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Writing programs that are both correct and efficient is 
challenging. A potential solution lies in program 
synthesis aimed at automatic derivation of an 
executable implementation (the “how”) from a high-
level logical specification of the desired input-to-
output behavior (the “what”). A mature synthesis 
technology can have a transformative impact on 
programmer productivity by liberating the programmer 
from low-level coding details. For instance, for the 
classical computational problem of sorting a list of 
numbers, the programmer has to simply specify that 
given an input array A of n numbers, compute an 
output array B consisting of exactly the same numbers 
as A such that B[i] ≤ B[i + 1] for 1 ≤ i < n, leaving it to the 
synthesizer to figure out the sequence of steps needed 
for the desired computation.

Traditionally, program synthesis is formalized as  
a problem in deductive theorem proving:17 A program 
is derived from the constructive proof of the theorem 

that states that for all inputs, there ex-
ists an output, such that the desired 
correctness specification holds. 
Building automated and scalable 
tools to solve this problem has proved 
to be difficult. A recent alternative to 
formalizing synthesis allows the pro-
grammer to supplement the logical 
specification with a syntactic tem-
plate that constrains the space of al-
lowed implementations and the solu-
tion strate gies focus on search 
algorithms for efficiently exploring 
this space. The resulting search-based 
program synthesis paradigm is emerg-
ing as an enabling technology for 
both designing more intuitive pro-
gramming notations and aggressive 
program optimizations.

As an instance of making program-
ming easier and accessible to end 
users, consider the programming-by-
examples (PBE) systems that allow a 
user to specify the desired functional-
ity using representative input-to-out-
put examples. Such a programming 
environment is feasible in domain-
specific applications such as data 
manipulation as illustrated by the 
success of the FlashFill feature in  
Microsoft Excel spreadsheet soft-
ware.10, 11 This feature can automati-
cally fill in a column in the spreadsheet 
by examining a few examples pro-
vided by the user. The underlying 
computational problem is search-
based synthesis, namely, finding a 
program that is consistent with all the 
user-provided examples and fits the 
syntactic template of the native 
language.
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 key insights
 ˽ Syntex-guided synthesis formalizes the 

computational problem of searching for 
a program expression that meets both 
syntactic and logical constraints.

 ˽ A wide variety of problems, such as 
programming by examples, program 
superoptimization, and program repair, 
naturally map to syntax-guided synthesis.

 ˽ Standardization, benchmark collection, 
and solver competition have led 
to significant advances in solution 
strategies and new applications. I
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Syntax-Guided Synthesis
The SyGuS problem is to find a func-
tion f that meets the specified syntac-
tic and semantic constraints.2 The 
syntactic constraint is given as a 
grammar deriving a set Exp of expres-
sions that captures the candidate 
implementations of f. The semantic 
constraint is a logical formula Spec 
that captures the desired functional-
ity of f. We introduce the problem 
using a series of illustrative examples 
from different applications.

Synthesis from logical specifica-
tions. A logical specification of a func-
tion describes what needs to be 
computed. As a simple example, con-
sider the following specification Spec1 
of a function f that takes two input 
arguments x and y of type int and 
returns an integer value that is the 
maximum of the input arguments:

Finding a function f satisfying this 
logical specification can be viewed as 
establishing the truth of the quanti-
fied formula: ∃ f. ∀ x, y. Spec1. A con-
structive proof of this formula can 
reveal an implementation of f.17 Since 
automatic proofs in a logic that sup-
ports quantification over functions 
remains a challenge, the syntax-
guided approach we advocate asks the 
user to specify additional structural 
constraint on the set of expressions 
that can be used as possible imple-
mentations of f. For example, the fol-
lowing grammar specifies the set Exp1 
of all linear expressions over input 
arguments x and y with positive 
coefficients:

Now the computational problem is to 
systematically search through the set 
Exp1 of expressions to find an expres-
sion e such that the formula obtained 
by substituting e for f (x, y) in Spec1 is 
valid. Convince yourself that there is 
no solution in this case: no linear 
expression over two integers can cor-
respond to the maximum of the two.

Since no linear expression satisfies 
the specification, we can enrich the 
set of candidate implementations by 
allowing conditionals. The following 

A traditional optimizing compiler 
transforms the input program by 
applying a sequence of transforma-
tions where each transformation 
makes a local change to the program 
that is guaranteed to preserve seman-
tic equivalence. An alternative, based 
on search-based synthesis, is to 
explore the space of syntactically cor-
rect programs for a program that is 
semantically equivalent to the input 
program and meets desired perfor-
mance criteria (for example, uses an 
expensive operation only a limited 
number of times). This approach 
offers the possibility of more aggres-
sive optimization—sometimes 
called superoptimization, as it can 
lead to a resulting program that is 
structurally quite dissimilar to the 
original one.18,26

Since the number of syntactically 
correct programs grows exponentially 
with the size, searching through the 
space of programs is computationally 
intractable. Our attempt to tackle this 
seemingly hopeless research chal-
lenge is rooted in two lessons learned 
from the progress on two analogous, 
computationally intractable, prob-
lems in formal analysis: model check-
ing that requires exploration of 
reachable states of finite-state mod-
els of protocols4 and constraint solving 
to find a satisfying assignment to vari-
ables in a logical formula with Boolean 
connectives.5,16 First, a sustained 
focus on battling the computational 
bottlenecks via algorithmic innova-
tions, data structures, and perfor-
mance tuning can result in impressive 
advances in tools. Second, even when 
the tools have scalability limits, they 
can still prove invaluable in practice 
when applied to carefully chosen real-
world problems.

While search-based synthesis is 
the computational problem at the 
core of a number of synthesis projects 
dating back to the system Sketch for 
program completion,28,29 the precise 
formulation we focus on is called syn-
tax-guided synthesis (SyGuS):2 Given a 
set Exp of expressions specified by a 
context-free grammar that captures 
the set of candidate implementations 
of an unknown function f, and a logi-
cal formula Spec that captures the 
desired functionality of f, find an 
expression e in Exp such that 

replacing f by e in Spec results in a 
valid formula. The input format for 
this problem has been standardized, 
hundreds of benchmarks from differ-
ent application domains have been 
collected, and a competition of solv-
ers has been held annually starting 
2014 (see www.sygus.org). This  
community effort has led to innova-
tions in both computational tech-
niques for solvers and practical 
applications.

In this article, we introduce the 
SyGuS problem using four applica-
tions: synthesis from logical specifica-
tions, program ming by examples, 
program transformation, and auto-
matic inference of program invariants. 
Next, we discuss a generic architecture 
for solving the SyGuS problem using 
the iterative counterexample-guided 
inductive synthesis (CEGIS) strategy29 
that combines a search strategy with a 
verification oracle. As an instance of 
the learning algorithm, we explain the 
enumerative technique that generates 
the candidate expressions of increas-
ing size relying on the input examples 
for pruning.32 We then describe the 
standardized input format, the bench-
marks, and the annual competition of 
solvers. This infrastructure effort  
was supported by NSF Expeditions  
in Computing project ExCAPE 
(Expeditions in Computer-Augmented 
Program Engineering) focused on 
advancing tools and applications of 
program synthesis. We close by exam-
ining the resulting progress. In partic-
ular, we explain how the best 
performing solver in the 2017 compe-
tition integrates decision trees in the 
enumerative search algorithm to boost 
its performance,3 and discuss a new 
application of SyGuS to automatically 
make cryptographic circuits resilient 
to timing attacks.7

It should be noted that search-
based program synthesis is an active 
area of research with tools and appli-
cations beyond the specific formal-
ization we focus on. While space does 
not permit a detailed discussion of 
the related work, let us mention a  
few relevant trends: type-based 
approaches to code completion,14,21,22 
use of statistical models learnt from 
code repositories for program synthe-
sis,24 and search-based program 
repair.15,19
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grammar specifies this set Exp2:

Here the nonterminal T generates lin-
ear expressions, the nonterminal C 
generates tests used in conditionals, 
and for a test t and expressions e1 and 
e2, ITE(t, e1, e2) stands for if t then e1 
else e2. Now f (x, y) = ITE((x ≤ y), y, x) 
satisfies the logical specification 
Spec1 and also belongs to the set Exp2. 
Observe that this expression does not 
involve addition of terms and thus 
can also be generated by the following 
simpler grammar that specifies the 
set Exp3 of expressions:

Now suppose we change the logical 
requirement of the desired function f 
from Spec1 to Spec2:

Observe that this is an under-specifi-
cation since multiple functions can 
satisfy this logical constraint.  
If we choose the set of expressions to 
be Exp2, a possible solution is  
f (x, y) = ITE( (x ≤ y), y, x) + 1. However, 
this solution will no longer work if the 
set of expressions is Exp3. This ability 
to change the specification of the 
desired function by revising either the 
logical formula or the set of expres-
sions offers a significant convenience 
in encoding synthesis problems.

Programming by examples. An 
app ealing application of synthesis is 
to learn a program from representa-
tive input-to-output examples. The 
Flash-Fill feature in Microsoft Excel is 
a recent success of such a program-
ming methodology in practice.10,11 It 
allows Excel users to perform string 
transformations using a small num-
ber of input-to-output examples. For 
example, consider the task of trans-
forming names from one format to 
another as shown in Table 1. Formally, 
the semantic constraint on the desired 
function f from strings to strings is 
given by the formula with a conjunct 
for each of the rows, where the con-
junct for the first row is of the form 
f (Nancy FreeHafer) = FreeHafer, N.

The set of string transformations 
supported by the domain specific lan-
guage of Excel can be specified by the 
grammar below (simplified for 
exposition):

In this grammar, the nonterminal E 
generates string transformations, 
and the nonterminal I generates inte-
ger-valued index expressions. The 
Concat(s1, s2) function returns the 
concatenation of the strings s1 and s2, 
SubStr(s, i1, i2) returns the substring 
of the string s between the integer 
positions i1 and i2, Len(s) returns the 
length of the string s, and IndexOf (s1, 
s2, i) returns the index of the ith occur-
rence of the string s2 in the string s1.

A possible solution to the SyGuS 
problem is: Concat(s1, “,”, s2, “.”), 
where s1 is the expression SubStr(s, 
IndexOf(s, “  ”, 1) + 1, Len(s) ) and s2 is 
SubStr(s, 0, 1). This program concat-
enates the following four strings: the 
substring in the input string starting 
after the first whitespace; constant 
string “,”; the first character; and con-
stant string “.”.

Program optimization. In auto-
matic program optimization, we are 
given an original program f, and we 
want to find another program g such 
that the program g is functionally 
equivalent to f and satisfies specified 
syntactic constraints so it has better 
performance compared to f. The syn-
tactic constraint can be used to rule 
out, or restrict, the use of certain oper-
ations deemed expensive.

As an example, consider the prob-
lem of computing the average of two 
un  signed integer input numbers x 
and y represented as bitvectors. The 
obvious expression (x + y)/2 is not a 
correct implementation since the 
intermediate result (x + y) can cause 

an overflow error. If the input num-
bers are bitvectors of length 32, an 
alternative correct formulation can 
first extend the given numbers to 
64-bits to make sure that no overflow 
error will be introduced when they are 
summed up together, then divide by 
2, and finally convert the result back 
to 32-bits. This is specified by the 
function:

where the operator bv64 converts a 
32-bitvector to a 64-bitvector by con-
catenating 32 zeros to its left, and bv32 
converts a 64-bitvector to a 32-bitvec-
tor by taking the 32 rightmost bits.

Since the result does not require 
more than 32-bits, we want to know if 
there exists an equivalent solution 
that works without using an extension 
to 64-bits. We can pose this as a SyGuS 
question: does there exist an expres-
sion that is equivalent to f (x, y) and is 
generated by the grammar:

where + is addition, &, , ̂  are bitwise 
and, or, and xor,  and  are shift 
left and shift right, N is the set of inte-
ger constants between 0 and 31. Note 
that the grammar explicitly rules out 
the use of bitvector conversion opera-
tors bv64 and bv32 used in the original 
program f. A correct solution to the 
synthesis problem is the program

Template-based invariant synthe-
sis. To verify that a program satisfies 
its correctness specification, one 
needs to identify loop invariants—
conditions over program variables 
that are preserved by an execution of 
the loop. As a simple example con-
sider the following program, where i, 
j, m, and n are integers:

String transformation by examples.

Input Output

Nancy FreeHafer FreeHafer, N.

Andrew Cencini Cencini, A.

Jan Kotas Kotas, J.
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Solving Sygus
Given a set Exp of expressions speci-
fied using a grammar, and a logical 
formula Spec that constrains the 
desired function f, the SyGuS problem 
is to find an expression e in Exp such 
that the formula Spec[f/e] obtained by 
replacing f with e in Spec is valid or 
report failure if no such expression 
exists. This search involves an alter-
nation of quantifiers: there exists an 
expression e in Exp such that for all 
inputs, Spec[f/e] holds. The architec-
ture underlying current solvers 
involves a cooperation between a 
learning module that searches for a 
candidate expression and a verifica-
tion oracle that checks its validity as 
explained next.

Counterexamples and inductive 
syn thesis. The architecture of a typi-
cal SyGuS solver is shown in Figure 1 
(see Seshia27 for alternative querying 
models). The set Examples contains 
interesting inputs that the learner 
uses to guide its search. This set can 
initially be empty. The learner is 
tasked with finding an expression e in 
Exp such that Spec[ f/e] is satisfied at 
least for the inputs in Examples. If the 
learner fails in this task, then there is 
no solution to the synthesis problem. 
Otherwise, the candidate expression e 
produced by the learner is given to the 
verifier that checks if Spec[ f/e] holds 
for all inputs. If so, the current expres-
sion e is the desired answer to the syn-
thesis problem. If not, the verifier 
produces a counterexample, that is, an 
input for which the specification does 
not hold, and this input now is added 
to the set Examples to reiterate the 
learning phase. The learning phase is 
an instance of the so-called inductive 
synthesis as the learner is attempting 
to generalize based on the current set 
Examples of inputs it considers sig-
nificant. Since the inputs added to 
this set are counterexamples pro-
duced by the verifier, the overall solu-
tion strategy is called CEGIS.28,29

For illustrating this strategy, let us 
show a plausible sequence of itera-
tions using the logical specification 
Spec1 and the set Exp2 of linear expres-
sions with conditionals noted previ-
ously. Initially the set Examples is 
empty, and as a result, the learner has 
no constraints and can return any 
expression it wants. Suppose it 

We want to prove that if m is a non-nega-
tive integer then when the program ter-
minates j equals m + n; that is, assuming 
the pre-condition m ≥ 0, the post-condi-
tion j = m + n holds. To apply the standard 
verification technology, we need to first 
find a Boolean predicate f over the vari-
ables i, j, m, and n, that must hold every 
time the program control is at line num-
ber 3. The desired predicate f (i, j, m, n) 
should satisfy the following three logical 
requirements: (1) assuming the pre-con-
dition, the first time the program con-
trol reaches the while loop, the desired 
predicate f holds:

(2) assuming that f (i, j, m, n) holds, 
and the program enters the while loop 
(that is, the test i > 0 is satisfied), after 
executing the body of the loop once, 
the condition f continues to hold for 
the updated variables:

and (3) assuming that f (i, j, m, n) 
holds, and the program exits the loop, 
the post-condition of the program 
holds:

A predicate f that satisfies all these 
conditions is an inductive invariant 
that is strong enough to prove the cor-
rectness of the program. A modern 
proof assistant for program verifica-
tion asks a user to annotate a program 
with such loop invariants, and then 
automatically checks whether all 
these conditions are satisfied.

The more ambitious task of auto-
matically synthesizing loop invariants 
that satisfy the desired conditions 
can be formalized as a SyGuS prob-
lem.30 In the above example, the func-
tion f to be synthesized takes four 
integer arguments and returns a 
Boolean value. The logical specifica-
tion is the conjunction Pre ∧ Induct ∧ 
Post. As a syntactic specification for 
the set of potential candidates for 
invariants, we choose expressions that 
are conjunctions of linear inequalities 
over program variables. This set is 
expressed by the grammar:

The following expression f (i, j, m, n) 
then is a solution satisfying both syn-
tactic and semantic constraints:

Figure 1. Architecture of SyGuS solver.

Initial
examples

Candidate
expression

Counterexample
Learner Verifier

SuccessFail

Figure 2. Illustrative execution of CEGIS.

Iteration Candidate expression Counterexample

1 x (x = 0, y = 1)
2 y (x = 1, y = 0)
3 1 (x = 0, y = 0)
4 x + y (x = 1, y = 1)
5 ITE((x ≤ y), y, x) Success
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returns x. Now the verifier checks if 
setting f (x, y) = x satisfies the logical 
specification; that is, it checks  
the validity of the formula  
(x ≥ x) ∧ (x ≥ y) ∧ (x ∈ {x, y}). This for-
mula does not hold for all values of x 
and y, and the verifier returns one 
such counterexample, say, (x = 0, y = 
1). This input is added to the set 
Examples, and the learner now needs 
to find a solution for f that satisfies 
the specification at least for this 
input. The learner can possibly return 
the expression y, and when the veri-
fier checks the validity of this answer 
it returns (x = 1, y = 0) as a counterex-
ample. Figure 2 shows the expres-
sions learnt and the corresponding 
counterexamples produced by the 
verifier in successive iterations. For 
instance, in iteration 4, the learner 
attempts to find a candidate solution 
that satisfies the specification for the 
inputs (0, 1), (1, 0), and (0, 0), and f (x, 
y) = x + y is indeed such a plausible 
answer. The verifier then checks the 
validity of (x + y ≥ x) ∧ (x + y ≥ y) ∧ (x + 
y ∈ {x, y}) and returns (x = 1, y = 1) as a  
counterexample. In the subsequent 
iteration, when the learner attempts 
to find a solution that fits all the four 
inputs currently in Examples, the 
shortest expression possible is ITE( (x 
≤ y), y, x), which the verifier finds to be 
a valid solution.

Given a candidate solution for the 
desired function, checking whether it 
satisfies the logical specification for 
all inputs is a standard verification 
problem, and we can rely upon a 
mature verification technology such 
as SMT solvers for this purpose.5 
Learning an expression from the set 
Exp of candidate expressions that sat-
isfies the specification for the current 
inputs in Examples is a new challenge, 
and has been the focus of research in 
design and implementation of SyGuS 
solvers.

Enumerative search. Given a set 
Exp of candidate expressions speci-
fied by a (context-free) grammar, a 
finite set Examples of inputs, and a 
logical specification Spec, the learn-
ing problem is to find an expression e 
in Exp such that Spec[f/e] is satisfied 
for all inputs in Examples. 
Furthermore, we want to find the sim-
plest such expression.

The simplest solution to the 

learning problem is based on enu-
merating all expressions in Exp one by 
one in increasing order of size, and 
checking for each one if it satisfies 
Spec for all inputs in Examples. Since 
the number of expressions grows 
exponentially with the size, we need 
some heuristics to prune the search 
space. An optimization that turns out 
to be effective is based on a notion of 
equivalence among expressions with 
respect to the given set of inputs. Let 
us say that two expressions e1 and e2 
are Examples-equivalent if for all 
inputs in Examples, e1 and e2 evaluate 
to the same value. Notice that if e is an 
expression that contains e1 as a subex-
pression, and if we obtain e′ by substi-
tuting e1 by another expression e2 that 
is Examples-equivalent to e1, then e′ is 
guaranteed to be Examples-equivalent 
to e. As a result, the enumeration algo-
rithm maintains a list of only inequiv-
alent expressions. To construct the 
next expression, it uses only the 
expressions from this list as potential 
subexpressions, and as a new expres-
sion is constructed, it first checks if it 
is equivalent to one already in the list, 
and if so, discards it.

To illustrate the algorithm, sup-
pose the logical specification is Spec2, 
the set of expressions is Exp1, and the 
current set of Examples contains a 
single input (x = 0, y = 1) (as noted ear-
lier). The job of the learning algorithm 
is to find an expression e that satisfies 
Spec2 for x = 0 and y = 1, that is, e(0, 1) 
> 1. Two expressions are equivalent in 
this case if e1(0, 1) = e2(0, 1). The enu-
merator starts by listing expressions 
of size 1 one by one. The first expres-
sion considered is x. It is added to the 
list, and since it does not satisfy the 
specification, the search continues. 
The next expression is y, which is 
inequivalent to x and does not satisfy 
the specification, so is added to the 
list and the search continues. The 
next expression is 0, which turns out 
to be equivalent to x (both evaluate to 
0 for the input (0, 1) ), and is hence dis-
carded. The next expression is 1, 
which is also discarded as it is equiva-
lent to y. Next the algorithm considers 
the expressions generated by the 
application of the rule E + E. The algo-
rithm considers only x and y as poten-
tial subexpressions at this step, and 
thus, examines only x + x, x + y, y + x, 

and y + y, in that order. Of these, the 
first one is equivalent to x, and the 
next two are equivalent to y, and hence 
discarded. The expression y + y is the 
only interesting example of size 3, and 
the algorithm checks if it satisfies the 
specification. Indeed that is the case, 
and the learner returns y + y. The veri-
fier will discover that this solution 
does not satisfy the specification for 
all inputs, and will generate a coun-
terexample, say, (x = 1, y = 0). Note that 
adding this input to Examples changes 
the notion of equivalence of expres-
sions (for instance, the size 1 expres-
sions x and 0 are no longer equivalent), 
so in the next iteration, the learning 
algorithm needs to start enumeration 
from scratch.

We conclude the discussion of the 
enumerative search algorithm with a 
few observations. First, if the set Exp  
is unbounded, the algorithm may 
simply keep enumerating expres-
sions of larger and larger size without 
ever finding one that satisfies the 
specification. Second, if we know (or 
impose) a bound k on the depth of the 
expression we are looking for, the 
number of possible expressions is 
exponential in k. The equivalence-
based pruning leads to significant 
savings, but the exponential depen-
dence remains. Fin ally, to translate 
the idea described above to an actual 
algorithm that works for the set of 
expressions described by a context-
free grammar some fine-tuning is 
needed. For example, consider the 
grammar for the set Exp2 of linear 
expressions with conditionals, the 
algorithm needs to enumerate 
(inequivalent) expressions generated 
by both non-terminals T and C con-
currently by employing a dynamic 
programming strategy (see Alur et al.2  
and Udupa et al. 32).

An Infrastructure for Solvers
In the world of constraint solving, the 
standardization of the input format, 
collection and categorization of a 
large number of benchmarks, access 
to open-source computational infra-
structure, and organization of an 
annual competition of solvers, had a 
transformative impact on both the 
development of powerful computa-
tional techniques and the practical 
applications to diverse problems.5 
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invariant, typically using linear arith-
metic with conditionals, leads to 
benchmarks for SyGuS solvers.

The string category of benchmarks 
consists of tasks that require learning 
programs to manipulate strings based 
on regular expressions and come 
from the public set of benchmarks of 
the FlashFill system (and its succes-
sors). These benchmarks are based on 
the newly supported theory SLIA in 
SMT-LIB, which supports string oper-
ations such as prefix, suffix, sub-
string, length, and indexing.

The other sources of benchmarks  
include motion planning for robot  
movements, the 2013 ICFP Program-
ming Competition1 that included syn-
thetic but challenging bitvector 
functions, program repair for intro-
ductory programming solutions and 
real-world programs,15 compiler opti-
mization, and synthesis of crypto-
graphic circuits that are resilient to 
timing attacks7 (as we will detail later).

SyGuS-Comp: a competition of 
solvers. In order to encourage the 
development of solvers for the SyGuS 
problem we initiated a competition of 
solvers called SyGuS-Comp. The solv-
ers are compared on the basis of the 
number of benchmarks solved, the 
time taken to solve, and the size of the 
generated expressions. The first com-
petition was held in 2014, and is now 
an annual event, co-located with the 
annual Computer Aided Verification 
Conference (CAV). The Star-Exec plat-
form provides the computational 
infrastructure needed for the 
competition.31

The first competition consisted of 
a single track. The benchmarks in this 
track used the SMT logics LIA (condi-
tional linear arithmetic) and BV (bit-
vectors), and each benchmark 
provided its own context-free gram-
mar to be used in the solution. The 
second competition consisted of 
three tracks: the general track that is 
same as the single track of the first 
competition, the CLIA track where 
logic is LIA and the grammar admits 
every LIA expression, and the INV track 
aimed at benchmarks for synthesis of 
loop invariants. This track is a restric-
tion of the CLIA track, which consists 
of special syntactic sugaring of SyGuS 
problems, to allow direct encoding of 
inference of inductive invariants. The 

This success inspired us to initiate a 
similar effort centered on the SyGuS 
problem (see www.sygus.org).

Standardized input format. To 
define a standardized input format 
for SyGuS, a natural starting point is 
the input format used by SMT solvers 
for two reasons. First, there is already 
a vibrant ecosystem of benchmarks, 
solvers, users, and researchers com-
mitted to the SMT format. Second, a 
typical SyGuS solution strategy (see 
Figure 1) needs to verify that a candi-
date solution satisfies the logical con-
straint, and the ability to use a 
standard SMT solver as a verifier is a 
big win.

The SyGuS input format SYNTH-
LIB thus extends the format SMT-
LIB2 for specifying logical constraints. 
This means that to define a problem, 
we must first choose one of the stan-
dard SMT logics. An example is LIA 
that can encode formulas in linear 
arithmetic with conditionals (essen-
tially same as the set of expressions in 
the set Exp2). Other commonly used 
logics for our purpose include BV for 
manipulating bit-vectors, LRA for lin-
ear arithmetic over reals, and SLIA for 
processing strings.

Once a logic is chosen, the problem 
definition next declares the name of 
the function to be synthesized along 
with the types of the input arguments 
and output value. These types must be 
from the underlying theory, for 
instance, boolean and integer types 
are possible in LIA. The function dec-
laration also specifies the grammar 
for defining the set Exp of candidate 
expressions. This simply includes a 
list of typed nonterminals, including 
the special nonterminal Start, and a 
list of productions for each of them. 
The terminals in the grammar rules 
must be the symbols from the under-
lying logic used in a type-consistent 
manner. The unknown function itself 
cannot occur in the rules, meaning 
that we do not support synthesis of 
recursively defined functions in the 
current version.

The logical constraint Spec is speci-
fied as a formula that is built from the 
operations in the chosen logic and 
invocations of the function to be syn-
thesized. In the current version, we 
require this formula to be free of 
quantifiers as is the case in examples 

mentioned previously. This means 
that once the learner returns a candi-
date expression e, the verifier needs to 
check the truth of Spec[ f/e] with all 
the variables universally quantified. 
This amounts to checking the satisfi-
ability of the quantifier-free formula ¬ 
Spec[ f/e], a task for which contempo-
rary SMT solvers are particularly 
effective.

The format allows specifying syn-
thesis of multiple unknown functions 
simultaneously. It also allows the use 
of let expressions in the grammar 
rules. Such expressions can make syn-
thesized solutions succinct, and are 
analogous to the use of auxiliary vari-
ables in imperative code.

Benchmarks. The benchmarks we 
have collected come from different 
domain areas, use different SMT log-
ics, and different grammars. There 
are currently over 1,500 benchmarks. 
We give a few examples for bench-
mark categories.

The hacker’s delight benchmarks 
are concerned with bit-manipulation 
problems from the book Hacker’s 
Delight.33 These benchmarks were 
among the first to be successfully 
tackled by synthesis technology.12,13,29 
Each such problem induces several 
benchmarks with varying grammars. 
The grammar in the easiest instances 
includes only the operators that are 
required to implement the desired 
transformations, whereas the gram-
mar in the hardest instances is highly 
unconstrained, so the synthesizer 
must discover which operators to use 
in addition to how to compose them 
together.

SV-COMP is a competition of auto-
mated tools for software verification 
held annually in conjunction with 
ETAPS (European Joint Conferences  
on Theory and Practice of Software).  
In this competition, the verifier is 
tasked with checking correctness 
requirements (such as assertions) of 
C programs. When the program to be 
verified contains loops, this requires 
inference of an inductive loop invari-
ant. Research on automated synthesis 
of invariants has used benchmarks of 
SV-COMP by converting fragments of 
C programs to logical formulas corre-
sponding to verification conditions.8 
Augmenting these benchmarks with a 
syntactic template for the unknown 
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third and fourth competitions con-
sisted, in addition to these three 
tracks, the PBE track for programming 
by examples. The PBE track restricts 
semantic constraints to be based 
upon only input–output examples. 
This track is divided into two: bench-
marks using the BV logic, and bench-
marks manipulating strings 
expressed in the SLIA logic.

The ESolver based on the enumera-
tive search strategy described previ-
ously won the first competition. Since 
then a number of researchers have 
proposed new solution strategies. For 
instance, the ICE-DT solver is special-
ized to learning invariants based on a 
novel idea of generalizing from impli-
cation counterexamples (as opposed 
just positive and negative examples 
common in classical learning), and 
won the INV track in recent competi-
tions,8 and the strategy to solve alter-
nation of quantifiers within the SMT 
solver CVC4 was modified to produce 
witness functions that match the syn-
tactic template leading to a SyGuS 
solver that is the most effective cur-
rent solver for the CLIA and PBE-
String tracks.25 The winner of the 
general track in the 2017 competition 
is EUSolver, which we will explore.

State of the Art
The formalization of the SyGuS prob-
lem and organization of the annual 
competition of solvers has been a cat-
alyst for research in search-based pro-
gram synthesis. We first give an 
overview of the progress in solver 
technology, then describe the solu-
tion strategy employed by the current 
winner, and explain a novel applica-
tion of SyGuS to synthesis of crypto-
graphic circuits resistant to timing 
attacks.

Evolution of SyGuS solvers. The 
cap abilities of SyGuS solvers are 
improving from competition to com-
petition. For instance, all instances of 
the ICFP benchmarks were solved in 
2017 competition, most in less than 
10 seconds. In contrast, none of these 
were solved in the first competition, 
and in the original ICFP competition, 
some of these benchmarks were 
solved by the participants using enor-
mously large compute clusters.

As another example, recall the 
example given earlier of synthesizing 

the maximum of two numbers using 
the grammar Exp3. For any number n, 
we can similarly write a specification 
for computing the maximum of n 
input arguments. In the first competi-
tion all solvers were able to solve for n 
= 2, only one solver was able to solve 
for n = 3 and none could solve for n = 4. 
The 2017 solvers are capable of solv-
ing for n ≤ 21. Note that the size of the 
minimal expression grows quadrati-
cally with n. The size of the expression 
generated for n = 21 is 1621. With 
regard to the time to solve these 
benchmarks, instances with n ≤ 10 
are solved within 5s, whereas the solu-
tion for n = 21 required 2100 s.

Trying to understand which SyGuS 
instances are easily solved by current 
SyGuS solvers, we recall different 
aspects of a SyGuS instance: (i) The 
grammar can be very general or very 
restrictive, depending on the size of 
the set of syntactically allowed expres-
sions. (ii) The specification can 
require a single or multiple functions 
to be simultaneously synthesized. (iii) 
The specification can be complete or 
partial depending on whether the set 
of semantic solutions is a singleton or 
not. (iv) The grammar may or may not 
allow the use of let for specifying 
auxiliary variables. (v) When the spec-
ification has several invocations of 
the function to be synthesized, all 
invocations may be exactly the same 
(in the sense that the sequence of 
parameters is the same in all) or there 
may be different ways in which the 
function is invoked. We refer to the 
former as single invocation and to the 
latter as multiple invocation.25 The cat-
egories of benchmarks in which state-
of-the-art solvers excel are those with 
a single function invocation, a single 
function to synthesize, a complete 
specification, no use of let, and a 
restricted grammar. Benchmarks of 
the CLIA and invariant generation 
tracks are also easily handled by cur-
rent solvers, in spite of their grammar 
being general.

Enumerative search with decision 
trees. When the grammar specifying 
the set of allowed expressions 
includes conditionals, the desired 
sol ution is typically a tree whose inter-
nal nodes are labeled with tests used 
in conditionals and leaves are labeled 
with test-free expressions. The key 

The formalization of 
the SyGuS problem 
and organization 
of the annual 
competition of 
solvers has been 
a catalyst for 
research in search-
based program 
synthesis. 
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while the partial solution x works for 
all inputs in Examples0. Thus, the 
learner can return ITE( (x ≤ y), y, x) as 
a candidate expression.

In general, consider a set Examples 
of inputs, a set L of terms enumerated 
so far, and a set P of conditional tests 
enumerated so far. Suppose the terms 
in L cover all inputs, that is, for each 
input in Examples, there is at least one 
term in L, which satisfies the specifi-
cation for this input. The computa-
tional problem is now to construct a 
conditional expression with tests in P 
and leaf expressions in L. A natural 
recursive algorithm to construct the 
decision tree is to first choose a test p 
in P, learn a conditional expression e1 
for the subset Examples1 of inputs for 
which the test p is true, learn a condi-
tional expression e0 for the subset 
Examples0 of inputs for which the test 
is false, and return ITE(p, e1, e0). The 
effectiveness of this algorithm, that 
is, how many tests the final expres-
sion contains, depends on how the 
splitting predicate p is chosen. The 
construction of the desired tree can 
be formalized as a decision tree learn-
ing problem: one can think of the 
inputs in Examples as instances, 
terms in L as labels where a data point 
is labeled with a term if the term satis-
fies the specification for that input, 
and tests in P as attributes. The greedy 
heuristic for constructing a small 
decision tree selects a test p as the 
first decision attribute if it leads to the 
maximum information gain among 
all possible tests, where the gain is 
calculated from the so-called entropy 
of the sets Examples1 and Examples0 of 
data points as split by the attribute p.

The idea of considering only those 
terms and tests that are inequivalent 
with respect to current inputs is 
orthogonal to the above divide-and-
conquer strategy, and can be inte-
grated in it.

Repairing cryptographic circuits. 
Con sider a circuit C with a set I0 of pri-
vate inputs and a set I1 of public inputs 
such that if an attacker changes the 
values of the public inputs and 
observes the corresponding output, 
she is unable to infer the values of the 
private inputs (under standard 
assumptions about computational 
resources in cryptography). The pri-
vate inputs can correspond to a user’s 

idea behind the optimization to the 
enumerative search employed by the 
2017 winning solver, EUSolver, is to 
find expressions suitable as labels in 
the desired tree by enumeration, and 
construct the desired tree using the 
well-studied heuristic for decision 
tree learning from machine learning 
literature.20,23 We will illustrate the 
mechanics of this algorithm, and why 
its performance is superior to the 
enumerative search, using the logical 
specification Spec1 and the set Exp2 of 
conditional linear expressions. Recall 
that the correct solution to this syn-
thesis problem is the expression 
ITE( (x ≤ y), y, x), which corresponds 
to an expression tree of size 6. The 
enumerative search algori thm thus 
has to process all expressions of size 5 
or less that are inequivalent with 
respect to the current set Examples.

To understand the divide-and-con-
quer strategy of EUSolver, let us 
ignore the pruning based on 
Examples-equivalence for now. 
Suppose the algorithm starts enu-
merating expressions in Exp2 in 
increasing order of size, and checks 
for each one if it satisfies Spec1 for all 
inputs in the current set Examples. 
The expressions of size 1, namely, 0, 
1, x, and y, are considered first. 
Suppose none of them satisfies the 
specification for all inputs in 
Examples (this will be the case, for 
instance, if it contains both (0, 1) and 
(1, 0) ). However, no matter what 
inputs belong to Examples, one of the 
terms x or y satisfies the specification 
for every input in Examples. In other 
words, the terms x and y cover the cur-
rent set, and can be viewed as partial 
solutions. If such partial solutions 
can be combined using conditional 
tests, then this can already yield a 
solution that satisfies all inputs in 
Examples without enumerating terms 
of larger sizes. The EUSolver consists 
of a module that enumerates predi-
cates (that is, tests used in condition-
als) concurrently in increasing size. 
The test (x ≤ y) is a predicate of small-
est possible size.

Given such a test, the set of inputs 
divides naturally into two sets, 
Examples1 for which the test is true 
and Examples0 for which the test is 
false. Observe that the partial solu-
tion y works for all inputs in Examples1 

The categories  
of benchmarks  
in which  
state-of-the-art 
solvers excel  
are those with  
a single function 
invocation,  
a single function 
to synthesize, 
a complete 
specification,  
no use of let,  
and a restricted 
grammar.
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lengths compared to the manually 
constructed one in the work of Ghalaty 
et al.9

Conclusion
Search-based program synthesis pro-
mises to be a useful tool for future 
program development environments. 
Programming by examples in domain-
specific applications and semantics-
preserving optimization of program 
fragments to satisfy performance 
goals expressed via syntactic criteria 
are already proving to be its interest-
ing applications. Our experience 
shows that investing in the infrastruc-
ture—standardized input formats, 
collection of benchmarks, open-
source prototype solvers, and a com-
petition of solvers—has been vital in 
advancing the state of the of art. 
Finally, improving the scalability of 
SyGuS solvers is an active area of cur-
rent research, and in particular, a 
promising research direction is to 
explore how these solvers can benefit 
from modern machine learning tech-
nology (see, for example, Devlin  
et al.6 for the use of neural networks 
for learning programs from input-to-
output examples). 
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secret key, the public inputs can cor-
respond to a message, and the output 
can be the encryption of the message 
using the secret key. Such crypto-
graphic circuits are commonplace in 
encryption systems used in practice. 
One possible attack, that is, a strategy 
for the attacker to gain information 
about the private inputs despite the 
established logical correctness of the 
circuit, is based on measuring the 
time it takes for the circuit to com-
pute. For instance, when a public 
input bit changes from 1 to 0, a spe-
cific output bit is guaranteed to 
change from 1 to 0 independent of 
whether a particular private input bit 
is 0 or 1, but may change faster when 
this private input is 0, thus leaking 
information. Such vulnerabilities do 
occur in practice, and in fact, Ghalaty 
et al.9 reports such an attack on a cir-
cuit used in the AES encryption stan-
dard. The timing attack is not possible 
if the circuit meets the so-called struc-
tural property of being constant time: 
A constant-time circuit is the one in 
which the length of all input-to-out-
put paths measured in terms of num-
ber of gates are the same. After 
identifying the attack, Ghalaty et al.9 
shows how to convert the given circuit 
to an equivalent constant-time circuit 
by introducing delay elements on 
shorter paths.

As noted in the work of Eldib et al.,7 
being constant-time is a syntactic 
constraint on the logical representa-
tion of a circuit, that is, it depends on 
the structure of the expression and 
not on the operators used in the con-
struction. As a result, given a circuit C, 
synthesizing another circuit C′ such 
that C′ is a constant-time circuit and is 
functionally equivalent to C can be 
formalized as a SyGuS problem. The 
set of all constant-time circuits with 
all input-to-output path lengths 
within a given bound can be expressed 
using a context-free grammar and 
being logically equivalent to the origi-
nal circuit can be expressed as a 
Boolean formula involving the 
unknown circuit. Eldib et al.7 then use 
the EUSolver to automatically synthe-
size constant-time circuits that are 
logically equivalent to given crypto-
graphic circuits, and in particular, 
report a solution that is smaller in 
terms of overall size as well as path 


