

1

tk yn
−1

1

1

y

1

1

Input property P (x): ∀i. xi ∈ {0, 1}

Output property Q(y): y = n

Verification property SAT iff original formula is SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 32 / 115

Reduction: Putting it all Together

x1

x2

...

xn

1

...

t1 y1
−1

1

1

tk yn
−1

1

1

y

1

1

Input property P (x): ∀i. xi ∈ {0, 1}

Output property Q(y): y = n

Verification property SAT iff original formula is SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 32 / 115

Reduction: Putting it all Together

x1

x2

...

xn

1

...

t1 y1
−1

1

1

tk yn
−1

1

1

y

1

1

Input property P (x): ∀i. xi ∈ {0, 1}

Output property Q(y): y = n

Verification property SAT iff original formula is SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 32 / 115

Extending the Definition for P() and Q()

Corollary

The verification problem remains NP-complete if we allow P () and
Q() to have arbitrary Boolean structure

Proof: we add (polynomially many) nodes to handle disjunctions
and negations

So, it is enough to solve just for conjunctions

Guy Katz (HUJI) Verification of ML FoPSS 2018 33 / 115

Extending the Definition for P() and Q()

Corollary

The verification problem remains NP-complete if we allow P () and
Q() to have arbitrary Boolean structure

Proof: we add (polynomially many) nodes to handle disjunctions
and negations

So, it is enough to solve just for conjunctions

Guy Katz (HUJI) Verification of ML FoPSS 2018 33 / 115

Extending the Definition for P() and Q()

Corollary

The verification problem remains NP-complete if we allow P () and
Q() to have arbitrary Boolean structure

Proof: we add (polynomially many) nodes to handle disjunctions
and negations

So, it is enough to solve just for conjunctions

Guy Katz (HUJI) Verification of ML FoPSS 2018 33 / 115

Extending the Definition for P() and Q()

Corollary

The verification problem remains NP-complete if we allow P () and
Q() to have arbitrary Boolean structure

Proof: we add (polynomially many) nodes to handle disjunctions
and negations

So, it is enough to solve just for conjunctions

Guy Katz (HUJI) Verification of ML FoPSS 2018 33 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)

max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Another Extension: Max-Pooling

ReLU is a piece-wise linear function

Max-Pooling is also piece-wise linear

Can express one in terms of the other:

ReLU(x) = max(x, 0)
max(x, y) = ReLU(x− y) + y

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?

Guy Katz (HUJI) Verification of ML FoPSS 2018 34 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:

1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques

2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties
Real networks can be quite large

So what can we do?

Next, we will:
1 Survey state-of-the-art verification techniques
2 Discuss one such technique (Reluplex) in more detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 35 / 115

Table of Contents

1 Introduction

2 Neural Networks

3 The Neural Network Verification Problem

4 State-of-the-Art Verification Techniques

5 Reluplex

6 Summary

Guy Katz (HUJI) Verification of ML FoPSS 2018 36 / 115

Disclaimer: The literature on neural network verification is growing
rapidly. The work mentioned here is just a sample. Apologies to all
authors whose work is not cited.

Guy Katz (HUJI) Verification of ML FoPSS 2018 37 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:

Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability

always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability

can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:
Sound and complete:

limited scalability
always succeed

Sound and incomplete:

better scalability
can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here

Guy Katz (HUJI) Verification of ML FoPSS 2018 38 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands

Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands
Incomplete techniques: thousands to tens of thousands

Guy Katz (HUJI) Verification of ML FoPSS 2018 39 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions

Main idea: over-approximate Sigmoids using interval arithmetic

... and then apply the interval arithmetic solver HySAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 40 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions

Main idea: over-approximate Sigmoids using interval arithmetic

... and then apply the interval arithmetic solver HySAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 40 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions

Main idea: over-approximate Sigmoids using interval arithmetic

... and then apply the interval arithmetic solver HySAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 40 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions

Main idea: over-approximate Sigmoids using interval arithmetic

... and then apply the interval arithmetic solver HySAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 40 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions

Main idea: over-approximate Sigmoids using interval arithmetic

... and then apply the interval arithmetic solver HySAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 40 / 115

Over-Approximations

A common theme in verification

Core idea: replace a system S with a simpler S̄

All behaviors of S appear in S̄

But additional, spurious behaviors also exist in S̄
Because S̄ is simpler, it is easier to verify

Guy Katz (HUJI) Verification of ML FoPSS 2018 41 / 115

Over-Approximations

A common theme in verification

Core idea: replace a system S with a simpler S̄

All behaviors of S appear in S̄

But additional, spurious behaviors also exist in S̄
Because S̄ is simpler, it is easier to verify

Guy Katz (HUJI) Verification of ML FoPSS 2018 41 / 115

Over-Approximations

A common theme in verification

Core idea: replace a system S with a simpler S̄

All behaviors of S appear in S̄

But additional, spurious behaviors also exist in S̄
Because S̄ is simpler, it is easier to verify

Guy Katz (HUJI) Verification of ML FoPSS 2018 41 / 115

Over-Approximations

A common theme in verification

Core idea: replace a system S with a simpler S̄

All behaviors of S appear in S̄

But additional, spurious behaviors also exist in S̄
Because S̄ is simpler, it is easier to verify

Guy Katz (HUJI) Verification of ML FoPSS 2018 41 / 115

Over-Approximations

A common theme in verification

Core idea: replace a system S with a simpler S̄

All behaviors of S appear in S̄

But additional, spurious behaviors also exist in S̄

Because S̄ is simpler, it is easier to verify

Guy Katz (HUJI) Verification of ML FoPSS 2018 41 / 115

Over-Approximations

A common theme in verification

Core idea: replace a system S with a simpler S̄

All behaviors of S appear in S̄

But additional, spurious behaviors also exist in S̄
Because S̄ is simpler, it is easier to verify

Guy Katz (HUJI) Verification of ML FoPSS 2018 41 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S

S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect

Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect

Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

Over-Approximations (cnt’d)

S S S̄

If S̄ is correct, so is S

Because all behaviors of S exist in S̄

If S̄ is incorrect:

Either S is also incorrect
Or the detected bad behavior is spurious

If needed, S̄ is refined to remove the spurious behavior, and the
process is repeated

Guy Katz (HUJI) Verification of ML FoPSS 2018 42 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Abstraction used by Pulina and Tacchella:

For x ∈ [xa, xb] we just know that f(x) is in some range [ya, yb]

When a spurious example is found, the x segments are made
smaller, and bounds are made tighter

First step, but could only tackle very small networks (10 neurons)

Guy Katz (HUJI) Verification of ML FoPSS 2018 43 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Abstraction used by Pulina and Tacchella:

For x ∈ [xa, xb] we just know that f(x) is in some range [ya, yb]

When a spurious example is found, the x segments are made
smaller, and bounds are made tighter

First step, but could only tackle very small networks (10 neurons)

Guy Katz (HUJI) Verification of ML FoPSS 2018 43 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Abstraction used by Pulina and Tacchella:

For x ∈ [xa, xb] we just know that f(x) is in some range [ya, yb]

When a spurious example is found, the x segments are made
smaller, and bounds are made tighter

First step, but could only tackle very small networks (10 neurons)

Guy Katz (HUJI) Verification of ML FoPSS 2018 43 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Abstraction used by Pulina and Tacchella:

For x ∈ [xa, xb] we just know that f(x) is in some range [ya, yb]

When a spurious example is found, the x segments are made
smaller, and bounds are made tighter

First step, but could only tackle very small networks (10 neurons)

Guy Katz (HUJI) Verification of ML FoPSS 2018 43 / 115

NeVeR (Pulina and Tacchella, 2010) [PT10]

Abstraction used by Pulina and Tacchella:

For x ∈ [xa, xb] we just know that f(x) is in some range [ya, yb]

When a spurious example is found, the x segments are made
smaller, and bounds are made tighter

First step, but could only tackle very small networks (10 neurons)

Guy Katz (HUJI) Verification of ML FoPSS 2018 43 / 115

Bastani et al, 2016 [BIL+16]

A technique for evaluating a network’s adversarial robustness

A reduction from a verification-like problem to linear
programming

Did not directly study verification

But core idea very useful for verification

Guy Katz (HUJI) Verification of ML FoPSS 2018 44 / 115

Bastani et al, 2016 [BIL+16]

A technique for evaluating a network’s adversarial robustness

A reduction from a verification-like problem to linear
programming

Did not directly study verification

But core idea very useful for verification

Guy Katz (HUJI) Verification of ML FoPSS 2018 44 / 115

Bastani et al, 2016 [BIL+16]

A technique for evaluating a network’s adversarial robustness

A reduction from a verification-like problem to linear
programming

Did not directly study verification

But core idea very useful for verification

Guy Katz (HUJI) Verification of ML FoPSS 2018 44 / 115

Bastani et al, 2016 [BIL+16]

A technique for evaluating a network’s adversarial robustness

A reduction from a verification-like problem to linear
programming

Did not directly study verification

But core idea very useful for verification

Guy Katz (HUJI) Verification of ML FoPSS 2018 44 / 115

Bastani et al, 2016 [BIL+16]

A technique for evaluating a network’s adversarial robustness

A reduction from a verification-like problem to linear
programming

Did not directly study verification

But core idea very useful for verification

Guy Katz (HUJI) Verification of ML FoPSS 2018 44 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds

Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)

Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Linear Programming (LP)

A linear program:

minimize c̄ · x̄
subject to A · x̄ = b̄
and l̄ ≤ x̄ ≤ ū

Intuitively:

Set of variables x̄, each with lower (l̄) and upper (ū) bounds
Set of linear equations that need to hold (A · x̄ = b̄)
Some objective function to optimize c̄ · x̄

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist

Guy Katz (HUJI) Verification of ML FoPSS 2018 45 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)
Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)
Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)

Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)
Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)
Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)
Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Replacing ReLUs with Linear Constraints

Let y = ReLU(x). Each ReLU has two phases:

Active phase: (x ≥ 0) ∧ (y = x)
Inactive phase: (x ≤ 0) ∧ (y = 0)

Each phase is a linear constraint

True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded
and replaced with a linear equation

Guy Katz (HUJI) Verification of ML FoPSS 2018 46 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations

Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0

For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)

If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct

But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Bastani et al, 2016 [BIL+16] (cnt’d)

To look for adversarial inputs around a point x̄0:

Encode the network’s weighted sums as linear equations
Evaluate the network for x̄0
For every y = ReLU(x):

If it is active for x̄0, replace it with (x ≥ 0) ∧ (y = x)
If it is inactive, replace it with (x ≤ 0) ∧ (y = 0)

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 47 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive

Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP

If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess

If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:

For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT

Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability

Guy Katz (HUJI) Verification of ML FoPSS 2018 48 / 115

Reducing Verification to Linear Programming

(cnt’d)

Case splitting creates a search tree

Problem is SAT iff at least one leaf is SAT

y1 = ReLU(x1), y2 = ReLU(x2)

0

1

2 2

1

2 2

y1 = 0, x1 ≤ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

y1 = x1, x1 ≥ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

UNSAT SAT UNSAT UNSAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 49 / 115

Reducing Verification to Linear Programming

(cnt’d)

Case splitting creates a search tree

Problem is SAT iff at least one leaf is SAT

y1 = ReLU(x1), y2 = ReLU(x2)

0

1

2 2

1

2 2

y1 = 0, x1 ≤ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

y1 = x1, x1 ≥ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

UNSAT SAT UNSAT UNSAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 49 / 115

Reducing Verification to Linear Programming

(cnt’d)

Case splitting creates a search tree

Problem is SAT iff at least one leaf is SAT

y1 = ReLU(x1), y2 = ReLU(x2)

0

1

2 2

1

2 2

y1 = 0, x1 ≤ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

y1 = x1, x1 ≥ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

UNSAT SAT UNSAT UNSAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 49 / 115

Reducing Verification to Linear Programming

(cnt’d)

Case splitting creates a search tree

Problem is SAT iff at least one leaf is SAT

y1 = ReLU(x1), y2 = ReLU(x2)

0

1

2 2

1

2 2

y1 = 0, x1 ≤ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

y1 = x1, x1 ≥ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

UNSAT SAT UNSAT UNSAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 49 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)

Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]

Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)

Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]

Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

Reducing Verification to Linear Programming

(cnt’d)

Sound and complete case splitting approach proposed
in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the
search space

Much like Boolean satisfiability

Several sound and complete variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)

Guy Katz (HUJI) Verification of ML FoPSS 2018 50 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations

These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc

Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space

Discretization via manipulations
These can represent camera scratches, rotations, etc
Sound but incomplete

Then do an exhaustive search, layer-by-layer

Tool: the DLV solver, evaluated on image recognition networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 51 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra

Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds

Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

AI2 (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra
Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds ⇒ original property holds
Converse not necessarily true

Guy Katz (HUJI) Verification of ML FoPSS 2018 52 / 115

Networks as Continuous Functions

The network is a continuous function from input to output

Verification: analyzing this function’s properties

Can reduce properties to single output
Analyze a real-valued function

Find lower and upper bounds on the output

Guy Katz (HUJI) Verification of ML FoPSS 2018 53 / 115

Networks as Continuous Functions

The network is a continuous function from input to output

Verification: analyzing this function’s properties

Can reduce properties to single output
Analyze a real-valued function

Find lower and upper bounds on the output

Guy Katz (HUJI) Verification of ML FoPSS 2018 53 / 115

Networks as Continuous Functions

The network is a continuous function from input to output

Verification: analyzing this function’s properties

Can reduce properties to single output
Analyze a real-valued function

Find lower and upper bounds on the output

Guy Katz (HUJI) Verification of ML FoPSS 2018 53 / 115

Networks as Continuous Functions

The network is a continuous function from input to output

Verification: analyzing this function’s properties

Can reduce properties to single output

Analyze a real-valued function

Find lower and upper bounds on the output

Guy Katz (HUJI) Verification of ML FoPSS 2018 53 / 115

Networks as Continuous Functions

The network is a continuous function from input to output

Verification: analyzing this function’s properties

Can reduce properties to single output
Analyze a real-valued function

Find lower and upper bounds on the output

Guy Katz (HUJI) Verification of ML FoPSS 2018 53 / 115

Networks as Continuous Functions

The network is a continuous function from input to output

Verification: analyzing this function’s properties

Can reduce properties to single output
Analyze a real-valued function

Find lower and upper bounds on the output

Guy Katz (HUJI) Verification of ML FoPSS 2018 53 / 115

DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity: |f(x1)− f(x2)| ≤ K · |x1 − x2|
K is the Lipschitz constant
The best K is the smallest one

Partition input, bound output on each piece, refine if needed

Guy Katz (HUJI) Verification of ML FoPSS 2018 54 / 115

DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity: |f(x1)− f(x2)| ≤ K · |x1 − x2|

K is the Lipschitz constant
The best K is the smallest one

Partition input, bound output on each piece, refine if needed

Guy Katz (HUJI) Verification of ML FoPSS 2018 54 / 115

DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity: |f(x1)− f(x2)| ≤ K · |x1 − x2|
K is the Lipschitz constant

The best K is the smallest one

Partition input, bound output on each piece, refine if needed

Guy Katz (HUJI) Verification of ML FoPSS 2018 54 / 115

DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity: |f(x1)− f(x2)| ≤ K · |x1 − x2|
K is the Lipschitz constant
The best K is the smallest one

Partition input, bound output on each piece, refine if needed

Guy Katz (HUJI) Verification of ML FoPSS 2018 54 / 115

DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity: |f(x1)− f(x2)| ≤ K · |x1 − x2|
K is the Lipschitz constant
The best K is the smallest one

Partition input, bound output on each piece, refine if needed

Guy Katz (HUJI) Verification of ML FoPSS 2018 54 / 115

DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity: |f(x1)− f(x2)| ≤ K · |x1 − x2|
K is the Lipschitz constant
The best K is the smallest one

Partition input, bound output on each piece, refine if needed

Guy Katz (HUJI) Verification of ML FoPSS 2018 54 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error

Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO [RHK18]

Iteratively refine partition until bounds sufficiently accurate

Guaranteed to converge (complete), assuming a small
acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property

Complexity also related to size of input domain

Guy Katz (HUJI) Verification of ML FoPSS 2018 55 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance

Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers

Cheng et al [CNR17a]

Network reachability analysis via over-approximations around
specific inputs

Xiang et al [XTJ18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 56 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Additional Techniques at a Glance (cnt’d)

Supporting the L0 norm

Ruan et al [RWS+18]

Parallelization by partitioning the input space

Katz et al [KBD+17b], Wang et al [WPW+18]

Additional Lipschitz-based approaches

Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at
al [WZC+18]

Training safe networks

Dvijotham et al [DGS+18], Raghunathan et al [RSL18]

Guy Katz (HUJI) Verification of ML FoPSS 2018 57 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete

Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:

1 Focus on one sound and complete technique (Reluplex) in
greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Roadmap

Neural network verification is hard

NP-complete even for simple networks and properties

Reducible to an exponential sequence of easy problems

Sound and complete
Much work on finding efficient heuristics

Can trade completeness for better scalability

Can be combined with abstraction techniques

Next, we will:
1 Focus on one sound and complete technique (Reluplex) in

greater detail

Guy Katz (HUJI) Verification of ML FoPSS 2018 58 / 115

Table of Contents

1 Introduction

2 Neural Networks

3 The Neural Network Verification Problem

4 State-of-the-Art Verification Techniques

5 Reluplex

6 Summary

Guy Katz (HUJI) Verification of ML FoPSS 2018 59 / 115

Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel
Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA
and Intel

A sound and complete verification procedure

Applied to the ACAS Xu case study

Networks an order of magnitude larger than previously possible

Project still ongoing

Guy Katz (HUJI) Verification of ML FoPSS 2018 60 / 115

Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel
Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA
and Intel

A sound and complete verification procedure

Applied to the ACAS Xu case study

Networks an order of magnitude larger than previously possible

Project still ongoing

Guy Katz (HUJI) Verification of ML FoPSS 2018 60 / 115

Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel
Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA
and Intel

A sound and complete verification procedure

Applied to the ACAS Xu case study

Networks an order of magnitude larger than previously possible

Project still ongoing

Guy Katz (HUJI) Verification of ML FoPSS 2018 60 / 115

Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel
Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA
and Intel

A sound and complete verification procedure

Applied to the ACAS Xu case study

Networks an order of magnitude larger than previously possible

Project still ongoing

Guy Katz (HUJI) Verification of ML FoPSS 2018 60 / 115

Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel
Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA
and Intel

A sound and complete verification procedure

Applied to the ACAS Xu case study

Networks an order of magnitude larger than previously possible

Project still ongoing

Guy Katz (HUJI) Verification of ML FoPSS 2018 60 / 115

Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel
Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA
and Intel

A sound and complete verification procedure

Applied to the ACAS Xu case study

Networks an order of magnitude larger than previously possible

Project still ongoing

Guy Katz (HUJI) Verification of ML FoPSS 2018 60 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex

Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting

Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible

May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex
Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting
Defer splitting for as long as possible
May not have to split at all!

But first, an introduction to Simplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 61 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds
Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds
Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds
Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations

Variable bounds
Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds

Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds
Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex

Developed shortly after WW2 by
George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds
Objective function

Very efficient, still in use today

Guy Katz (HUJI) Verification of ML FoPSS 2018 62 / 115

Simplex (cnt’d)

Divided into two phases:
1 Find a feasible solution
2 Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check

Guy Katz (HUJI) Verification of ML FoPSS 2018 63 / 115

Simplex (cnt’d)

Divided into two phases:

1 Find a feasible solution
2 Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check

Guy Katz (HUJI) Verification of ML FoPSS 2018 63 / 115

Simplex (cnt’d)

Divided into two phases:
1 Find a feasible solution

2 Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check

Guy Katz (HUJI) Verification of ML FoPSS 2018 63 / 115

Simplex (cnt’d)

Divided into two phases:
1 Find a feasible solution
2 Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check

Guy Katz (HUJI) Verification of ML FoPSS 2018 63 / 115

Simplex (cnt’d)

Divided into two phases:
1 Find a feasible solution
2 Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check

Guy Katz (HUJI) Verification of ML FoPSS 2018 63 / 115

Simplex: Phase 1

Iterative algorithm

Always maintain a variable assignment

Assignment always satisfies equations

But may violate bounds

In every iteration, attempt to reduce the overall infeasibility

Guy Katz (HUJI) Verification of ML FoPSS 2018 64 / 115

Simplex: Phase 1

Iterative algorithm

Always maintain a variable assignment

Assignment always satisfies equations

But may violate bounds

In every iteration, attempt to reduce the overall infeasibility

Guy Katz (HUJI) Verification of ML FoPSS 2018 64 / 115

Simplex: Phase 1

Iterative algorithm

Always maintain a variable assignment

Assignment always satisfies equations

But may violate bounds

In every iteration, attempt to reduce the overall infeasibility

Guy Katz (HUJI) Verification of ML FoPSS 2018 64 / 115

Simplex: Phase 1

Iterative algorithm

Always maintain a variable assignment

Assignment always satisfies equations

But may violate bounds

In every iteration, attempt to reduce the overall infeasibility

Guy Katz (HUJI) Verification of ML FoPSS 2018 64 / 115

Simplex: Phase 1

Iterative algorithm

Always maintain a variable assignment

Assignment always satisfies equations

But may violate bounds

In every iteration, attempt to reduce the overall infeasibility

Guy Katz (HUJI) Verification of ML FoPSS 2018 64 / 115

Simplex: Phase 1

Iterative algorithm

Always maintain a variable assignment

Assignment always satisfies equations

But may violate bounds

In every iteration, attempt to reduce the overall infeasibility

Guy Katz (HUJI) Verification of ML FoPSS 2018 64 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”

Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform

1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Basics and Non-Basics

Variables partitioned into basic and non-basic variables

Non-basics are “free”
Basics are “bounded”

Non-basic assignment dictates basic assignment

This is how the equations are maintained

In every iteration, we can perform
1 an update: change the assignment of a non-basic variable

and any affected basics

2 a pivot: switch a basic and non-basic variable

Guy Katz (HUJI) Verification of ML FoPSS 2018 65 / 115

Simplex: Example

x1

x2

x3

x4

1

−1

1

1

Hidden
layer

Input
layer

Output
layer

No activation functions

Property being checked: for x1 ∈ [0, 1], always x4 /∈ [0.5, 1]

Negated output property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 66 / 115

Simplex: Example

x1

x2

x3

x4

1

−1

1

1

Hidden
layer

Input
layer

Output
layer

No activation functions

Property being checked: for x1 ∈ [0, 1], always x4 /∈ [0.5, 1]

Negated output property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 66 / 115

Simplex: Example

x1

x2

x3

x4

1

−1

1

1

Hidden
layer

Input
layer

Output
layer

No activation functions

Property being checked: for x1 ∈ [0, 1], always x4 /∈ [0.5, 1]

Negated output property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 66 / 115

Simplex: Example

x1

x2

x3

x4

1

−1

1

1

Hidden
layer

Input
layer

Output
layer

No activation functions

Property being checked: for x1 ∈ [0, 1], always x4 /∈ [0.5, 1]

Negated output property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 66 / 115

Simplex: Example

x1

x2

x3

x4

1

−1

1

1

Hidden
layer

Input
layer

Output
layer

No activation functions

Property being checked: for x1 ∈ [0, 1], always x4 /∈ [0.5, 1]

Negated output property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 66 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = 0

x3 + x1 = 0

x4 − x3 − x2 = 0

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

x5, x6, x7 ∈ [0, 0]

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x1

x2

x3

x4

1

−1

1

1

Equations for weighted sums:

x2 − x1 = x5

x3 + x1 = x6

x4 − x3 − x2 = x7

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

x2, x3 unbounded

x5, x6, x7 ∈ [0, 0]

Technicality: replace constants by auxiliary variables

Guy Katz (HUJI) Verification of ML FoPSS 2018 67 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2

← x2 = x4 − x3 − x7

Pivot: x7, x2

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1

← x5 = x4 − x3 − x7 − x1

x6 = x3 + x1

x7 = x4 − x3 − x2 ← x2 = x4 − x3 − x7

Pivot: x7, x2

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x2 − x1 ← x5 = x4 − x3 − x7 − x1
x6 = x3 + x1

x7 = x4 − x3 − x2 ← x2 = x4 − x3 − x7

Pivot: x7, x2

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 68 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7
Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7

Update:
x7 := x7 − 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7

Update:
x7 := x7 − 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7

Update:
x7 := x7 − 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7
Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7
Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1

← x1 = x4 − x3 − x7 − x5

x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1 ← x1 = x4 − x3 − x7 − x5
x6 = x3 + x1

← x6 = x4 − x7 − x5

x2 = x4 − x3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x5 = x4 − x3 − x7 − x1 ← x1 = x4 − x3 − x7 − x5
x6 = x3 + x1 ← x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 69 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Update:
x5 := x5 − 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Update:
x5 := x5 − 0.5

Lower B. Var Value Upper B.

0 x1 0 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Update:
x5 := x5 − 0.5

Lower B. Var Value Upper B.

0 x1 0.5 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0.5 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Lower B. Var Value Upper B.

0 x1 0.5 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

Simplex: Example (cnt’d)

x1 = x4 − x3 − x7 − x5
x6 = x4 − x7 − x5
x2 = x4 − x3 − x7

Failure

Lower B. Var Value Upper B.

0 x1 0.5 1
x2 0.5
x3 0

0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 70 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT

Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables

T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations

l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds

α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus

A simplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

For notation:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

Guy Katz (HUJI) Verification of ML FoPSS 2018 71 / 115

The Simplex Calculus (cnt’d)

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 72 / 115

The Simplex Calculus (cnt’d)

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 72 / 115

The Simplex Calculus (cnt’d)

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 72 / 115

The Simplex Calculus (cnt’d)

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 72 / 115

The Simplex Calculus (cnt’d)

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 72 / 115

The Simplex Calculus (cnt’d)

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 72 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct

UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination

Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index

Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling

But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

Soundness:
SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy

Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P

Guy Katz (HUJI) Verification of ML FoPSS 2018 73 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum

xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint

Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints

Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

From Simplex to Reluplex

Each ReLU node x represented as two variables:

xw to represent the (input) weighted sum
xa to represent the (output) activation result

xw and xa change independently

May violate ReLU constraint
Similar to bound constraints
Fix incrementally

Use pivots and updates, same as before

Guy Katz (HUJI) Verification of ML FoPSS 2018 74 / 115

Reluplex: Example

x1

x2

x3

x4

1

−1

1

1

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Guy Katz (HUJI) Verification of ML FoPSS 2018 75 / 115

Reluplex: Example

x1

x2

x3

x4

1

−1

1

1

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Guy Katz (HUJI) Verification of ML FoPSS 2018 75 / 115

Reluplex: Example (cnt’d)

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Equations for weighted sums:

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

xw2 , x
w
3 unbounded

xa2, x
a
3 ∈ [0,∞)

x5, x6, x7 ∈ [0, 0]

Guy Katz (HUJI) Verification of ML FoPSS 2018 76 / 115

Reluplex: Example (cnt’d)

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Equations for weighted sums:

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

xw2 , x
w
3 unbounded

xa2, x
a
3 ∈ [0,∞)

x5, x6, x7 ∈ [0, 0]

Guy Katz (HUJI) Verification of ML FoPSS 2018 76 / 115

Reluplex: Example (cnt’d)

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Equations for weighted sums:

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

xw2 , x
w
3 unbounded

xa2, x
a
3 ∈ [0,∞)

x5, x6, x7 ∈ [0, 0]

Guy Katz (HUJI) Verification of ML FoPSS 2018 76 / 115

Reluplex: Example (cnt’d)

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Equations for weighted sums:

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

xw2 , x
w
3 unbounded

xa2, x
a
3 ∈ [0,∞)

x5, x6, x7 ∈ [0, 0]

Guy Katz (HUJI) Verification of ML FoPSS 2018 76 / 115

Reluplex: Example (cnt’d)

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Equations for weighted sums:

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

xw2 , x
w
3 unbounded

xa2, x
a
3 ∈ [0,∞)

x5, x6, x7 ∈ [0, 0]

Guy Katz (HUJI) Verification of ML FoPSS 2018 76 / 115

Reluplex: Example (cnt’d)

x1

xw2

xw3

xa2

xa3

x4

1

−1

1

1

ReLU

ReLU

Equations for weighted sums:

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Bounds:

x1 ∈ [0, 1]

x4 ∈ [0.5, 1]

xw2 , x
w
3 unbounded

xa2, x
a
3 ∈ [0,∞)

x5, x6, x7 ∈ [0, 0]

Guy Katz (HUJI) Verification of ML FoPSS 2018 76 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Update:
x4 := x4 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 77 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Pivot: x7, x
a
2

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 78 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

x7 = x4 − xa3 − xa2

Pivot: x7, x
a
2

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 78 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5
Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5
Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5

Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5

Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0.5 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5

Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5
Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5
Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5

Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5

Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x7, x
a
2

Update:
x7 := x7 − 0.5

Update:
xw2 := xw2 + 0.5

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 79 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 80 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 80 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 80 / 115

Reluplex: Example (cnt’d)

x5 = xw2 − x1
x6 = xw3 + x1

xa2 = x4 − xa3 − x7

Pivot: x5, x1

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 80 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1

Update:
x5 := x5 − 0.5
Pivot: x6, x

w
3

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1
Update:
x5 := x5 − 0.5
Pivot: x6, x

w
3

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1

Update:
x5 := x5 − 0.5

Pivot: x6, x
w
3

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1

Update:
x5 := x5 − 0.5

Pivot: x6, x
w
3

Lower B. Var Value Upper B.

0 x1 0 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0.5 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1

Update:
x5 := x5 − 0.5

Pivot: x6, x
w
3

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1
Update:
x5 := x5 − 0.5
Pivot: x6, x

w
3

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1
Update:
x5 := x5 − 0.5
Pivot: x6, x

w
3

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1
Update:
x5 := x5 − 0.5

Pivot: x6, x
w
3

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
x6 = xw3 + xw2 − x5
xa2 = x4 − xa3 − x7

Pivot: x5, x1
Update:
x5 := x5 − 0.5

Pivot: x6, x
w
3

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 81 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
xw3 = x6 − xw2 + x5

xa2 = x4 − xa3 − x7

Update:
x6 := x6 − 0.5
Success

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 82 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
xw3 = x6 − xw2 + x5

xa2 = x4 − xa3 − x7

Update:
x6 := x6 − 0.5

Success

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 82 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
xw3 = x6 − xw2 + x5

xa2 = x4 − xa3 − x7

Update:
x6 := x6 − 0.5

Success

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 0

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0.5 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 82 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
xw3 = x6 − xw2 + x5

xa2 = x4 − xa3 − x7

Update:
x6 := x6 − 0.5

Success

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 -0.5

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 82 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
xw3 = x6 − xw2 + x5

xa2 = x4 − xa3 − x7

Update:
x6 := x6 − 0.5
Success

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 -0.5

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 82 / 115

Reluplex: Example (cnt’d)

x1 = xw2 − x5
xw3 = x6 − xw2 + x5

xa2 = x4 − xa3 − x7

Update:
x6 := x6 − 0.5

Success

Lower B. Var Value Upper B.

0 x1 0.5 1
xw2 0.5

0 xa2 0.5
xw3 -0.5

0 xa3 0
0.5 x4 0.5 1
0 x5 0 0
0 x6 0 0
0 x7 0 0

Guy Katz (HUJI) Verification of ML FoPSS 2018 82 / 115

Reluplex: Example (cnt’d)

0.5

0.5

− 0.5

0.5

0

0.5

1

−1

1

1

ReLU

ReLU

Property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 83 / 115

Reluplex: Example (cnt’d)

0.5

0.5

− 0.5

0.5

0

0.5

1

−1

1

1

ReLU

ReLU

Property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 83 / 115

Reluplex: Example (cnt’d)

0.5

0.5

− 0.5

0.5

0

0.5

1

−1

1

1

ReLU

ReLU

Property: x1 ∈ [0, 1] and x4 ∈ [0.5, 1]

Guy Katz (HUJI) Verification of ML FoPSS 2018 83 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT

Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables

T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations

l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds

α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals

R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus

A Reluplex configuration:

Distinguished symbols SAT or UNSAT
Or a tuple 〈B, T, l, u, α,R〉, where:

B: set of basic variables
T : a set of equations
l, u: lower and upper bounds
α: an assignment function from variables to reals
R ⊂ X × X is a set of ReLU connections

Guy Katz (HUJI) Verification of ML FoPSS 2018 84 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

The Reluplex Calculus (cnt’d)

Pivot1, Pivot2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Updatew
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj)− α(xi))

Updatea
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) 6= max (0, α(xi))

α := update(α, xj ,max (0, α(xi))− α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j 6= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xw, xa〉 ∈ R. α(xa) = max (0, α(xw))

SAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 85 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct

UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before

Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:

SAT ⇒ assignment is correct
UNSAT ⇒ no assignment exists

Completeness: depends on variable selection strategy and
splitting strategy

Naive approach: split on all variables immediately, apply Bland’s
rule

This is the case-splitting approach from before
Ensures termination

Guy Katz (HUJI) Verification of ML FoPSS 2018 86 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations

Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it

Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex

Better approach: lazy splitting

Start fixing bound violations
Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it
Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work

Guy Katz (HUJI) Verification of ML FoPSS 2018 87 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation

Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening

During execution we encounter many equations

Can use them for bound tightening

Example:

x = y + z x ≥ −2, y ≥ 1, z ≥ 1

Can derive tighter bound: x ≥ 2

If x is part of a ReLU pair, we say the ReLUs phase is fixed

And we replace it by a linear equation
Same as in case splitting, only no back-tracking required

Guy Katz (HUJI) Verification of ML FoPSS 2018 88 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable

For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?

Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

More Efficient Reluplex: Bound Tightening (cnt’d)

In every pivot step we examine an equation

Use that equation for bound tightening

For the basic variable
For other variables, too?
Complexity: linear in the size of the equation

Particularly useful after splitting

Because new bounds have been introduced

Can be combined with backjumping

Guy Katz (HUJI) Verification of ML FoPSS 2018 89 / 115

Non-Chronological Backtracking (Backjumping)

A useful technique in SAT and SMT solving

Backtracking: change last guess

Backjumping: change an earlier guess

Need to keep track of the discovery of new bounds

Guy Katz (HUJI) Verification of ML FoPSS 2018 90 / 115

Non-Chronological Backtracking (Backjumping)

A useful technique in SAT and SMT solving

Backtracking: change last guess

Backjumping: change an earlier guess

Need to keep track of the discovery of new bounds

Guy Katz (HUJI) Verification of ML FoPSS 2018 90 / 115

Non-Chronological Backtracking (Backjumping)

A useful technique in SAT and SMT solving

Backtracking: change last guess

Backjumping: change an earlier guess

Need to keep track of the discovery of new bounds

Guy Katz (HUJI) Verification of ML FoPSS 2018 90 / 115

Non-Chronological Backtracking (Backjumping)

A useful technique in SAT and SMT solving

Backtracking: change last guess

Backjumping: change an earlier guess

Need to keep track of the discovery of new bounds

Guy Katz (HUJI) Verification of ML FoPSS 2018 90 / 115

Non-Chronological Backtracking (Backjumping)

A useful technique in SAT and SMT solving

Backtracking: change last guess

Backjumping: change an earlier guess

Need to keep track of the discovery of new bounds

Guy Katz (HUJI) Verification of ML FoPSS 2018 90 / 115

Non-Chronological Backtracking (Backjumping)

(cnt’d)

y1 = ReLU(x1), y2 = ReLU(x2)

0

1

2 2

1

2

y1 = 0, x1 ≤ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

y1 = x1, x1 ≥ 0

y2 = x2, x2 ≥ 0

UNSAT
UNSAT

UNSAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 91 / 115

Non-Chronological Backtracking (Backjumping)

(cnt’d)

y1 = ReLU(x1), y2 = ReLU(x2)

0

1

2 2

1

2

y1 = 0, x1 ≤ 0

y2 = 0, x2 ≤ 0 y2 = x2, x2 ≥ 0

y1 = x1, x1 ≥ 0

y2 = x2, x2 ≥ 0

UNSAT
UNSAT

UNSAT

Guy Katz (HUJI) Verification of ML FoPSS 2018 91 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness

But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness

But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability

SMT solvers typically use precise arithmetic

This ensures soundness
But is quite slow

LP solvers typically use floating point arithmetic

Rounding errors can harm soundness
But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex

Guy Katz (HUJI) Verification of ML FoPSS 2018 92 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas

Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Precision and Numerical Stability (cnt’d)

Can monitor numerical instability

Plug current assignment into input formulas
Measure the error

If the degradation exceeds a certain threshold, restore the
equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques

Guy Katz (HUJI) Verification of ML FoPSS 2018 93 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied

1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification

2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness

3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

Roadmap

The simplex algorithm, for solving linear programs

Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:

We will talk about use-cases where Reluplex was applied
1 ACAS Xu Verification
2 Adversarial Robustness
3 Reluplex + Clustering

Guy Katz (HUJI) Verification of ML FoPSS 2018 94 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Implemented using neural networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 95 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Implemented using neural networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 95 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Implemented using neural networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 95 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Implemented using neural networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 95 / 115

The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration
(FAA)

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship

vown

Intruder

vint

ρ

ψ

θ

Implemented using neural networks

Guy Katz (HUJI) Verification of ML FoPSS 2018 95 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions
No unnecessary turning advisories
Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions
No unnecessary turning advisories
Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions

No unnecessary turning advisories
Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions
No unnecessary turning advisories

Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions
No unnecessary turning advisories
Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions
No unnecessary turning advisories
Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu

There are properties that the FAA cares about

Consistent alerting regions
No unnecessary turning advisories
Strong alerts do not occur when intruder vertically distant

Properties defined formally

Constraints on inputs and outputs

Guy Katz (HUJI) Verification of ML FoPSS 2018 96 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:

If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000

Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4

Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the
network advises strong right

Distance: 12000 ≤ ρ ≤ 62000
Angle to intruder: 0.2 ≤ θ ≤ 0.4
Etc.

Proved in less than 1.5 hours, using 4 machines

Guy Katz (HUJI) Verification of ML FoPSS 2018 97 / 115

Certifying ACAS Xu (cnt’d)

Example 2:
If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760
Time to loss of vertical separation: τ = 100
Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Example 2:

If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760
Time to loss of vertical separation: τ = 100
Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Example 2:
If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760
Time to loss of vertical separation: τ = 100
Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Example 2:
If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760

Time to loss of vertical separation: τ = 100
Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Example 2:
If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760
Time to loss of vertical separation: τ = 100

Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Example 2:
If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760
Time to loss of vertical separation: τ = 100
Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Example 2:
If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

Distance: 0 ≤ ρ ≤ 60760
Time to loss of vertical separation: τ = 100
Etc.

Found a counter-example in 11 hours

Guy Katz (HUJI) Verification of ML FoPSS 2018 98 / 115

Certifying ACAS Xu (cnt’d)

Networks Result Time Stack Splits

φ1 41 UNSAT 394517 47 1522384
4 TIMEOUT

φ2 1 UNSAT 463 55 88388
35 SAT 82419 44 284515

φ3 42 UNSAT 28156 22 52080
φ4 42 UNSAT 12475 21 23940
φ5 1 UNSAT 19355 46 58914
φ6 1 UNSAT 180288 50 548496
φ7 1 TIMEOUT

φ8 1 SAT 40102 69 116697
φ9 1 UNSAT 99634 48 227002
φ10 1 UNSAT 19944 49 88520

Guy Katz (HUJI) Verification of ML FoPSS 2018 99 / 115

Certifying ACAS Xu (cnt’d)

Networks Result Time Stack Splits

φ1 41 UNSAT 394517 47 1522384
4 TIMEOUT

φ2 1 UNSAT 463 55 88388
35 SAT 82419 44 284515

φ3 42 UNSAT 28156 22 52080
φ4 42 UNSAT 12475 21 23940
φ5 1 UNSAT 19355 46 58914
φ6 1 UNSAT 180288 50 548496
φ7 1 TIMEOUT

φ8 1 SAT 40102 69 116697
φ9 1 UNSAT 99634 48 227002
φ10 1 UNSAT 19944 49 88520

Guy Katz (HUJI) Verification of ML FoPSS 2018 99 / 115

Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Verification can prove that this cannot occur

Allows us to assess attacks defenses

Guy Katz (HUJI) Verification of ML FoPSS 2018 100 / 115

Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Verification can prove that this cannot occur

Allows us to assess attacks defenses

Guy Katz (HUJI) Verification of ML FoPSS 2018 100 / 115

Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Verification can prove that this cannot occur

Allows us to assess attacks defenses

Guy Katz (HUJI) Verification of ML FoPSS 2018 100 / 115

Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Verification can prove that this cannot occur

Allows us to assess attacks defenses

Guy Katz (HUJI) Verification of ML FoPSS 2018 100 / 115

Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Verification can prove that this cannot occur

Allows us to assess attacks defenses

Guy Katz (HUJI) Verification of ML FoPSS 2018 100 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ

|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])

And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness

Verification question: for a given panda x̄0 and a given amount
of noise δ, does classification remain the same?

If ‖x̄− x̄0‖L ≤ δ then
∧
i(ȳ[i0] ≥ ȳ[i]), where ȳ[i0] is the

desired label

Easiest norm to handle: L∞, the infinity norm

‖x̄− x̄0‖L∞ ≤ δ ⇔ ∀i.− δ ≤ x̄[i]− x̄0[i] ≤ δ

Can also handle L1:

‖x̄− x̄0‖L1 ≤ δ ⇔
∑n

i=1|x̄[i]− x̄0[i]| ≤ δ
|x̄[i]− x̄0[i]| = max(x̄[i]− x̄0[i], x̄[i]− x̄0[i])
And we know that max(a, b) = ReLU(a− b) + b

Guy Katz (HUJI) Verification of ML FoPSS 2018 101 / 115

Local Adversarial Robustness (cnt’d)

Can find the optimal δ for which robustness holds

Using binary search

Example: an ACAS Xu network

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01
Result Time Result Time Result Time Result Time Result Time

Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57
Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5
Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7
Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6

Guy Katz (HUJI) Verification of ML FoPSS 2018 102 / 115

Local Adversarial Robustness (cnt’d)

Can find the optimal δ for which robustness holds

Using binary search

Example: an ACAS Xu network

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01
Result Time Result Time Result Time Result Time Result Time

Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57
Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5
Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7
Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6

Guy Katz (HUJI) Verification of ML FoPSS 2018 102 / 115

Local Adversarial Robustness (cnt’d)

Can find the optimal δ for which robustness holds

Using binary search

Example: an ACAS Xu network

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01
Result Time Result Time Result Time Result Time Result Time

Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57
Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5
Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7
Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6

Guy Katz (HUJI) Verification of ML FoPSS 2018 102 / 115

Local Adversarial Robustness (cnt’d)

Can find the optimal δ for which robustness holds

Using binary search

Example: an ACAS Xu network

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01
Result Time Result Time Result Time Result Time Result Time

Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57
Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5
Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7
Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6

Guy Katz (HUJI) Verification of ML FoPSS 2018 102 / 115

Local Adversarial Robustness (cnt’d)

Can find the optimal δ for which robustness holds

Using binary search

Example: an ACAS Xu network

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01
Result Time Result Time Result Time Result Time Result Time

Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57
Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5
Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7
Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6

Guy Katz (HUJI) Verification of ML FoPSS 2018 102 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄

Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ

Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point x̄
Use verification to find optimal δ
Use attack to find δ′

See how close δ′ is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST
network

On average, δ about 6% smaller than δ′

Guy Katz (HUJI) Verification of ML FoPSS 2018 103 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N

Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄

Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄

Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Assessing Attacks and Defenses [CKBD18] (cnt’d)

Assessing defenses:

Start with network N
Train hardened network N̄
Pick point x̄
Compare optimal δ before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 423% larger

However, smaller in some cases

Guy Katz (HUJI) Verification of ML FoPSS 2018 104 / 115

Global Robustness?

Previous definition: for a particular input x̄0
What’s an acceptable δ?
How do you pick x̄0?
Can you evaluate the overall robustness?

Guy Katz (HUJI) Verification of ML FoPSS 2018 105 / 115

Global Robustness?

Previous definition: for a particular input x̄0

What’s an acceptable δ?
How do you pick x̄0?
Can you evaluate the overall robustness?

Guy Katz (HUJI) Verification of ML FoPSS 2018 105 / 115

Global Robustness?

Previous definition: for a particular input x̄0
What’s an acceptable δ?

How do you pick x̄0?
Can you evaluate the overall robustness?

Guy Katz (HUJI) Verification of ML FoPSS 2018 105 / 115

Global Robustness?

Previous definition: for a particular input x̄0
What’s an acceptable δ?
How do you pick x̄0?

Can you evaluate the overall robustness?

Guy Katz (HUJI) Verification of ML FoPSS 2018 105 / 115

Global Robustness?

Previous definition: for a particular input x̄0
What’s an acceptable δ?
How do you pick x̄0?
Can you evaluate the overall robustness?

Guy Katz (HUJI) Verification of ML FoPSS 2018 105 / 115

Global Robustness?

Previous definition: for a particular input x̄0
What’s an acceptable δ?
How do you pick x̄0?
Can you evaluate the overall robustness?

Guy Katz (HUJI) Verification of ML FoPSS 2018 105 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size

Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

Global Robustness Queries

Region boundaries: look at confidence instead of label

Let p1, p2 be confidence levels for certain label:

∀x̄1, x̄2. ‖x̄1 − x̄2‖ ≤ δ ⇒ |p1 − p2| ≤ ε

Small changes to input do not change output by much

Significantly slower to compute

Double the network size
Large input regions

And also still need to choose δ, ε

A compromise: a clustering based approach

Guy Katz (HUJI) Verification of ML FoPSS 2018 106 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)
Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)
Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)

Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)
Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)
Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)
Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should
be consistent

Clustering applied to known points (e.g., training set)
Identify centroid x̄0 and radius δ for each cluster

Higher degree of automation

Discovered an adversarial example in ACAS Xu

Guy Katz (HUJI) Verification of ML FoPSS 2018 107 / 115

Table of Contents

1 Introduction

2 Neural Networks

3 The Neural Network Verification Problem

4 State-of-the-Art Verification Techniques

5 Reluplex

6 Summary

Guy Katz (HUJI) Verification of ML FoPSS 2018 108 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?
What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?
What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?
What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?
What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?
What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?

What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary

Software generated by machine learning is becoming widespread

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

How do we verify?
What do we verify?

Guy Katz (HUJI) Verification of ML FoPSS 2018 109 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation
Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation
Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem

Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation
Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach

Can be improved with:

Tighter bound derivation
Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation
Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation

Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation
Splitting heuristics

Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem
Usually based on the case splitting approach
Can be improved with:

Tighter bound derivation
Splitting heuristics
Local optimization steps

Guy Katz (HUJI) Verification of ML FoPSS 2018 110 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques
Correct-by-construction networks

Abstraction techniques

Approximating the network
Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques
Correct-by-construction networks

Abstraction techniques

Approximating the network
Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques

Correct-by-construction networks

Abstraction techniques

Approximating the network
Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques
Correct-by-construction networks

Abstraction techniques

Approximating the network
Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques
Correct-by-construction networks

Abstraction techniques

Approximating the network
Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques
Correct-by-construction networks

Abstraction techniques

Approximating the network

Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques
Correct-by-construction networks

Abstraction techniques

Approximating the network
Approximating the input property

Guy Katz (HUJI) Verification of ML FoPSS 2018 111 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu

Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness

Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks

Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Properties to Verify

Domain-specific properties

Example: ACAS Xu
Human input required — a known issue in verification

General properties

Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?

Guy Katz (HUJI) Verification of ML FoPSS 2018 112 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent

Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?

Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue

SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?

Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic

Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent
Can we solve both kinds of constraints together?
Better SMT techniques?

Proof certificates

Numerical stability is an issue
SAT answers can be checked, but what about UNSAT?
Replay the solution, using precise arithmetic
Generate an externally-checkable proof certificate

Guy Katz (HUJI) Verification of ML FoPSS 2018 113 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu

Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?

Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness

Handle non piece-wise linear activation functions?

Case studies

More extensive verification of ACAS Xu
Systems in which the network is just a component?
Collaboration with various industrial partners

Guy Katz (HUJI) Verification of ML FoPSS 2018 114 / 115

Thank You!

Questions

Guy Katz (HUJI) Verification of ML FoPSS 2018 115 / 115

O Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.

Measuring Neural Net Robustness with Constraints.
In Proc. 30th Conf. on Neural Information Processing Systems (NIPS), 2016.

R. Bunel, I. Turksaslan, P. Torr, P. Kohli, and P. Kumar.

Piecewise Linear Neural Network Verification: A Comparative Study, 2017.
Technical Report. http://arxiv.org/abs/1711.00455.

N. Carlini, G. Katz, C. Barrett, and D. Dill.

Provably Minimally-Distorted Adversarial Examples, 2018.
Technical Report. http://arxiv.org/abs/1709.10207.

C. Cheng, G. Nührenberg, and H. Ruess.

Maximum Resilience of Artificial Neural Networks.
In Proc. 15th Int. Symp. on Automated Technology for Verification and Analysis (ATVA), pages 251–268, 2017.

C. Cheng, G. Nührenberg, and H. Ruess.

Verification of Binarized Neural Networks, 2017.
Technical Report. http://arxiv.org/abs/1710.03107.

N. Carlini and D. Wagner.

Towards Evaluating the Robustness of Neural Networks.
IEEE Symposium on Security and Privacy, 2017.

K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic, B. O’Donoghue, J. Uesato, and P. Kohli.

Training Verified Learners with Learned Verifiers, 2018.
Technical Report. http://arxiv.org/abs/1805.10265.

S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari.

Output Range Analysis for Deep Feedforward Neural.
In Proc. 10th NASA Formal Methods Symposium (NFM), pages 121–138, 2018.

R. Ehlers.

Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
In Proc. 15th Int. Symp. on Automated Technology for Verification and Analysis (ATVA), pages 269–286, 2017.

Guy Katz (HUJI) Verification of ML FoPSS 2018 115 / 115

http://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1709.10207
http://arxiv.org/abs/1710.03107
http://arxiv.org/abs/1805.10265

D. Gopinath, G. Katz, C. Păsăreanu, and C. Barrett.

DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks.
In Proc. 16th Int. Symp. on Automated Technology for Verification and Analysis (ATVA), 2018.
To appear.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev.

AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation.
In Proc. 39th IEEE Symposium on Security and Privacy (S&P), 2018.

M. Hein and M. Andriushchenko.

Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation.
In Proc. 31st Conf. on Neural Information Processing Systems (NIPS), 2017.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu.

Safety Verification of Deep Neural Networks.
In Proc. 29th Int. Conf. on Computer Aided Verification (CAV), pages 3–29, 2017.

J. Hull, D. Ward, and R. Zakrzewski.

Verification and Validation of Neural Networks for Safety-Critical Applications.
In Proc. 21st American Control Conf. (ACC), 2002.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer.

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
In Proc. 29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117, 2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M Kochenderfer.

Towards Proving the Adversarial Robustness of Deep Neural Networks.
In Proc. 1st Workshop on Formal Verification of Autonomous Vehicles (FVAV), pages 19–26, 2017.

A. Lomuscio and L. Maganti.

An Approach to Reachability Analysis for Feed-Forward ReLU Neural Networks, 2017.
Technical Report. http://arxiv.org/abs/1706.07351.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.

Towards Deep Learning Models Resistant to Adversarial Attacks.

Guy Katz (HUJI) Verification of ML FoPSS 2018 115 / 115

http://arxiv.org/abs/1706.07351

Proc. 6th Int. Conf. on Learning Representations (ICLR), 2018.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh.

Verifying Properties of Binarized Deep Neural Networks.
In Proc. 32nd AAAI Conf. on Artificial Intelligence (AAAI), pages 6615–6624, 2018.

L. Pulina and A. Tacchella.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks.
In Proc. 22nd Int. Conf. on Computer Aided Verification (CAV), pages 243–257, 2010.

W. Ruan, X. Huang, and M. Kwiatkowska.

Reachability Analysis of Deep Neural Networks with Provable Guarantees.
In Proc. 27th Int. Joint Conf. on Artificial Intelligence (IJCAI), 2018.

A. Raghunathan, J. Steinhardt, and P. Liang.

Certified Defenses against Adversarial Examples.
In Proc. 6th Int. Conf. on Learning Representations (ICLR), 2018.

W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska.

Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for L0 Norm, 2018.
Technical Report. http://arxiv.org/abs/1804.05805.

V. Tjeng and R. Tedrake.

Evaluating Robustness of Neural Networks with Mixed Integer Programming, 2017.
Technical Report. http://arxiv.org/abs/1711.07356.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana.

Formal Security Analysis of Neural Networks using Symbolic Intervals, 2018.
Technical Report. http://arxiv.org/abs/1804.10829.

T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, D. Boning, I. Dhillon, and L. Daniel.

Towards Fast Computation of Certified Robustness for ReLU Networks.
In Proc. 35th Int. Conf. on Machine Learning (ICML), 2018.

W. Xiang, H. Tran, and T. Johnson.

Guy Katz (HUJI) Verification of ML FoPSS 2018 115 / 115

http://arxiv.org/abs/1804.05805
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1804.10829

Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018.

Guy Katz (HUJI) Verification of ML FoPSS 2018 115 / 115

	Introduction
	Neural Networks
	The Neural Network Verification Problem
	State-of-the-Art Verification Techniques
	Reluplex
	Summary

