
84 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

review articles

Writing programs that are both correct and efficient is
challenging. A potential solution lies in program
synthesis aimed at automatic derivation of an
executable implementation (the “how”) from a high-
level logical specification of the desired input-to-
output behavior (the “what”). A mature synthesis
technology can have a transformative impact on
programmer productivity by liberating the programmer
from low-level coding details. For instance, for the
classical computational problem of sorting a list of
numbers, the programmer has to simply specify that
given an input array A of n numbers, compute an
output array B consisting of exactly the same numbers
as A such that B[i] ≤ B[i + 1] for 1 ≤ i < n, leaving it to the
synthesizer to figure out the sequence of steps needed
for the desired computation.

Traditionally, program synthesis is formalized as
a problem in deductive theorem proving:17 A program
is derived from the constructive proof of the theorem

that states that for all inputs, there ex-
ists an output, such that the desired
correctness specification holds.
Building automated and scalable
tools to solve this problem has proved
to be difficult. A recent alternative to
formalizing synthesis allows the pro-
grammer to supplement the logical
specification with a syntactic tem-
plate that constrains the space of al-
lowed implementations and the solu-
tion strate gies focus on search
algorithms for efficiently exploring
this space. The resulting search-based
program synthesis paradigm is emerg-
ing as an enabling technology for
both designing more intuitive pro-
gramming notations and aggressive
program optimizations.

As an instance of making program-
ming easier and accessible to end
users, consider the programming-by-
examples (PBE) systems that allow a
user to specify the desired functional-
ity using representative input-to-out-
put examples. Such a programming
environment is feasible in domain-
specific applications such as data
manipulation as illustrated by the
success of the FlashFill feature in
Microsoft Excel spreadsheet soft-
ware.10, 11 This feature can automati-
cally fill in a column in the spreadsheet
by examining a few examples pro-
vided by the user. The underlying
computational problem is search-
based synthesis, namely, finding a
program that is consistent with all the
user-provided examples and fits the
syntactic template of the native
language.

Search-based
Program
Synthesis

DOI:10.1145/3208071

A promising, useful tool for future
programming development environments.

BY RAJEEV ALUR, RISHABH SINGH,
DANA FISMAN, AND ARMANDO SOLAR-LEZAMA

 key insights
 ˽ Syntex-guided synthesis formalizes the

computational problem of searching for
a program expression that meets both
syntactic and logical constraints.

 ˽ A wide variety of problems, such as
programming by examples, program
superoptimization, and program repair,
naturally map to syntax-guided synthesis.

 ˽ Standardization, benchmark collection,
and solver competition have led
to significant advances in solution
strategies and new applications. I

M
A

G
E

 F
R

O
M

 S
H

U
T

T
E

R
S

T
O

C
K

.C
O

M

http://dx.doi.org/10.1145/3208071

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 85

86 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

review articles

Syntax-Guided Synthesis
The SyGuS problem is to find a func-
tion f that meets the specified syntac-
tic and semantic constraints.2 The
syntactic constraint is given as a
grammar deriving a set Exp of expres-
sions that captures the candidate
implementations of f. The semantic
constraint is a logical formula Spec
that captures the desired functional-
ity of f. We introduce the problem
using a series of illustrative examples
from different applications.

Synthesis from logical specifica-
tions. A logical specification of a func-
tion describes what needs to be
computed. As a simple example, con-
sider the following specification Spec1
of a function f that takes two input
arguments x and y of type int and
returns an integer value that is the
maximum of the input arguments:

Finding a function f satisfying this
logical specification can be viewed as
establishing the truth of the quanti-
fied formula: ∃ f. ∀ x, y. Spec1. A con-
structive proof of this formula can
reveal an implementation of f.17 Since
automatic proofs in a logic that sup-
ports quantification over functions
remains a challenge, the syntax-
guided approach we advocate asks the
user to specify additional structural
constraint on the set of expressions
that can be used as possible imple-
mentations of f. For example, the fol-
lowing grammar specifies the set Exp1
of all linear expressions over input
arguments x and y with positive
coefficients:

Now the computational problem is to
systematically search through the set
Exp1 of expressions to find an expres-
sion e such that the formula obtained
by substituting e for f (x, y) in Spec1 is
valid. Convince yourself that there is
no solution in this case: no linear
expression over two integers can cor-
respond to the maximum of the two.

Since no linear expression satisfies
the specification, we can enrich the
set of candidate implementations by
allowing conditionals. The following

A traditional optimizing compiler
transforms the input program by
applying a sequence of transforma-
tions where each transformation
makes a local change to the program
that is guaranteed to preserve seman-
tic equivalence. An alternative, based
on search-based synthesis, is to
explore the space of syntactically cor-
rect programs for a program that is
semantically equivalent to the input
program and meets desired perfor-
mance criteria (for example, uses an
expensive operation only a limited
number of times). This approach
offers the possibility of more aggres-
sive optimization—sometimes
called superoptimization, as it can
lead to a resulting program that is
structurally quite dissimilar to the
original one.18,26

Since the number of syntactically
correct programs grows exponentially
with the size, searching through the
space of programs is computationally
intractable. Our attempt to tackle this
seemingly hopeless research chal-
lenge is rooted in two lessons learned
from the progress on two analogous,
computationally intractable, prob-
lems in formal analysis: model check-
ing that requires exploration of
reachable states of finite-state mod-
els of protocols4 and constraint solving
to find a satisfying assignment to vari-
ables in a logical formula with Boolean
connectives.5,16 First, a sustained
focus on battling the computational
bottlenecks via algorithmic innova-
tions, data structures, and perfor-
mance tuning can result in impressive
advances in tools. Second, even when
the tools have scalability limits, they
can still prove invaluable in practice
when applied to carefully chosen real-
world problems.

While search-based synthesis is
the computational problem at the
core of a number of synthesis projects
dating back to the system Sketch for
program completion,28,29 the precise
formulation we focus on is called syn-
tax-guided synthesis (SyGuS):2 Given a
set Exp of expressions specified by a
context-free grammar that captures
the set of candidate implementations
of an unknown function f, and a logi-
cal formula Spec that captures the
desired functionality of f, find an
expression e in Exp such that

replacing f by e in Spec results in a
valid formula. The input format for
this problem has been standardized,
hundreds of benchmarks from differ-
ent application domains have been
collected, and a competition of solv-
ers has been held annually starting
2014 (see www.sygus.org). This
community effort has led to innova-
tions in both computational tech-
niques for solvers and practical
applications.

In this article, we introduce the
SyGuS problem using four applica-
tions: synthesis from logical specifica-
tions, program ming by examples,
program transformation, and auto-
matic inference of program invariants.
Next, we discuss a generic architecture
for solving the SyGuS problem using
the iterative counterexample-guided
inductive synthesis (CEGIS) strategy29
that combines a search strategy with a
verification oracle. As an instance of
the learning algorithm, we explain the
enumerative technique that generates
the candidate expressions of increas-
ing size relying on the input examples
for pruning.32 We then describe the
standardized input format, the bench-
marks, and the annual competition of
solvers. This infrastructure effort
was supported by NSF Expeditions
in Computing project ExCAPE
(Expeditions in Computer-Augmented
Program Engineering) focused on
advancing tools and applications of
program synthesis. We close by exam-
ining the resulting progress. In partic-
ular, we explain how the best
performing solver in the 2017 compe-
tition integrates decision trees in the
enumerative search algorithm to boost
its performance,3 and discuss a new
application of SyGuS to automatically
make cryptographic circuits resilient
to timing attacks.7

It should be noted that search-
based program synthesis is an active
area of research with tools and appli-
cations beyond the specific formal-
ization we focus on. While space does
not permit a detailed discussion of
the related work, let us mention a
few relevant trends: type-based
approaches to code completion,14,21,22
use of statistical models learnt from
code repositories for program synthe-
sis,24 and search-based program
repair.15,19

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 87

review articles

grammar specifies this set Exp2:

Here the nonterminal T generates lin-
ear expressions, the nonterminal C
generates tests used in conditionals,
and for a test t and expressions e1 and
e2, ITE(t, e1, e2) stands for if t then e1
else e2. Now f (x, y) = ITE((x ≤ y), y, x)
satisfies the logical specification
Spec1 and also belongs to the set Exp2.
Observe that this expression does not
involve addition of terms and thus
can also be generated by the following
simpler grammar that specifies the
set Exp3 of expressions:

Now suppose we change the logical
requirement of the desired function f
from Spec1 to Spec2:

Observe that this is an under-specifi-
cation since multiple functions can
satisfy this logical constraint.
If we choose the set of expressions to
be Exp2, a possible solution is
f (x, y) = ITE((x ≤ y), y, x) + 1. However,
this solution will no longer work if the
set of expressions is Exp3. This ability
to change the specification of the
desired function by revising either the
logical formula or the set of expres-
sions offers a significant convenience
in encoding synthesis problems.

Programming by examples. An
app ealing application of synthesis is
to learn a program from representa-
tive input-to-output examples. The
Flash-Fill feature in Microsoft Excel is
a recent success of such a program-
ming methodology in practice.10,11 It
allows Excel users to perform string
transformations using a small num-
ber of input-to-output examples. For
example, consider the task of trans-
forming names from one format to
another as shown in Table 1. Formally,
the semantic constraint on the desired
function f from strings to strings is
given by the formula with a conjunct
for each of the rows, where the con-
junct for the first row is of the form
f (Nancy FreeHafer) = FreeHafer, N.

The set of string transformations
supported by the domain specific lan-
guage of Excel can be specified by the
grammar below (simplified for
exposition):

In this grammar, the nonterminal E
generates string transformations,
and the nonterminal I generates inte-
ger-valued index expressions. The
Concat(s1, s2) function returns the
concatenation of the strings s1 and s2,
SubStr(s, i1, i2) returns the substring
of the string s between the integer
positions i1 and i2, Len(s) returns the
length of the string s, and IndexOf (s1,
s2, i) returns the index of the ith occur-
rence of the string s2 in the string s1.

A possible solution to the SyGuS
problem is: Concat(s1, “,”, s2, “.”),
where s1 is the expression SubStr(s,
IndexOf(s, “ ”, 1) + 1, Len(s)) and s2 is
SubStr(s, 0, 1). This program concat-
enates the following four strings: the
substring in the input string starting
after the first whitespace; constant
string “,”; the first character; and con-
stant string “.”.

Program optimization. In auto-
matic program optimization, we are
given an original program f, and we
want to find another program g such
that the program g is functionally
equivalent to f and satisfies specified
syntactic constraints so it has better
performance compared to f. The syn-
tactic constraint can be used to rule
out, or restrict, the use of certain oper-
ations deemed expensive.

As an example, consider the prob-
lem of computing the average of two
un signed integer input numbers x
and y represented as bitvectors. The
obvious expression (x + y)/2 is not a
correct implementation since the
intermediate result (x + y) can cause

an overflow error. If the input num-
bers are bitvectors of length 32, an
alternative correct formulation can
first extend the given numbers to
64-bits to make sure that no overflow
error will be introduced when they are
summed up together, then divide by
2, and finally convert the result back
to 32-bits. This is specified by the
function:

where the operator bv64 converts a
32-bitvector to a 64-bitvector by con-
catenating 32 zeros to its left, and bv32
converts a 64-bitvector to a 32-bitvec-
tor by taking the 32 rightmost bits.

Since the result does not require
more than 32-bits, we want to know if
there exists an equivalent solution
that works without using an extension
to 64-bits. We can pose this as a SyGuS
question: does there exist an expres-
sion that is equivalent to f (x, y) and is
generated by the grammar:

where + is addition, &, , ̂ are bitwise
and, or, and xor, and are shift
left and shift right, N is the set of inte-
ger constants between 0 and 31. Note
that the grammar explicitly rules out
the use of bitvector conversion opera-
tors bv64 and bv32 used in the original
program f. A correct solution to the
synthesis problem is the program

Template-based invariant synthe-
sis. To verify that a program satisfies
its correctness specification, one
needs to identify loop invariants—
conditions over program variables
that are preserved by an execution of
the loop. As a simple example con-
sider the following program, where i,
j, m, and n are integers:

String transformation by examples.

Input Output

Nancy FreeHafer FreeHafer, N.

Andrew Cencini Cencini, A.

Jan Kotas Kotas, J.

88 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

review articles

Solving Sygus
Given a set Exp of expressions speci-
fied using a grammar, and a logical
formula Spec that constrains the
desired function f, the SyGuS problem
is to find an expression e in Exp such
that the formula Spec[f/e] obtained by
replacing f with e in Spec is valid or
report failure if no such expression
exists. This search involves an alter-
nation of quantifiers: there exists an
expression e in Exp such that for all
inputs, Spec[f/e] holds. The architec-
ture underlying current solvers
involves a cooperation between a
learning module that searches for a
candidate expression and a verifica-
tion oracle that checks its validity as
explained next.

Counterexamples and inductive
syn thesis. The architecture of a typi-
cal SyGuS solver is shown in Figure 1
(see Seshia27 for alternative querying
models). The set Examples contains
interesting inputs that the learner
uses to guide its search. This set can
initially be empty. The learner is
tasked with finding an expression e in
Exp such that Spec[f/e] is satisfied at
least for the inputs in Examples. If the
learner fails in this task, then there is
no solution to the synthesis problem.
Otherwise, the candidate expression e
produced by the learner is given to the
verifier that checks if Spec[f/e] holds
for all inputs. If so, the current expres-
sion e is the desired answer to the syn-
thesis problem. If not, the verifier
produces a counterexample, that is, an
input for which the specification does
not hold, and this input now is added
to the set Examples to reiterate the
learning phase. The learning phase is
an instance of the so-called inductive
synthesis as the learner is attempting
to generalize based on the current set
Examples of inputs it considers sig-
nificant. Since the inputs added to
this set are counterexamples pro-
duced by the verifier, the overall solu-
tion strategy is called CEGIS.28,29

For illustrating this strategy, let us
show a plausible sequence of itera-
tions using the logical specification
Spec1 and the set Exp2 of linear expres-
sions with conditionals noted previ-
ously. Initially the set Examples is
empty, and as a result, the learner has
no constraints and can return any
expression it wants. Suppose it

We want to prove that if m is a non-nega-
tive integer then when the program ter-
minates j equals m + n; that is, assuming
the pre-condition m ≥ 0, the post-condi-
tion j = m + n holds. To apply the standard
verification technology, we need to first
find a Boolean predicate f over the vari-
ables i, j, m, and n, that must hold every
time the program control is at line num-
ber 3. The desired predicate f (i, j, m, n)
should satisfy the following three logical
requirements: (1) assuming the pre-con-
dition, the first time the program con-
trol reaches the while loop, the desired
predicate f holds:

(2) assuming that f (i, j, m, n) holds,
and the program enters the while loop
(that is, the test i > 0 is satisfied), after
executing the body of the loop once,
the condition f continues to hold for
the updated variables:

and (3) assuming that f (i, j, m, n)
holds, and the program exits the loop,
the post-condition of the program
holds:

A predicate f that satisfies all these
conditions is an inductive invariant
that is strong enough to prove the cor-
rectness of the program. A modern
proof assistant for program verifica-
tion asks a user to annotate a program
with such loop invariants, and then
automatically checks whether all
these conditions are satisfied.

The more ambitious task of auto-
matically synthesizing loop invariants
that satisfy the desired conditions
can be formalized as a SyGuS prob-
lem.30 In the above example, the func-
tion f to be synthesized takes four
integer arguments and returns a
Boolean value. The logical specifica-
tion is the conjunction Pre ∧ Induct ∧
Post. As a syntactic specification for
the set of potential candidates for
invariants, we choose expressions that
are conjunctions of linear inequalities
over program variables. This set is
expressed by the grammar:

The following expression f (i, j, m, n)
then is a solution satisfying both syn-
tactic and semantic constraints:

Figure 1. Architecture of SyGuS solver.

Initial
examples

Candidate
expression

Counterexample
Learner Verifier

SuccessFail

Figure 2. Illustrative execution of CEGIS.

Iteration Candidate expression Counterexample

1 x (x = 0, y = 1)
2 y (x = 1, y = 0)
3 1 (x = 0, y = 0)
4 x + y (x = 1, y = 1)
5 ITE((x ≤ y), y, x) Success

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 89

review articles

returns x. Now the verifier checks if
setting f (x, y) = x satisfies the logical
specification; that is, it checks
the validity of the formula
(x ≥ x) ∧ (x ≥ y) ∧ (x ∈ {x, y}). This for-
mula does not hold for all values of x
and y, and the verifier returns one
such counterexample, say, (x = 0, y =
1). This input is added to the set
Examples, and the learner now needs
to find a solution for f that satisfies
the specification at least for this
input. The learner can possibly return
the expression y, and when the veri-
fier checks the validity of this answer
it returns (x = 1, y = 0) as a counterex-
ample. Figure 2 shows the expres-
sions learnt and the corresponding
counterexamples produced by the
verifier in successive iterations. For
instance, in iteration 4, the learner
attempts to find a candidate solution
that satisfies the specification for the
inputs (0, 1), (1, 0), and (0, 0), and f (x,
y) = x + y is indeed such a plausible
answer. The verifier then checks the
validity of (x + y ≥ x) ∧ (x + y ≥ y) ∧ (x +
y ∈ {x, y}) and returns (x = 1, y = 1) as a
counterexample. In the subsequent
iteration, when the learner attempts
to find a solution that fits all the four
inputs currently in Examples, the
shortest expression possible is ITE((x
≤ y), y, x), which the verifier finds to be
a valid solution.

Given a candidate solution for the
desired function, checking whether it
satisfies the logical specification for
all inputs is a standard verification
problem, and we can rely upon a
mature verification technology such
as SMT solvers for this purpose.5
Learning an expression from the set
Exp of candidate expressions that sat-
isfies the specification for the current
inputs in Examples is a new challenge,
and has been the focus of research in
design and implementation of SyGuS
solvers.

Enumerative search. Given a set
Exp of candidate expressions speci-
fied by a (context-free) grammar, a
finite set Examples of inputs, and a
logical specification Spec, the learn-
ing problem is to find an expression e
in Exp such that Spec[f/e] is satisfied
for all inputs in Examples.
Furthermore, we want to find the sim-
plest such expression.

The simplest solution to the

learning problem is based on enu-
merating all expressions in Exp one by
one in increasing order of size, and
checking for each one if it satisfies
Spec for all inputs in Examples. Since
the number of expressions grows
exponentially with the size, we need
some heuristics to prune the search
space. An optimization that turns out
to be effective is based on a notion of
equivalence among expressions with
respect to the given set of inputs. Let
us say that two expressions e1 and e2
are Examples-equivalent if for all
inputs in Examples, e1 and e2 evaluate
to the same value. Notice that if e is an
expression that contains e1 as a subex-
pression, and if we obtain e′ by substi-
tuting e1 by another expression e2 that
is Examples-equivalent to e1, then e′ is
guaranteed to be Examples-equivalent
to e. As a result, the enumeration algo-
rithm maintains a list of only inequiv-
alent expressions. To construct the
next expression, it uses only the
expressions from this list as potential
subexpressions, and as a new expres-
sion is constructed, it first checks if it
is equivalent to one already in the list,
and if so, discards it.

To illustrate the algorithm, sup-
pose the logical specification is Spec2,
the set of expressions is Exp1, and the
current set of Examples contains a
single input (x = 0, y = 1) (as noted ear-
lier). The job of the learning algorithm
is to find an expression e that satisfies
Spec2 for x = 0 and y = 1, that is, e(0, 1)
> 1. Two expressions are equivalent in
this case if e1(0, 1) = e2(0, 1). The enu-
merator starts by listing expressions
of size 1 one by one. The first expres-
sion considered is x. It is added to the
list, and since it does not satisfy the
specification, the search continues.
The next expression is y, which is
inequivalent to x and does not satisfy
the specification, so is added to the
list and the search continues. The
next expression is 0, which turns out
to be equivalent to x (both evaluate to
0 for the input (0, 1)), and is hence dis-
carded. The next expression is 1,
which is also discarded as it is equiva-
lent to y. Next the algorithm considers
the expressions generated by the
application of the rule E + E. The algo-
rithm considers only x and y as poten-
tial subexpressions at this step, and
thus, examines only x + x, x + y, y + x,

and y + y, in that order. Of these, the
first one is equivalent to x, and the
next two are equivalent to y, and hence
discarded. The expression y + y is the
only interesting example of size 3, and
the algorithm checks if it satisfies the
specification. Indeed that is the case,
and the learner returns y + y. The veri-
fier will discover that this solution
does not satisfy the specification for
all inputs, and will generate a coun-
terexample, say, (x = 1, y = 0). Note that
adding this input to Examples changes
the notion of equivalence of expres-
sions (for instance, the size 1 expres-
sions x and 0 are no longer equivalent),
so in the next iteration, the learning
algorithm needs to start enumeration
from scratch.

We conclude the discussion of the
enumerative search algorithm with a
few observations. First, if the set Exp
is unbounded, the algorithm may
simply keep enumerating expres-
sions of larger and larger size without
ever finding one that satisfies the
specification. Second, if we know (or
impose) a bound k on the depth of the
expression we are looking for, the
number of possible expressions is
exponential in k. The equivalence-
based pruning leads to significant
savings, but the exponential depen-
dence remains. Fin ally, to translate
the idea described above to an actual
algorithm that works for the set of
expressions described by a context-
free grammar some fine-tuning is
needed. For example, consider the
grammar for the set Exp2 of linear
expressions with conditionals, the
algorithm needs to enumerate
(inequivalent) expressions generated
by both non-terminals T and C con-
currently by employing a dynamic
programming strategy (see Alur et al.2
and Udupa et al. 32).

An Infrastructure for Solvers
In the world of constraint solving, the
standardization of the input format,
collection and categorization of a
large number of benchmarks, access
to open-source computational infra-
structure, and organization of an
annual competition of solvers, had a
transformative impact on both the
development of powerful computa-
tional techniques and the practical
applications to diverse problems.5

90 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

review articles

invariant, typically using linear arith-
metic with conditionals, leads to
benchmarks for SyGuS solvers.

The string category of benchmarks
consists of tasks that require learning
programs to manipulate strings based
on regular expressions and come
from the public set of benchmarks of
the FlashFill system (and its succes-
sors). These benchmarks are based on
the newly supported theory SLIA in
SMT-LIB, which supports string oper-
ations such as prefix, suffix, sub-
string, length, and indexing.

The other sources of benchmarks
include motion planning for robot
movements, the 2013 ICFP Program-
ming Competition1 that included syn-
thetic but challenging bitvector
functions, program repair for intro-
ductory programming solutions and
real-world programs,15 compiler opti-
mization, and synthesis of crypto-
graphic circuits that are resilient to
timing attacks7 (as we will detail later).

SyGuS-Comp: a competition of
solvers. In order to encourage the
development of solvers for the SyGuS
problem we initiated a competition of
solvers called SyGuS-Comp. The solv-
ers are compared on the basis of the
number of benchmarks solved, the
time taken to solve, and the size of the
generated expressions. The first com-
petition was held in 2014, and is now
an annual event, co-located with the
annual Computer Aided Verification
Conference (CAV). The Star-Exec plat-
form provides the computational
infrastructure needed for the
competition.31

The first competition consisted of
a single track. The benchmarks in this
track used the SMT logics LIA (condi-
tional linear arithmetic) and BV (bit-
vectors), and each benchmark
provided its own context-free gram-
mar to be used in the solution. The
second competition consisted of
three tracks: the general track that is
same as the single track of the first
competition, the CLIA track where
logic is LIA and the grammar admits
every LIA expression, and the INV track
aimed at benchmarks for synthesis of
loop invariants. This track is a restric-
tion of the CLIA track, which consists
of special syntactic sugaring of SyGuS
problems, to allow direct encoding of
inference of inductive invariants. The

This success inspired us to initiate a
similar effort centered on the SyGuS
problem (see www.sygus.org).

Standardized input format. To
define a standardized input format
for SyGuS, a natural starting point is
the input format used by SMT solvers
for two reasons. First, there is already
a vibrant ecosystem of benchmarks,
solvers, users, and researchers com-
mitted to the SMT format. Second, a
typical SyGuS solution strategy (see
Figure 1) needs to verify that a candi-
date solution satisfies the logical con-
straint, and the ability to use a
standard SMT solver as a verifier is a
big win.

The SyGuS input format SYNTH-
LIB thus extends the format SMT-
LIB2 for specifying logical constraints.
This means that to define a problem,
we must first choose one of the stan-
dard SMT logics. An example is LIA
that can encode formulas in linear
arithmetic with conditionals (essen-
tially same as the set of expressions in
the set Exp2). Other commonly used
logics for our purpose include BV for
manipulating bit-vectors, LRA for lin-
ear arithmetic over reals, and SLIA for
processing strings.

Once a logic is chosen, the problem
definition next declares the name of
the function to be synthesized along
with the types of the input arguments
and output value. These types must be
from the underlying theory, for
instance, boolean and integer types
are possible in LIA. The function dec-
laration also specifies the grammar
for defining the set Exp of candidate
expressions. This simply includes a
list of typed nonterminals, including
the special nonterminal Start, and a
list of productions for each of them.
The terminals in the grammar rules
must be the symbols from the under-
lying logic used in a type-consistent
manner. The unknown function itself
cannot occur in the rules, meaning
that we do not support synthesis of
recursively defined functions in the
current version.

The logical constraint Spec is speci-
fied as a formula that is built from the
operations in the chosen logic and
invocations of the function to be syn-
thesized. In the current version, we
require this formula to be free of
quantifiers as is the case in examples

mentioned previously. This means
that once the learner returns a candi-
date expression e, the verifier needs to
check the truth of Spec[f/e] with all
the variables universally quantified.
This amounts to checking the satisfi-
ability of the quantifier-free formula ¬
Spec[f/e], a task for which contempo-
rary SMT solvers are particularly
effective.

The format allows specifying syn-
thesis of multiple unknown functions
simultaneously. It also allows the use
of let expressions in the grammar
rules. Such expressions can make syn-
thesized solutions succinct, and are
analogous to the use of auxiliary vari-
ables in imperative code.

Benchmarks. The benchmarks we
have collected come from different
domain areas, use different SMT log-
ics, and different grammars. There
are currently over 1,500 benchmarks.
We give a few examples for bench-
mark categories.

The hacker’s delight benchmarks
are concerned with bit-manipulation
problems from the book Hacker’s
Delight.33 These benchmarks were
among the first to be successfully
tackled by synthesis technology.12,13,29
Each such problem induces several
benchmarks with varying grammars.
The grammar in the easiest instances
includes only the operators that are
required to implement the desired
transformations, whereas the gram-
mar in the hardest instances is highly
unconstrained, so the synthesizer
must discover which operators to use
in addition to how to compose them
together.

SV-COMP is a competition of auto-
mated tools for software verification
held annually in conjunction with
ETAPS (European Joint Conferences
on Theory and Practice of Software).
In this competition, the verifier is
tasked with checking correctness
requirements (such as assertions) of
C programs. When the program to be
verified contains loops, this requires
inference of an inductive loop invari-
ant. Research on automated synthesis
of invariants has used benchmarks of
SV-COMP by converting fragments of
C programs to logical formulas corre-
sponding to verification conditions.8
Augmenting these benchmarks with a
syntactic template for the unknown

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 91

review articles

third and fourth competitions con-
sisted, in addition to these three
tracks, the PBE track for programming
by examples. The PBE track restricts
semantic constraints to be based
upon only input–output examples.
This track is divided into two: bench-
marks using the BV logic, and bench-
marks manipulating strings
expressed in the SLIA logic.

The ESolver based on the enumera-
tive search strategy described previ-
ously won the first competition. Since
then a number of researchers have
proposed new solution strategies. For
instance, the ICE-DT solver is special-
ized to learning invariants based on a
novel idea of generalizing from impli-
cation counterexamples (as opposed
just positive and negative examples
common in classical learning), and
won the INV track in recent competi-
tions,8 and the strategy to solve alter-
nation of quantifiers within the SMT
solver CVC4 was modified to produce
witness functions that match the syn-
tactic template leading to a SyGuS
solver that is the most effective cur-
rent solver for the CLIA and PBE-
String tracks.25 The winner of the
general track in the 2017 competition
is EUSolver, which we will explore.

State of the Art
The formalization of the SyGuS prob-
lem and organization of the annual
competition of solvers has been a cat-
alyst for research in search-based pro-
gram synthesis. We first give an
overview of the progress in solver
technology, then describe the solu-
tion strategy employed by the current
winner, and explain a novel applica-
tion of SyGuS to synthesis of crypto-
graphic circuits resistant to timing
attacks.

Evolution of SyGuS solvers. The
cap abilities of SyGuS solvers are
improving from competition to com-
petition. For instance, all instances of
the ICFP benchmarks were solved in
2017 competition, most in less than
10 seconds. In contrast, none of these
were solved in the first competition,
and in the original ICFP competition,
some of these benchmarks were
solved by the participants using enor-
mously large compute clusters.

As another example, recall the
example given earlier of synthesizing

the maximum of two numbers using
the grammar Exp3. For any number n,
we can similarly write a specification
for computing the maximum of n
input arguments. In the first competi-
tion all solvers were able to solve for n
= 2, only one solver was able to solve
for n = 3 and none could solve for n = 4.
The 2017 solvers are capable of solv-
ing for n ≤ 21. Note that the size of the
minimal expression grows quadrati-
cally with n. The size of the expression
generated for n = 21 is 1621. With
regard to the time to solve these
benchmarks, instances with n ≤ 10
are solved within 5s, whereas the solu-
tion for n = 21 required 2100 s.

Trying to understand which SyGuS
instances are easily solved by current
SyGuS solvers, we recall different
aspects of a SyGuS instance: (i) The
grammar can be very general or very
restrictive, depending on the size of
the set of syntactically allowed expres-
sions. (ii) The specification can
require a single or multiple functions
to be simultaneously synthesized. (iii)
The specification can be complete or
partial depending on whether the set
of semantic solutions is a singleton or
not. (iv) The grammar may or may not
allow the use of let for specifying
auxiliary variables. (v) When the spec-
ification has several invocations of
the function to be synthesized, all
invocations may be exactly the same
(in the sense that the sequence of
parameters is the same in all) or there
may be different ways in which the
function is invoked. We refer to the
former as single invocation and to the
latter as multiple invocation.25 The cat-
egories of benchmarks in which state-
of-the-art solvers excel are those with
a single function invocation, a single
function to synthesize, a complete
specification, no use of let, and a
restricted grammar. Benchmarks of
the CLIA and invariant generation
tracks are also easily handled by cur-
rent solvers, in spite of their grammar
being general.

Enumerative search with decision
trees. When the grammar specifying
the set of allowed expressions
includes conditionals, the desired
sol ution is typically a tree whose inter-
nal nodes are labeled with tests used
in conditionals and leaves are labeled
with test-free expressions. The key

The formalization of
the SyGuS problem
and organization
of the annual
competition of
solvers has been
a catalyst for
research in search-
based program
synthesis.

92 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

review articles

while the partial solution x works for
all inputs in Examples0. Thus, the
learner can return ITE((x ≤ y), y, x) as
a candidate expression.

In general, consider a set Examples
of inputs, a set L of terms enumerated
so far, and a set P of conditional tests
enumerated so far. Suppose the terms
in L cover all inputs, that is, for each
input in Examples, there is at least one
term in L, which satisfies the specifi-
cation for this input. The computa-
tional problem is now to construct a
conditional expression with tests in P
and leaf expressions in L. A natural
recursive algorithm to construct the
decision tree is to first choose a test p
in P, learn a conditional expression e1
for the subset Examples1 of inputs for
which the test p is true, learn a condi-
tional expression e0 for the subset
Examples0 of inputs for which the test
is false, and return ITE(p, e1, e0). The
effectiveness of this algorithm, that
is, how many tests the final expres-
sion contains, depends on how the
splitting predicate p is chosen. The
construction of the desired tree can
be formalized as a decision tree learn-
ing problem: one can think of the
inputs in Examples as instances,
terms in L as labels where a data point
is labeled with a term if the term satis-
fies the specification for that input,
and tests in P as attributes. The greedy
heuristic for constructing a small
decision tree selects a test p as the
first decision attribute if it leads to the
maximum information gain among
all possible tests, where the gain is
calculated from the so-called entropy
of the sets Examples1 and Examples0 of
data points as split by the attribute p.

The idea of considering only those
terms and tests that are inequivalent
with respect to current inputs is
orthogonal to the above divide-and-
conquer strategy, and can be inte-
grated in it.

Repairing cryptographic circuits.
Con sider a circuit C with a set I0 of pri-
vate inputs and a set I1 of public inputs
such that if an attacker changes the
values of the public inputs and
observes the corresponding output,
she is unable to infer the values of the
private inputs (under standard
assumptions about computational
resources in cryptography). The pri-
vate inputs can correspond to a user’s

idea behind the optimization to the
enumerative search employed by the
2017 winning solver, EUSolver, is to
find expressions suitable as labels in
the desired tree by enumeration, and
construct the desired tree using the
well-studied heuristic for decision
tree learning from machine learning
literature.20,23 We will illustrate the
mechanics of this algorithm, and why
its performance is superior to the
enumerative search, using the logical
specification Spec1 and the set Exp2 of
conditional linear expressions. Recall
that the correct solution to this syn-
thesis problem is the expression
ITE((x ≤ y), y, x), which corresponds
to an expression tree of size 6. The
enumerative search algori thm thus
has to process all expressions of size 5
or less that are inequivalent with
respect to the current set Examples.

To understand the divide-and-con-
quer strategy of EUSolver, let us
ignore the pruning based on
Examples-equivalence for now.
Suppose the algorithm starts enu-
merating expressions in Exp2 in
increasing order of size, and checks
for each one if it satisfies Spec1 for all
inputs in the current set Examples.
The expressions of size 1, namely, 0,
1, x, and y, are considered first.
Suppose none of them satisfies the
specification for all inputs in
Examples (this will be the case, for
instance, if it contains both (0, 1) and
(1, 0)). However, no matter what
inputs belong to Examples, one of the
terms x or y satisfies the specification
for every input in Examples. In other
words, the terms x and y cover the cur-
rent set, and can be viewed as partial
solutions. If such partial solutions
can be combined using conditional
tests, then this can already yield a
solution that satisfies all inputs in
Examples without enumerating terms
of larger sizes. The EUSolver consists
of a module that enumerates predi-
cates (that is, tests used in condition-
als) concurrently in increasing size.
The test (x ≤ y) is a predicate of small-
est possible size.

Given such a test, the set of inputs
divides naturally into two sets,
Examples1 for which the test is true
and Examples0 for which the test is
false. Observe that the partial solu-
tion y works for all inputs in Examples1

The categories
of benchmarks
in which
state-of-the-art
solvers excel
are those with
a single function
invocation,
a single function
to synthesize,
a complete
specification,
no use of let,
and a restricted
grammar.

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 93

review articles

lengths compared to the manually
constructed one in the work of Ghalaty
et al.9

Conclusion
Search-based program synthesis pro-
mises to be a useful tool for future
program development environments.
Programming by examples in domain-
specific applications and semantics-
preserving optimization of program
fragments to satisfy performance
goals expressed via syntactic criteria
are already proving to be its interest-
ing applications. Our experience
shows that investing in the infrastruc-
ture—standardized input formats,
collection of benchmarks, open-
source prototype solvers, and a com-
petition of solvers—has been vital in
advancing the state of the of art.
Finally, improving the scalability of
SyGuS solvers is an active area of cur-
rent research, and in particular, a
promising research direction is to
explore how these solvers can benefit
from modern machine learning tech-
nology (see, for example, Devlin
et al.6 for the use of neural networks
for learning programs from input-to-
output examples).

References
1. Akiba, T., Imajo, K., Iwami, H., Iwata, Y., Kataoka, T.,

Takahashi, N., Mmoskal, M., Swamy, N. Calibrating
research in program synthesis using 72,000 hours
of programmer time. Technical Report,
MSR, 2013.

2. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K.,
Raghothaman, M., Seshia, S.A., Singh, R.,
Solar-Lezama, A., Torlak, E., Udupa, A.
Syntax-guided synthesis. In Proc. FMCAD,
2013, 1–17.

3. Alur, R., Radhakrishna, A., Udupa, A. Scaling
enumerative program synthesis via divide and
conquer. In Proc. TACAS, LNCS 10205, 2017,
319–336.

4. Clarke, E., Grumberg, O., Peled, D. Model Checking.
MIT Press, 2000.

5. de Moura, L., Bjørner, N. Satisfiability Modulo Theories:
Introduction and applications. Commun. ACM 54, 9
(2011), 69–77.

6. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A., Kohli, P. Robustfill: Neural program learning under
noisy I/O. In Proc. ICML, 2017, 990–998.

7. Eldib, H., Wu, M., Wang, C. Synthesis of fault-attack
countermeasures for cryptographic circuits. In Proc.
CAV, LNCS 9780, 2016, 343–363.

8. Garg, P., Löding, C., Madhusudan, P., Neider, D. ICE: A
robust framework for learning invariants. In Proc.
CAV, LNCS 8559, 2014, 69–87.

9. Ghalaty, N., Aysu, A., Schaumont, P. Analyzing and
eliminating the causes of fault sensitivity analysis.
In Proc. DATE, 2014, 1–6.

10. Gulwani, S. Automating string processing in
spreadsheets using input–output examples. In Proc.
POPL, 2011, 317–330.

11. Gulwani, S., Harris, W.R., Singh, R. Spreadsheet data
manipulation using examples. Commun. ACM, 55, 8
(2012), 97–105.

12. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R. Synthesis
of loop-free programs. In Proc. PLDI, 2011, 62–73.

13. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.
Oracle-guided component-based program synthesis.

In Proc. ICSE, 2010, 215–224.
14. Kuncak, V., Mayer, M., Piskac, R., Suter, P. Software

synthesis procedures. Commun. ACM, 55, 2.
15. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W. S3:

Syntax- and semantic-guided repair synthesis via
programming by examples. In Proc. FSE, 2017,
593–604.

16. Malik, S., Zhang, L. Boolean satisfiability: From
theoretical hardness to practical success. Commun.
ACM, 52, 8 (2009), 76–82.

17. Manna, Z., Waldinger, R. Fundamentals of deductive
program synthesis. IEEE Trans. Softw. Eng. 18, 8
(1992), 674–704.

18. Massalin, H. Superoptimizer – A look at the smallest
program. In Proc. ASPLOS, 1987, 122–126.

19. Mechtaev, S., Yi, J., Roychoudhury, A. Angelix:
Scalable multiline program patch synthesis via
symbolic analysis. In Proc. ICSE, 2016, 691–701.

20. Mitchell, T. Machine Learning. McGraw-Hill, 1997.
21. Osera, P., Zdancewic, S. Type-and-example-directed

program synthesis. In Proc. PLDI, 2015, 619–630.
22. Polikarpova, N., Kuraj, I., Solar-Lezama, A. Program

synthesis from polymorphic refinement types. In
Proc. PLDI, 2016, 522–538.

23. Quinlan, J. Introduction to decision trees. Mach.
Learn. 1, 1 (1986), 81–106.

24. Raychev, V., Vechev, M.T., Yahav, E. Code completion
with statistical language models. In Proc. PLDI, 2014,
419–428.

25. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett,
C.W. Counterexample-guided quantifier instantiation
for synthesis in SMT. In Proc. CAV, 2015, 198–216.

26. Schkufza, E., Sharma, R., Aiken, A. Stochastic program
optimization. Commun. ACM 59, 2 (2016), 114–122.

27. Seshia, S.A. Combining induction, deduction, and
structure for verification and synthesis. Proc. IEEE
103, 11 (2015), 2036–2051.

28. Solar-Lezama, A. Program sketching. STTT 15, 5–6
(2013), 475–495.

29. Solar-Lezama, A., Rabbah, R., Bodík, R., Ebcioglu, K.
Programming by sketching for bit-streaming
programs. In Proc. PLDI, 2005, 281–294.

30. Srivastava, S., Gulwani, S., Foster, J.S. Template-
based program verification and program synthesis.
STTT 15, 5–6 (2013), 497–518.

31. Stump, A., Sutcliffe, G., Tinelli, C. Starexec: A
cross-community infrastructure for logic solving. In
Proc. IJCAR, 2014, 367–373.

32. Udupa, A., Raghavan, A., Deshmukh, J., Mador-Haim, S.,
Martin, M., Alur, R. TRANSIT: Specifying protocols
with concolic snippets. In Proc. PLDI, 2013, 287–296.

33. Warren, H.S. Hacker’s Delight. Addison-Wesley, 2002.

Rajeev Alur is the Zisman Family Professor in the
Department of Computer and Information Sciences at the
University of Pennsylvania, Philadelpha, PA, USA.

Rishabh Singh is a research scientist at Google Brain,
Mountain View, CA, USA.

Dana Fisman is a senior lecturerat Ben Gurion University,
Be’er Shera, Israel.

Armando Solar-Lezama is an associate professor and
leader of the Computer Assisted Programming Group at
MIT, Cambridge, MA, USA.

©2018 ACM 0001-0782/18/12 $15.00.

secret key, the public inputs can cor-
respond to a message, and the output
can be the encryption of the message
using the secret key. Such crypto-
graphic circuits are commonplace in
encryption systems used in practice.
One possible attack, that is, a strategy
for the attacker to gain information
about the private inputs despite the
established logical correctness of the
circuit, is based on measuring the
time it takes for the circuit to com-
pute. For instance, when a public
input bit changes from 1 to 0, a spe-
cific output bit is guaranteed to
change from 1 to 0 independent of
whether a particular private input bit
is 0 or 1, but may change faster when
this private input is 0, thus leaking
information. Such vulnerabilities do
occur in practice, and in fact, Ghalaty
et al.9 reports such an attack on a cir-
cuit used in the AES encryption stan-
dard. The timing attack is not possible
if the circuit meets the so-called struc-
tural property of being constant time:
A constant-time circuit is the one in
which the length of all input-to-out-
put paths measured in terms of num-
ber of gates are the same. After
identifying the attack, Ghalaty et al.9
shows how to convert the given circuit
to an equivalent constant-time circuit
by introducing delay elements on
shorter paths.

As noted in the work of Eldib et al.,7
being constant-time is a syntactic
constraint on the logical representa-
tion of a circuit, that is, it depends on
the structure of the expression and
not on the operators used in the con-
struction. As a result, given a circuit C,
synthesizing another circuit C′ such
that C′ is a constant-time circuit and is
functionally equivalent to C can be
formalized as a SyGuS problem. The
set of all constant-time circuits with
all input-to-output path lengths
within a given bound can be expressed
using a context-free grammar and
being logically equivalent to the origi-
nal circuit can be expressed as a
Boolean formula involving the
unknown circuit. Eldib et al.7 then use
the EUSolver to automatically synthe-
size constant-time circuits that are
logically equivalent to given crypto-
graphic circuits, and in particular,
report a solution that is smaller in
terms of overall size as well as path

