
EXAMPLE GUIDED SYNTHESIS OF RELATIONAL QUERIES

Aalok Thakkar

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2023

Supervisors of Dissertation

Rajeev Alur Mayur Naik

Zisman Family Professor of Computer
and Information Science

Professor of Computer and Information
Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Val Tannen, Professor of Computer and Information Science
Susan Davidson, Weiss Professor of Computer and Information Science
Oleksandr Polozov, Research Scientist at X, the moonshot factory
Stephan Zdancewic, Schlein Family Professor of Computer and Information Science

ABSTRACT

EXAMPLE GUIDED SYNTHESIS OF RELATIONAL QUERIES

The goal of program synthesis is to automatically generate programs that meet user intention.

While a number of methods for expressing user intention has gained traction over the last five

decades, programming-by-example has proven to be useful in domains where the user may not be

able to articulate the desired program behavior as a logical specification but can describe it through

demonstrative input-output examples.

This dissertation studies programming-by-example in the context of relational queries. It is a

challenging and foundational problem; ideally, we would like a technique that is simultaneously:

(a) scalable enough to be applicable to real-world instances, (b) expressive in terms of the kinds of

queries that it can synthesize, and (c) fully automatic, so it requires minimal guidance from non-expert

users. Significant progress has been made on this problem in recent years Cropper and Dumančić

(2022), and a variety of algorithms have been proposed, including algorithms based on evolutionary

search Mendelson et al. (2021), numerical relaxation Si et al. (2019), constraint solving Law et al.

(2020a); Cropper and Morel (2021), and counterexample-guided search Raghothaman et al. (2020a).

Each of these approaches require additional supervision in the form of templates to restrict the space

of candidate programs and accelerate the search. In this line of work, we propose example-guided

synthesis, a paradigm of techniques to eliminate the need for such instance-specific supervision

by leveraging the underlying structure of the input-output examples. We present an example-

guided algorithm for conjunctive queries, and then extend it to support expressive features such as

disjunction, recursion, and comparison predicates, as well as learning in presence of noise.

We implement this technique and demonstrate that it outperforms the state-of-the-art tools on a

diverse set of benchmarks in terms of both, running time and the quality of examples.

ii

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . vi

LIST OF ILLUSTRATIONS . vii

CHAPTER 1 : Introduction . 1

1.1 Relational Query Synthesis . 2

1.1.1 Syntax-guided Techniques . 2

1.1.2 Constraint-solving Techniques . 3

1.2 An Example-guided Approach to Synthesis . 3

1.3 Contributions of this Dissertation . 4

CHAPTER 2 : Problem Formulation . 6

2.1 Problem Setting . 6

2.2 Syntax and Semantics of Relational Queries . 8

2.2.1 Datalog Syntax . 8

2.2.2 Semantics . 9

2.2.3 Syntax and Semantics of SPJ Queries . 10

2.2.4 Definitions . 11

2.3 Relational Query Synthesis Problem . 13

2.4 Decidability and Complexity . 14

CHAPTER 3 : Synthesis of Conjunctive Queries . 17

3.1 Searching Patterns of Co-occurence . 17

3.2 Example-Guided Synthesis Algorithm . 20

3.2.1 The Constant Co-occurrence Graph . 20

iii

3.2.2 Enumeration Contexts . 21

3.2.3 Learning Conjunctive Queries . 22

3.3 Extensions of the Synthesis Algorithm . 25

3.3.1 Multi-Column Outputs . 25

3.3.2 Unions of Conjunctive Queries . 27

3.3.3 Negation . 29

3.4 Experimental Evaluation . 30

3.4.1 Benchmark Suite . 31

3.4.2 Baselines . 32

3.4.3 Q1: Performance . 34

3.4.4 Q2: Quality of Programs . 36

3.4.5 Q3: Unrealizability . 37

CHAPTER 4 : Synthesis of Queries with Comparison Operators 40

4.1 Algorithm . 45

4.1.1 Example-Guided Enumeration of Projection and Joins 47

4.1.2 Supervised Learning of Comparisons for Selection 48

4.1.3 Interleaving Decision Tree Learning with Example-Guided Search for Joins . 53

4.2 Evaluation . 55

4.2.1 Benchmarks . 56

4.2.2 Baselines and Setup . 56

4.2.3 Performance . 57

4.2.4 Succinctness . 59

CHAPTER 5 : Synthesis of Recursive Relational Queries 61

5.1 Demonstrative Example . 63

5.1.1 Problem Setting . 63

5.1.2 Synthesis of Recursive Queries . 64

5.1.3 Provenance-Guided Generalization . 66

iv

5.2 Minimal Generalization Problem . 69

5.3 The Synthesis Algorithm . 70

5.3.1 Example-guided Synthesis . 70

5.3.2 Normalization . 71

5.4 Provenance-guided Generalization . 73

5.4.1 Generalization Algorithm . 74

5.4.2 Encoding Generalization as Constraint Satisfaction 75

5.4.3 Provenance-Guided Constraint Generation . 76

5.5 Experimental Evaluation . 79

5.5.1 Benchmarks . 79

5.5.2 Baselines . 80

5.5.3 Effectiveness . 82

5.5.4 Generalizability . 85

5.5.5 Expressibility . 86

5.5.6 Convergence . 87

5.5.7 Performance on Non-Recursive Benchmarks 88

CHAPTER 6 : Synthesis in Presence of Noise . 90

6.1 Problem Formulation . 90

6.2 Synthesis Algorithm . 92

6.3 Experimental Evaluation . 93

CHAPTER 7 : Conclusion and Future Work . 96

BIBLIOGRAPHY . 100

APPENDIX A : Run-time Comparisons . 106

APPENDIX B : Quality of Synthesized Programs . 108

v

LIST OF TABLES

TABLE 3.1 Benchmark characteristics. For each benchmark, we summarize the number

of input-output relations, number of input-output tuples, and whether the

intended programs involve disjunctions (∨) or negations (¬). 33
TABLE 3.2 Unrealizable benchmarks. For each benchmark, we summarize runtimes

on EGS and the three baselines. Note that Scythe overfits sql42 and

traffic-partial using operators like comparisons and negation. 38

TABLE 5.1 Table summarizing benchmark characteristics. We evaluate Mobius on a suite

of 21 benchmarks featuring diverse recursion schemes. For each benchmark,

we summarize the number of input-output relations and the number of

input-output tuples. Ten of these benchmarks use invented predicates. . . . 81
TABLE 5.2 Table summarizing effectiveness of synthesis. We evaluate Mobius and the

three baselines on a suite of 21 benchmarks. All tools are run in single-

threaded mode. Mobius successfully synthesizes all benchmarks with an

average run-time of 23.1 seconds, while GenSynth, ILASP, and Popper

time out on 7 benchmarks each. Note that GenSynth and Popper fail to

find a solution for 1 and 7 benchmarks respectively. 83

TABLE A.1 Performance of EGS, Scythe, ILASP, and ProSynth on 20 knowledge

discovery benchmarks. 106
TABLE A.2 Performance of EGS, Scythe, ILASP, and ProSynth on 18 program

analysis benchmarks. 106
TABLE A.3 Performance of EGS, Scythe, ILASP, and ProSynth on 41 database

querying tasks. 107

vi

LIST OF ILLUSTRATIONS

FIGURE 2.1 Data describing traffic conditions in a city: (2.1a) Map of the city, (2.1b)

and listing of the input and output relations. We would like to explain the

accidents occurring on Broadway and Whitehall. 7
FIGURE 2.2 Grammar for select-project-join queries. T ranges over tables, c ranges over

column names, and k ranges over constant values. The grammar does not

feature operators for negation, aggregation, or ordering. 11
FIGURE 2.3 The synthesis task is specified as a search for a relational query P that takes

the graph G as an input and returns a set of pairs of vertices O such that

O is a superset of O+ and disjoint from O−. 13

FIGURE 3.1 The induced constant co-occurrence graph, GI . We would like to explain

the accidents occurring on Broadway and Whitehall. 18
FIGURE 3.2 Architecture of the EGS algorithm. 19
FIGURE 3.3 Example of a genealogy tree, used as training data to learn the programs

Pgrandparent and Psibling. Sarabi, Sarafina, Nala, and Kiara are female while

Mufasa, Jasiri, Simba, and Kopa are male. 25
FIGURE 3.4 Results of our experiments using EGS, Scythe, ILASP, and ProSynth to

solve a suite of 79 benchmarks. A datapoint (n, t) for a particular tool

indicates that it solved n of the benchmarks in less than t time. Note EGS

was the only tool to solve all 79 benchmarks. L and F refer to Task-Specific

and Task Agnostic Rule Sets respectively. 35

FIGURE 4.1 Example of a task to synthesize a relational query that takes instances of

tables registration, department, and major (as in 4.1a) as input relations

I, and outputs a set of student constants that contains all elements of O+

and does not contain any elements in O− (as in 4.1b). The query in 4.1c is

a solution to this task. 41

vii

FIGURE 4.2 Each candidate join can be translated to a single table. The table in 4.2a

represents the join of registration and department tables. The label

column denotes the ideal labels which result in learning the decision tree in

Figure 4.2b. The user can annotate the rows of this table as positive (✓) or

negative (×) to support decision tree learning. On running a decision tree

algorithm on it, we get the tree in Figure 4.2b. 43
FIGURE 4.3 Architecture of the Libra algorithm. The algorithm interleaves decision

tree learning of comparison predicates with example-guided enumeration of

candidate joins. Throughout, we maintain the size of the program and check

against this size to ensure that the synthesized query is minimal among all

consistent queries (subject to optimality of decision tree learning). 45
FIGURE 4.4 A collection of rows of the input table I. Two rows are shown connected

with an edge if they share a constant. The shaded part represents a context

C ⊆ I which corresponds to the join in Equation 4.2. 46
FIGURE 4.5 In order to compute the information gain of a comparison predicate at a

given node, we split the rows at the node into two parts, those that satisfy

the predicate and the others that don’t. Here, we have split the joined table

TC (from Figure 4.2a) on the predicate (school = Engineering). 49
FIGURE 4.6 The decision tree generated by the process DTL on TC (from Figure 4.2a)

with O+ = {Alice,Bob} and O− = {Charlie,David}. 52
FIGURE 4.7 Performance of Libra against Scythe and PatSQL on the 1,475 bench-

marks from the Spider and Geography datasets. Each data point (n, t)

for a tool indicates that it solved n benchmarks each within t seconds. . . 57
FIGURE 4.8 Sizes of generated programs for Libra, Scythe, and PatSQL. The bars

represent the benchmarks with reference solution of a given size that are

solved by each tool, and the hatched bar represents the subset of these

queries that are minimal. Since 99% of the queries generated by Libra are

minimal, there is very little visible unhatched bar. 59

viii

FIGURE 5.1 The architecture of the Mobius synthesis engine. We start by using a

pattern enumerator (such as EGS) to generate a non-recursive query that

is consistent with the input-output examples, and then generalize it into a

recursive query using a provenance-guided generalization algorithm. This

procedure, Generalize, repeatedly uses a constraint solver to generate

candidate solutions whose consistency it determines using Souffle query

evaluator Zhao et al. (2020). Analysis of failed candidate solutions result

in additional constraints that are fed back to the constraint solver thereby

pruning the search space in subsequent iterations. 62
FIGURE 5.2 The synthesis task is specified as a search for a relational query P that takes

the graph G as an input and returns a set of pairs of vertices O such that O

is a superset of O+ and disjoint from O−. We call such a query consistent

with the input-output examples. 63
FIGURE 5.3 The derivation tree of the tuple scc(c, d) for the queries T (Q0, µ) and

T ′(Q0, µ). The input to the query is the graph of Figure 2.3a. 78
FIGURE 5.4 Summary of the runtime of Mobius on the benchmark suite for the effective-

ness study. Mobius outperforms the state-of-the-art baselines GenSynth,

ILASP, and Popper. The synthesis time of Mobius is split between the

non-recursive phase where we use EGS and the generalization phase where

we use a provenance-guided search. 84
FIGURE 5.5 Summary of the accuracy studies on three graph benchmarks: path, connected,

and scc. Observe that Mobius achieves perfect accuracy on unseen data

as recursion is required to express the target concepts. 86
FIGURE 5.6 Comparison of the running time of EGS and Mobius on a suite of 79 non-

recursive benchmarks. Because Mobius begins with seed queries produced

by EGS, all points are naturally to the top-left of the y = x diagonal. The

dotted line corresponds to Mobius taking twice the time needed by EGS.

Only 6 benchmarks take longer to complete. 88

ix

FIGURE 6.1 Data describing traffic conditions in a city: (6.1a) Map of the city, (6.1b)

and listing of the input and output relations. The output relation Crashes

has an additional undesirable tuple Liberty St 91
FIGURE 6.2 Results of our experiments using EGS and EGS-R on a suite of 12 knowledge

discovery benchmarks. A datapoint (n, t) indicates that the corresponding

tool solved n of the benchmarks in less than t time. 94

x

CHAPTER 1

Introduction

The prevalence and use of structured data for diverse application domains including scientific

computing, medicine, and finance require users to produce small but inherently complex queries that

demand algorithmic insights and expertise of programming syntax. For end-users of these database

systems who may not be experts at programming, designing queries can become ardours.

Over the last ten years, program synthesis technology has matured to become a practical tool

that addresses this concern. Program synthesis aims to automatically find programs in a given

programming language that satisfy user intent. Unlike compilers that translate a formally specified

description (such as a regular language expression) to a low-level machine representation (such as

an automaton), synthesis tools perform a search over a space of candidate programs to generate a

program. The user intent for these programs can be defined in terms of formal specification, natural

language instances, or input-output examples.

Synthesis has been the holy grail of computer science research at least since the late 60s; it was consid-

ered by Pnueli to be one of the most central problems in the theory of computation [Pnueli and Rosner

(1989)]. It was soon proved that program synthesis, in general, is intractable, and therefore, all efforts

at synthesis have had to incorporate human insight into the synthesis process. This is primarily

done in two ways:

1. Restricting expressiveness of the programs, and

2. Providing additional supervision for users to direct the search process.

This thesis fundamentally studies the trade-off between these two ways in the context of relational

query synthesis.

1

1.1. Relational Query Synthesis

Relational queries are declarative logic programs and find applications in domains such as knowledge

discovery, program analysis, and in querying databases. They operate over relational algebras [Codd

(1970)] and form the basis of database query languages such as SQL, Datalog [Abiteboul et al. (1994)],

SPARQL [Pérez et al. (2009)], Cypher [Francis et al. (2018)], as well as their variants for querying

code, such as PQL [Martin et al. (2005)], LogiQL [Green (2015)], and CodeQL [Avgustinov et al.

(2016)].

The problem of synthesizing such logic programs from input-output examples has been studied over

the last two decades and a number of tools have been developed with varying restrictions on the

expressiveness of the programs and with different needs for additional supervision. In this section,

we summarize the advances in enumerative, constraint solving, and hybrid techniques to solve the

relational query synthesis problem. Each of the tools uses a form of instance-specific supervision to

guide the search.

1.1.1. Syntax-guided Techniques

Syntax-guided Synthesis (SyGuS) is a classical formulation of program synthesis where the user may

supplement the input-output examples with syntactic templates to constrains the space of allowed

programs. Si et al. (2018) build a syntax-guided tool called ALPS for the synthesis of relational

queries (in particular, Datalog queries) where the user provides instance-specific supervision in form

of meta-rules. According to the Si et al. (2018): the key challenge is to obtain a set of meta-rules

that is general enough to capture useful programs but specific enough to enable efficient synthesis.

Another paradigm for enumerative synthesis is a two-phased search where the synthesis problem

is decomposed into first searching for an abstract query and then searching for predicates that can

instantiate the abstractions. Wang et al. (2017a) develops the tool Scythe and Takenouchi et al.

(2021) develops the tool PatSQL that implement such a two-phased approach. Both the tools target

the domain of SQL queries and require an exhaustive list of constants that may be used for the

comparison operators in the query.

2

A syntax-guided technique that differs from these two paradigms is GenSynth, an evolutionary

search strategy that mutates candidate programs and evaluates their fitness on the input-output

examples. GenSynth stands out among the synthesis engine as it requires the least instance-specific

supervision. It requires the signatures of invented predicates, unless they coincide with that of an

input or output relations.

1.1.2. Constraint-solving Techniques

Constraint-solving techniques inherently require syntactic constraints restrict the search space to a

finite set of candidate programs. Then, they use SMT solvers to navigate through this finite search

space.

Albarghouthi et al. (2017) introduces a constraint-based synthesis technique for Datalog programs

that uses uses an SMT solver to search through the space of Datalog programs defined by a set of

constraints on the number of clauses in each program as well as the length of each clause.

ProSynth is a provenance-guided technique for Datalog synthesis that generates constraints using

the provenance information from a program evaluator, and requires an exhaustive list of candidate

rules to restrict the search space.

Similarly, other Inductive Logic Programming tools such as Popper, Metagol, and ILASP use

different syntactic constraints (hypothesis constraints, metarules, and mode declarations) to restrict

the search space. They all synthesize fragments of Answer Set Programs.

1.2. An Example-guided Approach to Synthesis

All existing techniques for synthesis of relational queries rely on instance-specific supervision. In

this thesis, we attempt to restrict the expressiveness of relational queries to develop fully automated

push-button techniques.

In recent years, techniques such as FlashFill [Gulwani (2011)] have demonstrated the effectiveness

of fully automated techniques when restricted to specific domains. FlashFill synthesizes string

transformations by analyzing the structure of input and output examples and searches for common

patterns between them. FlashRelate [Barowy et al. (2015)] and Golem [Muggleton and Feng (1990)]

3

are other examples of fully automated techniques that leverage the structure of the input-output

examples, and have shown to be more scalable then their syntax-guided and constraint-solving based

counterparts.

While all PBE techniques use the examples in some form, we call a technique example-guided only

when it meets the following criteria:

1. The candidate programs enumerated by the search depend on the latent structure of the

input-output examples, and not just a grammar of the target language, and

2. The input-output examples cannot be replaced by a black-box verification oracle that checks if

a candidate program is consistent with the input-output examples or not.

Additionally, our objective is to develop example-guided techniques that do not require instance-

specific supervision and allow for a fully automated push-button synthesis framework for relational

queries.

1.3. Contributions of this Dissertation

Concretely, this thesis makes the following contributions:

1. We identify a category of synthesis algorithms for PBE called Example-guided Synthesis which

exploit the latent structure in the provided examples while generating candidate programs.

2. We study the problem of relational query synthesis and establish its decidability and complexity.

3. We develop an example-guided algorithm for synthesizing conjunctive relational queries by

leveraging patterns in the input-output examples.

4. We show that this algorithm can be extended to support relational queries with a variety of

features such as disjunction, numerical comparison, and recursion.

5. We show that the algorithm can be extended to support learning in presence of noisy input-

output data.

4

6. We demonstrate that our technique outperforms state-of-the-art tools on a variety of benchmarks

across multiple dimensions: running time, quality of programs, and in proving unrealizability.

5

CHAPTER 2

Problem Formulation

We devote this chapter to formalizing the query synthesis problem and proving its decidability and

complexity.

2.1. Problem Setting

We begin by presenting an overview of the example-guided synthesis (EGS) framework. As an

example, consider a researcher who has data describing traffic accidents in a city and who wishes to

explain this data using information about the road network and traffic conditions.

We present this data in Figure 2.1. Suppose that at a given instant, accidents occur on Broadway

and Whitehall. The researcher observes that these streets intersect, that they both had traffic, and

that the traffic lights on both streets were green. They generalize this observation, and find that

the resulting hypothesis, that an accident occurs at every pair of streets with similar conditions, is

consistent with the data. One may formally describe their hypothesis as the following Horn clause:

Crashes(x) :- Intersects(x, y), HasTraffic(x), HasTraffic(y),

GreenSignal(x), GreenSignal(y), (2.1)

where x and y are universally quantified variables ranging over street names, “:-” denotes implication

“⇐”, and “,” denotes conjunction. Our goal is to automate the discovery of such hypotheses.

This problem can be naturally formalized as a programming-by-examples (PBE) task. Given a set

of input facts I encoded as relations, and a set of desirable and undesirable output facts, O+ and

O− respectively, we seek a program which derives all of the tuples in O+ and none of the tuples in

O−. In our example, we implicitly assume that the data is completely labelled, so that

O+ = { Crashes(Broadway), Crashes(Whitehall) },

6

W
IL

LI
A

M
 S

T

LIBERTY ST

WALL ST

B
RO

A
D

W
AY

W
HITEHALL ST

(a)

Intersects

Broadway Liberty St
Broadway Wall St
Broadway Whitehall
Liberty St Broadway
Liberty St William St
Wall St Broadway
Wall St William St
Whitehall Broadway
William St Liberty St
William St Wall St

GreenSignal

Broadway
Liberty St
William St
Whitehall

HasTraffic

Broadway
Wall St
William St
Whitehall

Crashes

Broadway
Whitehall

(b)

Figure 2.1: Data describing traffic conditions in a city: (2.1a) Map of the city, (2.1b) and listing of
the input and output relations. We would like to explain the accidents occurring on Broadway and
Whitehall.

7

and O− is the set of all other streets,

O− = { Crashes(Liberty St), Crashes(Wall St), Crashes(William St) }.

Traditional methods for PBE use syntax-guided enumerative techniques that search the space of

candidate programs. In our example, a candidate program would be a Horn clause with the premise

consisting of one or more of HasTraffic, GreenSignal, or Intersects literals.

A naive approach is to enumerate all candidate programs in order of increasing size till we find a

consistent hypothesis. For the running example, we will have to enumerate more than 12 × 106

candidate programs before discovering the one shown in Equation 2.1. Unsurprisingly, most work

on program synthesis has focused on reducing the size of this search space: in our context, tools

such as ALPS and ProSynth restrict the search space by only looking for programs composed of

rules from a fixed finite set of candidate rules Si et al. (2018); Raghothaman et al. (2020b), while

ILASP constrains the space through “mode declarations” that bound the number of joins (in our

case conjunctions) and the number of variables used Law et al. (2014, 2020b). On the other hand,

Scythe, a synthesis tool for SQL queries, first finds “abstract” queries that over-approximate the

desired output, and then searches for concrete instantiations of these abstract queries that are

consistent with the data Wang et al. (2017b).

2.2. Syntax and Semantics of Relational Queries

Different fragments of relational queries are defined using a variety of languages such as select-project-

join (SPJ) queries, SQL, Datalog, and Prolog. In this thesis, we will use the syntax of Datalog to

define relational queries.

2.2.1. Datalog Syntax

A relational query Q is a set of rules. To define the syntax of rules, we first fix a set of input

predicates, a set of invented predicates, and a set of output predicates. Each predicate R is associated

with an arity k. A literal, R(v1, v2, . . . , vk), consists of a k-ary predicate R with a list of k variables.

8

Then, a rule r is of the form:

Rh(u⃗h) :- R1(u⃗1), R2(u⃗2), . . . , Rn(u⃗n), (2.2)

where the single literal on the left, Rh(u⃗h), is the head of r and R1(u⃗1), R2(u⃗2), . . . , Rn(u⃗n), is called

the body of r. The literals in the body can have input predicates, invented predicates, or output

predicates, while the head of the rules must have either invented predicates or output predicates.

A variable that occurs in the head must appear at least once in the body in order to bound the

variables.

The program in Equation 2.1 is an example of a relational query. The head consists of Crashes(x)

and the body has five literals.

2.2.2. Semantics

The semantics of a relational query may be specified in multiple equivalent ways (Abiteboul et al.

(1994)). In our work, we will formalize their semantics using rule instantiations and derivation trees.

The semantics of a relational query is interpreted over a data domain D whose elements are called

constants. For simplicity of formalization, we are assuming that there is a single type. The synthesis

framework and its theoretical guarantees can be extended to support typed constants and typed

relations. We can define rule instantiation as:

Definition 2.2.1 (Rule Instantiation). Given a map v from variables to the data domain D, the

rule instantiation of a rule as in Equation 2.2 is:

Rh(v(u⃗h)) ⇐= R1(v(u⃗1)), R2(v(u⃗2)), . . . , Rn(v(u⃗n)).

That is, one can systematically replace each variable x by v(x). For example, consider the query in

Equation 2.1. One can systematically replace its variables according to the map {x 7→ Whitehall, y 7→

9

Broadway} to obtain the rule instantiation:

Crashes(Whitehall) ⇐= Intersects(Whitehall,Broadway),

HasTraffic(Whitehall), HasTraffic(Broadway),

GreenSignal(Whitehall), GreenSignal(Broadway). (2.3)

We say that a tuple t is derivable from input tuples I if there exists a rule r and a map v such that

on instantiating r with v, the head tuple Rh(v(u⃗h)) is t, and each of the tuples in the body Ri(v(u⃗i))

occur in I. Then, a relational query Q takes input tuples I and returns output tuples O = JQK(I) as

the set of all tuples that are derivable from I using rules in Q.

2.2.3. Syntax and Semantics of SPJ Queries

We now study select-project-join queries where selection supports categorical and numerical compar-

isons, and all joins are equi-joins. We will use SQL syntax to denote these SPJ queries.

To define the syntax of these queries, we first fix a set of input tables and a set of output tables.

For simplicity, the columns of each table are of either of the kinds: categorical, numerical, and

uncomparable.

The syntax of the select-project-join queries is defined by the grammar in Figure 2.2. The JOIN

operator featured in this query is an equi-join, that is a join parameterized by a set of columns θ.

Comparisons of the form (T.c = k) or (T.c ̸= k) are supported only for columns of the categorical

kind, all other comparisons are only supported for the numerical kind, and no comparisons are

supported for the uncomparable kind.

The semantics for these queries are as defined in classical works on relational algebra (Date (2009);

Imieliński and Lipski (1984)). We denote the set of tuples produced by query Q on input tables I as

JQK(I). We consider the set-semantics and not bag-semantics, that is, a relation is a set of literals

with the same predicate (such as registration, instructor, and department).

10

Q :- SELECT (T1.c1, . . . Tn.cn) FROM J WHERE σ

J :- T | J JOIN T ON θ

σ :- T.c ∽ k | σ1 AND σ2 | σ1 OR σ2

θ :- T1.c1 = T2.c2 | θ1 AND θ2

∽ :- = | ̸= | < | ≤ | > | ≥

Figure 2.2: Grammar for select-project-join queries. T ranges over tables, c ranges over column
names, and k ranges over constant values. The grammar does not feature operators for negation,
aggregation, or ordering.

2.2.4. Definitions

In this section, we define some terms that are used throughout the proposal.

Definition 2.2.2 (Conjunctive Queries). A query comprising of a single rule as defined in Section 2.2.1

that uses only input predicates in its body is termed a conjunctive query.

Conjunctive queries are also termed select-project-join (SPJ) queries because of their representation

in relational algebra, and are correspond to queries expressed using the select-from-where idiom in

SQL. Adding the disjunction operator to these queries give us union of conjunctive queries:

Definition 2.2.3 (Union of Conjunctive Queries (UCQ)). A query comprising of rules as defined in

Section 2.2.1 that use only input predicates in their bodies is termed a union of conjunctive queries.

Observe that UCQs are inherently non-recursive as the predicates are divided into either output

predicates that can occur in the head of a rule or input predicates that can occur in the body of a

rule. In order to define recursive queries, we introduce the concept of invented predicates.

Definition 2.2.4 (Invented Predicate). An invented predicate is one that is neither an output

predicate, nor an input predicate.

Consider the following program Pscc to identify the pair of vertices in a directed graph that are in

11

the same strongly connected component (given only the edge relation as an input) :

scc(x, y) :- path(x, y), path(y, x).

path(x, z) :- path(x, y), path(y, z).

path(x, y) :- edge(x, y).

(2.4)

Observe that the predicate path is neither an input predicate nor an output predicate. It is the

transitive closure of edge that is used as an intermediate to define the scc relation. Therefore, it is

an example of an invented predicate. Additionally, path also calls itself and in that sense, it is a

recursive predicate.

Definition 2.2.5 (Recursive Predicate). A predicate R is said to be recursive if there exists a finite

sequence of rules r1, r2, . . . , rk such that R occurs in the head of rule r1 and the body of rule rk,

and the head of each rule ri+1 occurs in the body of the rule ri.

That is, a predicate is said to be recursive if it can call itself during the execution of the program.

The semantics of a recursive query are best defined using derivation trees.

Definition 2.2.6 (Derivation Tree). Given a query P and a valuation of the input relations I, a

derivation tree of a tuple t is a labelled rooted tree where: (a) each node of the tree is labeled by

a tuple, (b) each leaf is labeled by a tuple in I; (c) the root node is labeled by t; and (d) for each

internal node labeled α, there exists an instantiation α ⇐= β1, . . . , βn of a rule in P such that the

children of the node are respectively labelled β1, . . . , βn.

We say that a query P derives t using I if there exists a derivation tree for t. Consider, for example

the graph in Figure 2.3a. Figure 2.3b shows the derivation tree for scc(a, b) in Pscc. The output

JP K(I) of a query P given an input I is the set of output tuples R(c1, c2, . . . , ck) which it derives

from I. The query Pscc on the input in Figure 2.3a generates the output as in Figure 2.3c.

12

a b c

d

e f

(a) Graph G.

edge(b, c)

path(b, c)edge(a, b)

path(a, c)

edge(c, a)

path(c, a)

scc(a, c)

(b) Example derivation tree.
Query semantics (JPsccK(I)):

scc(a,a), scc(a,b), scc(a,c),
scc(b,a), scc(b,b), scc(b,c),
scc(c,a), scc(c,b), scc(c,c),
scc(e,e), scc(e,f), scc(f,e)
scc(f,f)

(c) Semantics of Pscc with respect to the input of di-
rected graph G as in Figure 2.3a. The set I is the set
of input tuples and the query semantics are JPsccK(I).

Figure 2.3: The synthesis task is specified as a search for a relational query P that takes the graph
G as an input and returns a set of pairs of vertices O such that O is a superset of O+ and disjoint
from O−.

2.3. Relational Query Synthesis Problem

Our ultimate goal is to synthesize relational queries which are consistent with a given set of examples.

In this context, an example consists of input and output tuples; the user has labeled the output

tuples as either positive or negative. The objective then is to synthesize a program which is consistent

with the examples, that is, a program which derives all of the positive tuples and none of the negative

tuples.

Problem 2.3.1 (Relational Query Synthesis Problem). Given input relation names I, output

relation names O, input tuples I, and output tuples partitioned as O+ and O−, return a relational

query Q such that O+ ⊆ JQK(I) and O− ∩ JQK(I) = ∅, if such a query exists, and unsat otherwise.

We call the triple M = (I,O+, O−) an example, and a query Q is said to be consistent with it if

O+ ⊆ JQK(I) and O− ∩ JQK(I) = ∅.

13

2.4. Decidability and Complexity

We will now show that checking whether a synthesis problem instance is solvable is co-NP complete.

One of the main ingredients of this proof will be the following construction:

Let the data domain D = {c1, c2, . . . , cn}, and the input tuples I = {R1(c⃗1), R2(c⃗2), . . . , Rn(c⃗n)}.

Then, for t = R(c⃗), we then define the rule r(t) as follows:

r(t) :R(v⃗):- R1(v⃗1), R2(v⃗2), . . . , Rn(v⃗n).

where the head R(v⃗) and the body literals Ri(v⃗i) are obtained by by consistently replacing the

constants in the output tuple R(c⃗) and input tuples Ri(c⃗i) with fresh variables vc. The idea is that

the body of this rule captures all patterns which exist among the input tuples. The rule r(t) is

therefore the strongest query in this data which also produces t. This gives us the following lemma:

Lemma 2.4.1. Given a problem instance E = (I,O+, O−), let QO+ = {r(t) : t ∈ O+}. The problem

instance admits a solution if and only if Q+
O is consistent with E.

Proof. One direction of the claim is immediate: if QO+ is consistent with E, then the problem

admits a solution.

In the reverse direction, suppose that QO+ is not consistent with E but there exists a query P

consistent with E. Observe that for each t ∈ O+, the rule r(t) can produce it by picking an

appropriate instantiation with which it was constructed. Hence, there exists a tuple t− ∈ O− that is

produced by QO+ . We will show that P also produces t− and establish a contradiction.

Since P is consistent with E, t ∈ JP K(I). Let τ be the derivation tree which produces t. Pick the

variable valuation γ : X → D which causes r(t) to produce the tuple t−. Let v : D → X be the map

that was used to construct r(t). Apply the constant renaming map f = γ ◦ v : D → D to every node

of the derivation tree τ to produce the renamed tree f(τ). Observe that f(τ) is still a well-formed

derivation tree of the query P , and that f(t) = t−. It follows that the query P also produces t− as

an output tuple, contradicting our assumption that P was consistent with E.

14

We now establish our main complexity result, which follows from Claims 2.4.3, 2.4.4, and 2.4.5.

Theorem 2.4.2. Determining whether an instance of the relational query synthesis problem admits

a solution is co-NP complete.

We devote the rest of this section to the proof of this theorem.

Claim 2.4.3. The problem of determining whether Q+
O is consistent with the input-output example

E = (I,O+, O−) is in co-NP.

Proof. By construction, O+ ⊆ JQO+K(I) and it only remains to check that O− ∩ JQO+K(I) = ∅. A

rule r ∈ QO+ and map v from variables to constants serve as a certificate of O− ∩ JQ+
OK(I) ̸= ∅. The

certificate can be verified by confirming that the tuple derived by instantiating r with v is in O−. It

follows that checking whether QI 7→O+ is consistent with E is in co-NP.

To show co-NP hardness, we reduce the problem of checking whether an undirected graph G = (V,E)

has a clique of size k to that of determining whether an instance of the synthesis problem is

unsolvable. Without loss of generality, assume that G does not have self-loops. Consider a set of k

constants Vk = {v1, v2, . . . , vk} disjoint from V . Then, consider the instance of the synthesis problem

(I,O+, O−), where:

I = {edge(u, v) | (u, v) ∈ E}

∪ {edge(vi, vj) | vi, vj ∈ Vk, vi ̸= vj},

O+ = {clique(v) | v ∈ Vk}, and

O− = {clique(u) | u ∈ V }.

Claim 2.4.4. If G does not have a clique of size k, then the given instance is realizable.

15

Proof. Consider a query Q with only one rule:

clique(x1) :- edge(x1, x2), . . . , edge(xi, xj), . . . edge(xk, xk−1).

Where the premise consists of edge(xi, xj) for i ̸= j. If G does not have a clique, then we claim that

JP K(I) = O+. It is clear that O+ ⊆ JQK(I). For sake of contradiction, let clique(u) ∈ O− ∩ JQK(I).

Then, there is a map v : {x1, . . . , xk} → V ∪ Vk such that instantiating the rule r with v derives

clique(u) for some u ∈ V . I must contain a tuple edge(v(xi), v(xj)) ∈ I for each i ̸= j. By

construction of I, if edge(x, y) ∈ I, then x ̸= y, so each v(xi) is distinct. Also, we know that

u = v(x1) ∈ V and edge(u, v(xi)) ∈ I for 2 ≤ i ≤ k, hence, v(xi) ∈ V . Let uk = v(xk). We have

distinct vertices u1, . . . , uk each in V such that there is an edge between them. Then, these vertices

form a k-clique, contradicting the assumption.

Claim 2.4.5. If G has a clique of size k, then the given instance is unrealizable.

Proof. Let the vertices u1, . . . , uk form a clique in G. Consider the map π : V ∪ Vk → V where

π(u) = u for u ∈ V and π(vi) = ui for vi ∈ Vk. For sake of contradiction, let P be a query consistent

with the input-output example, and hence, clique(v1) ∈ JP K(I). The derivation tree for clique(u1)

in P can be constructed by replacing each v by π(v) in the derivation tree of clique(v1) in P .

Hence, u1 ∈ JP K(I) ∩O−, contradicting the assumption that P is consistent with the input-output

example.

Lemma 2.4.1, and Claims 2.4.3, 2.4.4, 2.4.5 allow us to conclude the Relational Query Synthesis

Problem is co-NP complete. Moreover, the QO+ construction synthesizes a polynomial sized relational

query using the input-output examples.

16

CHAPTER 3

Synthesis of Conjunctive Queries

In this chapter, we describe the core algorithm for example-guided synthesis of relational queries.

For the purpose of this chapter, we will be using the running example of traffic crashes.

3.1. Searching Patterns of Co-occurence

Consider the alternative representation of the training data shown in Figure 3.1, summarizing input

facts I. We call this the constant co-occurrence graph GI : every constant is mapped to a vertex,

and the edges indicate the presence of a tuple in which the constants occur simultaneously.

In order to synthesize a query, we pick an output tuple, say Whitehall, and focus on the por-

tion of the graph surrounding it. Of the 18 tuples present in the data, only 4 tuples refer

to this street: GreenSignal(Whitehall), HasTraffic(Whitehall), Intersects(Whitehall, Broadway), and

Intersects(Broadway, Whitehall). With these tuples, we can identify the following candidate queries:

q1 : Crashes(x) :- GreenSignal(x),

q2 : Crashes(x) :- HasTraffic(x),

q3 : Crashes(x) :- Intersects(x, y), and

q4 : Crashes(x) :- Intersects(y, x).

Notice that these queries produce the desirable tuples Crashes(Whitehall) and Crashes(Broadway), but

also produce several undesirable tuples: two undesirable tuples by q1 and q2, and three undesirable

tuples by q3 and q4 respectively.

Each of these candidate programs can be made more specific by considering sets of tuples. For

example, one can extend the set C1 = { GreenSignal(Whitehall) } which produces q1 with a new

17

Wall St
HasTraffic

HasTraffic,
GreenSignal

Whitehall

HasTraffic,
GreenSignal

William St

GreenSignal
Liberty St

HasTraffic,
GreenSignal

Broadway

Intersects

In
te
rs
ec

ts

Int
ers

ec
ts

Int
ers

ec
tsIntersects

Figure 3.1: The induced constant co-occurrence graph, GI . We would like to explain the accidents
occurring on Broadway and Whitehall.

tuple HasTraffic(Whitehall) to obtain:

q5 : Crashes(x) :- GreenSignal(x), HasTraffic(x). (3.1)

In contrast to q1, this query only produces one undesirable tuple, namely, Crashes(William St).

Instead of directly enumerating candidate programs, our insight is to enumerate the subsets of the

constant co-occurrence graph to generate candidates. Our algorithm tracks enumeration contexts:

each such context is a set of input tuples obtained from a connected sub-graph of the co-occurrence

graph GI , and can be generalized into a candidate program by systematically replacing its constants

with fresh variables.

Our main insight is that the only tuples which increase the specificity of an enumeration context are

those which are directly adjacent to it in the co-occurrence graph. For example, consider context

C5 = { GreenSignal(Whitehall), HasTraffic(Whitehall) } which produces the query q5 in Equation 3.1.

18

Figure 3.2: Architecture of the EGS algorithm.

Observe in Figure 3.1 that there are exactly two tuples incident on C5: t = Intersects(Whitehall,

Broadway) and t′ = Intersects(Broadway,Whitehall). We conclude that there are exactly two contexts

which need to be enumerated as successors to C5, namely: C6 = C5 ∪ {t} and C7 = C5 ∪ {t′}. These

contexts respectively produce the candidate queries:

q6 : Crashes(x) :- GreenSignal(x), HasTraffic(x), Intersects(x, y), and

q7 : Crashes(x) :- GreenSignal(x), HasTraffic(x), Intersects(y, x).

The EGS algorithm repeatedly strengthens the enumeration context C with new tuples until it finds

a solution program. For example, after five rounds of iterative strengthening, the context grows to

include the tuples:

C = { GreenSignal(Whitehall), HasTraffic(Whitehall),

Intersects(Whitehall,Broadway),

GreenSignal(Broadway), HasTraffic(Broadway) }, (3.2)

which, when used to explain Crashes(Whitehall), produces the desired solution in Equation 2.1.Fig-

ure 3.2 presents the overall architecture of the EGS algorithm. It maintains a set of enumeration

contexts, organized as a priority queue, and repeatedly extends each of these contexts with a new

tuple, in an example-guided manner. Each enumeration context can be naturally abstracted into

a candidate query, as discussed in Section 2.2.2, and the procedure returns as soon as it finds an

explanation which is consistent with the data. The priority function depends on both the size of the

candidate program, and its accuracy on the training data, and we formally define it in Section 3.2.3.

Additionally, because the training data is finite, the co-occurrence graph is also finite, and therefore

the EGS algorithm will eventually exhaust the space of enumeration contexts. At this point,

Lemma 3.2.2 guarantees the non-existence of a program which is consistent with the training data,

19

thus proving the completeness of the synthesis procedure.

While the approach of iteratively strengthening candidate queries is similar to that followed by

decision tree learning algorithms Quinlan (1986); Grzymala-Busse (1993), a notable difference is

the presence of the queue in EGS, which holds alternative candidate explanations. The difference

between the two algorithms is therefore similar to the difference between breadth-first search and

greedy algorithms, with EGS being biased towards producing small candidate programs.

In our example, a syntax-guided prioritization would be forced to enumerate all programs with

less than five joins, which induces an extremely large search space: Scythe takes approximately

16 seconds to find a consistent query and ILASP takes approximately 2 seconds, while the EGS

algorithm returns in less than one second.

3.2. Example-Guided Synthesis Algorithm

In this section and the next, we formally describe the EGS algorithm for synthesizing relational

queries. For ease of presentation, we first develop our core ideas for the case of a single desirable

output tuple with a single column, t = R(c). Given a set of input tuples I, the target tuple t, and a set

of undesirable output tuples, the ExplainCell algorithm produces a query which is consistent with

the example (I, {t}, O−). We extend this synthesis procedure to solve for multi-tuple multi-column

output relations in Section 3.3.

The query is constructed by analyzing patterns of co-occurrence of constants in the examples,

which we summarize using the constant co-occurrence graph. We first formalize this graph, and

then introduce enumeration contexts as a mechanism to translate these patterns into relational

queries. We conclude the section with a description of the ExplainCell procedure which searches

for appropriate enumeration contexts using the co-occurrence graph.

3.2.1. The Constant Co-occurrence Graph

Recall that the data domain D is the set of all constants which appear in the input tuples t ∈ I.

Then, the constant co-occurrence graph, GI = (D,E), is a graph whose vertices consist of constants

20

in D and with labeled edges E which are defined as:

E = {ci
R−−→ cj | input tuple R(c1, c2, . . . , ck) ∈ I}. (3.3)

In other words, there is an edge c →R c′ iff there is a tuple t in the input relation R which

simultaneously contains both constants c and c′. Observe that this makes each edge bi-directional.

If constants c and c′ occur in a tuple t, we say that t witnesses the edge c →R c′. The constant

co-occurrence graph induced by the example of Figure 2.1b is shown in Figure 3.1.

The main insight is that patterns in the training data can be inferred by examining the co-occurrence

relationships between constants. We express these patterns as subgraphs of the co-occurrence

graph: as a consequence, the final ExplainCell procedure of Algorithm 1 reduces to the problem of

enumerating subgraphs of GI .

3.2.2. Enumeration Contexts

An enumeration context is a non-empty subset of input tuples, C ⊆ I. Equation 3.2 shows an

example of an enumeration context. As Algorithm 1 explores GI , it builds these contexts out of the

tuples which witness each subsequent edge.

We can naturally translate a context C = {R1(c⃗1), R2(c⃗2), . . . , Rn(c⃗n)} and an output tuple t = R(c⃗)

into a conjunctive query rC 7→t as follows:

rC 7→t : R(v⃗) :- R1(v⃗1), R2(v⃗2), . . . , Rn(v⃗n), (3.4)

where the head R(v⃗) and body literals Ri(v⃗i) are obtained by consistently replacing the constants in

the output tuple t = R(c⃗) and in the contributing input tuples R(c⃗i) with fresh variables vc. We say

that a context C explains a tuple t when the rule rC 7→t is consistent with (I, {t}, O−).

Recall from Section 2.2.2 that a rule may be instantiated by replacing its variables with constants,

analogous to the process of specialization. In contrast, the procedure to obtain rC→t from the context

C and output tuple t may be viewed as a process of generalization. This correspondence between

21

enumeration contexts and rule instantiations allows us to state the following theorem:

Theorem 3.2.1. Given an example M = (I, {t}, O−), there exists a context C ⊆ I explaining t if

and only if there exists a conjunctive query consistent with the example.

Proof Sketch. Clearly, if context C explains t, then, by definition, rC 7→t is consistent with example

M . Conversely, if there is a conjunctive query Q consistent with M , then let v be a valuation map

deriving t in query Q. Then, consider the context C ⊆ I to be the set of tuples that occur in the

premise of the rule in Q when it is instantiated with v. Observe that rC 7→t is the rule in query Q

and hence the context C ⊆ I explains t.

If a context C explains a tuple t and if C ⊆ C ′, then C ′ also explains t. We can therefore apply

Theorem 3.2.1 with the largest available context, C = I, i.e. the set of all input tuples, to prove the

following lemma, which establishes the decidability of the relational query synthesis problem:

Lemma 3.2.2. The given instance of the relational query synthesis problem M = (I, {t}, O−) admits

a solution if and only if rI 7→t is consistent with M .

3.2.3. Learning Conjunctive Queries

See Algorithm 1 for a description of the ExplainCell procedure, which forms the core of the EGS

synthesis algorithm. See Figure 3.2 for a graphical description of its architecture.

The algorithm maintains a priority queue L of enumeration contexts and iteratively expands these

contexts by drawing on adjacent tuples from the constant co-ocurrence graph GI . It initializes

this priority queue in Step 2, with all input tuples t′ that contain the target concept c. In

the case of our running example, to explain the tuple Crashes(Broadway), we would initialize L

to {C1, C2, C3, C4}, with C1 = {GreenSignal(Broadway)}, C2 = {HasTraffic(Broadway)}, C3 =

{Intersects(Whitehall,Broadway)}, and C4 = {Intersects(Broadway,

Whitehall)}. These contexts result in the queries q1–q4 shown in Section 3.1. It subsequently iterates

over the elements of L, and enqueues new contexts for later processing in Step 3(c)ii. In Step 3b,

the algorithm returns the first enumeration context which is found to be consistent with the training

22

data.

Algorithm 1 ExplainCell(I,R(c), O−), where t = R(c) is an output tuple with a single field.
Produces an enumeration context C ⊆ GI such that rC 7→t is consistent with the example (I, {t}, O−).

1. Let GI = (D,E) be the constant co-occurrence graph.
2. Initialize the priority queue, L:

L := {{t′} | t′ ∈ I contains the constant c}. (3.5)

Each element C ∈ L is a subset of the input tuples, C ⊆ I.
3. While L ̸= ∅:

(a) Pick the highest priority element C ∈ L, and remove it from the queue: L := L \ {C}.
(b) If rC→t is consistent with (I, {t}, O−), then return C.
(c) Otherwise:

i. Let N = {c ∈ D | ∃t′ ∈ C where t′ contains c}.
ii. For each constant c ∈ N , edge e = c →R c′ in GI , and for each additional input tuple

t′ ∈ I \ C which witnesses e, update:

L := L ∪ {C ∪ {t′}}.

4. Now, since L = ∅, return unsat.

A critical aspect of the ExplainCell algorithm is the priority function which arranges elements of

the queue L. The EGS algorithm permits two choices for this priority function: We could consider

the enumeration contexts in ascending order of their size, so that:

p1(C) = −|C|.

This would guarantee the syntactically smallest solution which is consistent with the data. Alterna-

tively, we could organize the enumeration contexts in lexicographic order of their scores, defined as

the number of undesirable tuples eliminated per literal,

score(C) =
|O− \ JrC 7→tK(I)|

|C|
,

and the size of the context, so that:

p2(C) = (score(C),−|C|).

23

For example, the score of the contexts C1 from Section 3.1 is 1.0 tuples/literal, as it eliminates one

undesirable tuple, Crashes(Wall St), using one literal. On the other hand, the context C3 does not

eliminate any undesirable tuples, so that its score is 0. Similarly, the context C5 eliminates two

undesirable tuples, Crashes(Wall St) and Crashes(Liberty St) using two literals, therefore resulting in

the score 1.0 tuples/literal. Therefore we have p2(C1) > p2(C5) > p2(C3).

In this way, the priority function p2 simultaneously prioritizes enumeration contexts with high

explanatory power and small size, and is inspired by decision tree learning heuristics which greedily

choose decision variables to maximize information gain. In practice, we have found this function p2

to result in faster synthesis times than p1 without incurring a significant increase in solution size,

and we therefore use this function in our experiments in Section 3.4. We remark that the desired

solution may not always be the smallest, and searching for small solutions can result in overfitting.

We further discuss overfitting in Section 3.4.

After enumerating all possible contexts, if the algorithm has not found any context which explains

the training data, Lemma 3.2.2 implies that the problem does not admit a solution. The following

theorem formalizes this guarantee:

Theorem 3.2.3 (Completeness). Given an example M = (I, {t}, O−), where t = R(c),

ExplainCell(I, t, O−) returns a context C ⊆ I such that the query rC 7→t is consistent with (I, {t}, O−)

if such a query exists, and returns unsat otherwise.

Proof Sketch. In the first direction, if ExplainCell(I, t, O−) returns a context C then, by construc-

tion, rC 7→t is consistent with (I, {t}, O−). To prove the converse, we assume for simplicity that the

graph GI is connected. If ExplainCell(I, t, O−) returns unsat, then the last context considered in

the loop in Step 3 must have been the set of all input tuples, C = I. From Lemma 3.2.2, it follows

that the problem is unsolvable.

24

Kopa Kiara

Simba

Mufasa Sarabi

Nala

Jasiri Sarafina

Figure 3.3: Example of a genealogy tree, used as training data to learn the programs Pgrandparent
and Psibling. Sarabi, Sarafina, Nala, and Kiara are female while Mufasa, Jasiri, Simba, and Kopa are
male.

3.3. Extensions of the Synthesis Algorithm

In this section, we extend the central ExplainCell procedure described in Algorithm 1 with the

ability to synthesize output relations of any arity and with any number of tuples, and also to

synthesize queries which require negation.

As an example, we consider the problem of learning kinship relations from the training data in

Figure 3.3. We have two binary (two column) input relations, father and mother, and we would

like to learn queries which describe grandparents and siblings.

3.3.1. Multi-Column Outputs

In order to support multi-column outputs, we explain the fields of the tuple one at a time. Say the

output table has k columns, and we wish to explain a tuple of the form t = R(c1, c2, . . . , ck). We

modify the ExplainCell procedure to synthesize explanatory contexts C1 ⊆ C2 ⊆ . . . ⊆ Ck ⊆ I such

that each context Ci explains the first i fields of t, that is, they explain t[1..i] = Ri(c1, c2, . . . , ci).

We call this object the i-slice of t. We also refer to slices of entire relations such as O+[1..i] and

O−[1..i] by lifting the slicing operation to sets of tuples in the natural manner.

For example, consider the task of learning the grandparent relation from the input data in Figure 3.3.

Consider the output labels:

O+ = {grandparent(Sarabi,Kiara)}

O− = {grandparent(Sarabi, Simba)}

25

Then, in order to find a query consistent with M = (I,O+, O−), we will first search for a context

C1 ⊆ I which explains t[1] = grandparent1(Sarabi), and then grow it to C2 which explains

t = t[1..2] = grandparent(Sarabi,Kiara).

Observe that the negative examples also need to be sliced appropriately. In this example, the search for

a context consistent with (I,O+[1], O−[1]) would fail since O+[1] = O−[1] = {grandparent1(Sarabi)},

making this instance unrealizable. We therefore define the forbidden i-slice, Fi as the set of tuples tf =

(c′1, c
′
2, . . . , c

′
i) of arity i such that every extension of tf into a k-ary tuple, te = (c′1, c

′
2, . . . , c

′
i, . . . , c

′
k),

is destined to appear in O−: te ∈ O−. We achieve this by formally defining:

Fi = O−[1..i] \ (U \O−)[1..i], (3.6)

where U = Dk is the set of all k-ary tuples over the data domain. In the grandparent example we

have F1 = ∅, resulting in the sliced example:

M1 = (I, {t[1]}, F1) = (I, {grandparent1(Sarabi)}, ∅).

Now, we wish to find C1 ⊆ C2 ⊆ I such that rC1 7→t[1] is consistent with M1 and rC2 7→t is consistent

with M . We can find C1 by calling ExplainCell(I, t[1], F1), which will give us the result:

C1 = {mother(Sarabi, Simba)}.

To grow it to C2, we modify the ExplainCell procedure to initialize the worklist L in Equation 3.5

as:

L = {C1 ∪ {t} | ∀t ∈ I containing Kiara}

= {C1 ∪ {father(Simba,Kiara)},

C1 ∪ {mother(Nala,Kiara)}}.

26

More formally, we define the ExplainCellCi−1
(I, t[1..i], Fi) procedure by modifying the initialization

step of Equation 3.5 so that:

L = {Ci−1 ∪ {t′} | t′ ∈ I contains t[i]}. (3.7)

We then follow the same process to expand the subgraph one edge at a time, which in case of our

running example produces the context:

C2 = {mother(Sarabi, Simba), father(Simba,Kiara)}

We formally present the ExplainTuple procedure in Algorithm 2. The completeness guarantee of

Theorem 3.2.3 carries over as:

Lemma 3.3.1. Given a context Ci−1 which explains a sliced example Mi−1 = (I, {t[1...(i−1)]}, Fi−1),

ExplainCellCi−1
(I, t[1..i], Fi) returns a context Ci ⊆ I such that the query rCi 7→t[1..i] is consistent

with M = (I, {t[1..i]}, Fi) if such a query exists, and returns unsat otherwise.

Algorithm 2 ExplainTuple(I, t, O−). Given a tuple t with arity k ≥ 1, synthesizes a context C
which is consistent with the example (I, {t}, O−).

1. Let t = R(c1, c2, . . . , ck).
2. Initialize the context C0 = ∅.
3. For i ∈ {1, 2, . . . , k}, in order:

(a) Construct the forbidden i-slice, Fi as in Equation 3.6.
(b) Define Ci = ExplainCellCi−1

(I, t[1..i], Fi). If the procedure fails, return unsat.
4. Return Ck.

3.3.2. Unions of Conjunctive Queries

Observe that while the context generated above captures the concept:

grandparent(x, y) :- mother(x, z), father(z, y),

the assumption of a single output tuple does not allow us to express the full grandparent relation

(involving both grandfather and grandmother concepts). We therefore extend the tool to allow for

multiple positive output tuples and extend the query language to support disjunctions, that is, we

27

now synthesize unions of conjunctive queries (UCQ). Suppose we are given:

O+ = {grandparent(Sarabi,Kiara), grandparent(Mufasa,Kopa),

grandparent(Jasiri,Kopa), grandparent(Sarafina,Kiara)}

O− = {grandparent(Mufasa,Kiara), grandparent(Sarafina,Nala)}

In order to find a UCQ consistent with M = (I,O+, O−), we use a divide-and-conquer strategy: We

separately synthesize a conjunctive query that explaining each desired tuple, and then construct

their union. Because the rules are non-recursive, it follows that their union is consistent with the

training data. In the running example, we get the following queries for each of the four tuples in O+:

q1 : grandparent(x, y) :- father(x, z), father(z, y).

q2 : grandparent(x, y) :- father(x, z), mother(z, y).

q3 : grandparent(x, y) :- mother(x, z), father(z, y).

q4 : grandparent(x, y) :- mother(x, z), mother(z, y).

Observe that the UCQ with the rules {q1, q2, q3, q4} is consistent with (I,O+, O−). This approach is

similar to the technique used by eusolver which first synthesizes small programs that conform to

portions of the full specification, and then glues them together using conditional statements and

case splitting operators provided by the target language Udupa et al. (2013).

In order to implement this procedure, we maintain a set of unexplained output tuples O?, which

is initialized to O+, and repeatedly generate conjunctive queries explaining tuples t ∈ O? until

all tuples are explained. We construct these conjunctive queries by invoking the ExplainTuple

procedure of Section 3.3.1. We formally describe this process in Algorithm 3. Using the completeness

guarantee of the ExplainTuple procedure, we have:

Lemma 3.3.2. Given example M = (I,O+, O−), LearnUCQ(I,O+, O−) returns a union of conjunc-

tive queries Q consistent with M , if such a query exists, and returns unsat otherwise.

28

Algorithm 3 EGS(I,O+, O−). Given an example M = (I,O+, O−), finds a UCQ Q consistent
with M if such a query exists, and returns unsat otherwise.

1. Initialize Q to be the empty query, Q := ∅.
2. Initialize the set of still-unexplained tuples, O? := O+.
3. While O? is non-empty:

(a) Pick an arbitrary tuple t ∈ O?.
(b) Synthesize an explanation,

Ct = ExplainTuple(I, t, O−),

and construct qt = rCt→t.
(c) If synthesis fails, return unsat.
(d) Otherwise, update:

Q := Q ∪ {qt}, and O? := O? \ JqtK(I).

4. Return Q.

3.3.3. Negation

Finally, we extend the EGS algorithm to synthesize queries with negation. Similar to propositional

formulas, UCQs also admit negation normal forms, where the negation operators are pushed down

all the way to the individual literals. For example, a rule of the form:

r : R(x, y, z) :- ¬(R1(x), R2(y)), R3(z).

can instead be written as the disjunction of two rules:

r1 : R(x, y, z) :- ¬R1(x), R3(z).

r2 : R(x, y, z) :- ¬R2(y), R3(z).

We therefore limit ourselves to learning UCQs in negation normal form. In our implementation, the

user identifies input relation names that can possibly be negated in the final result. For an input

relation name R of arity k, let I(R) denote the set of tuples in I labeled with R. Given the data

29

domain D, we explicitly construct the negated relation ¬R with the following tuples:

I(¬R) = {R(c⃗) | c⃗ ∈ Dk and R(c⃗) ̸∈ I(R)}.

We add ¬R to the set of input relations and find a solution using Algorithm 3, exactly as before.

Consider, for example the task to learn the sibling relation from the training data in Figure 3.3.

Suppose we are given:

O+ = {sibling(Kopa,Kiara)}

O− = {sibling(Kopa,Kopa)}.

We can show that no strictly positive program exists which can distinguish sibling(Kopa,Kiara) from

sibling(Kopa,Kopa) as our hypothesis space does not support the inequality check, Kopa ̸= Kiara.

If we allow negation, a query consistent with (I,O+, O−) is:

sibling(x, y) :- mother(z, x), mother(z, y),¬(x = y).

We can encode the relation ¬(x = y) using a two-column relation table that pairs unequal constants.

We call this relation neq, and define it as:

I(neq) = {(c, c′) ∈ D2 | c ̸= c′}.

With this additional input relation, EGS is able to solve for the desired concept in less than one

second.

3.4. Experimental Evaluation

We have implemented the EGS algorithm in Scala comprising 2200 lines of code. In this section, we

evaluate it to answer the following questions:

30

Q1: Performance: How effective is EGS on synthesis tasks from different domains in terms of

synthesis time?

Q2: Quality of Programs: How do the programs synthesized by EGS measure qualitatively?

Q3: Unrealizability: How does EGS perform on synthesis tasks that do not admit a solution?

We present our benchmark suite in Section 3.4.1 and three baselines to compare EGS against in

Section 3.4.2. We present our empirical findings for Q1–Q3 in Sections 3.4.3–3.4.5.

We performed all experiments on a server running Ubuntu 18.04 LTS over the Linux kernel version

4.15.0. The server was equipped with an 18 core, 36 thread Xeon Gold 6154 CPU running at 3

GHz and with 394 GB of RAM. Note that EGS is single-threaded and is CPU-bound rather than

memory-bound on all benchmarks. Therefore, similar results should be obtained on contemporary

laptops and desktop workstations with similarly-clocked processors.

3.4.1. Benchmark Suite

We evaluate the EGS algorithm on a suite of 86 synthesis tasks. Of these, 79 admit a solution,

meaning there exists a relational query which can perfectly explain their input-output examples.

These 79 benchmarks are from three different domains: (a) knowledge discovery, (b) program analysis,

and (c) database queries.

Knowledge discovery. These benchmarks comprise 20 tasks that involve synthesizing conjunctive

queries and unions of conjunctive queries frequently used in the artificial intelligence and database

literature.

Program analysis. These benchmarks comprise 18 tasks that involve synthesizing static analysis

algorithms for imperative and object-oriented programs.

Database queries. These benchmarks comprise 41 tasks that involve synthesizing database queries.

These tasks, originally from StackOverflow posts and textbook examples, are obtained from Scythe’s

benchmark suite Wang et al. (2017b).

31

There are seven additional benchmarks that do not admit a solution. We describe them in Section

3.4.5.

In each of the benchmark is provided with an exhaustive set of positive output tuples. The tuples

not in the positive set are labelled negative. This data is provided upfront and not in an interactive

fashion.

Table 3.1 presents characteristics of all 86 benchmarks, including the number of input-output

relations, number of input-output tuples, and whether the intended programs involve disjunctions

(∨) or negations (¬). In total, 17 tasks involve disjunctions while 9 of them involve negations.

3.4.2. Baselines

We compare EGS with three state-of-the-art synthesizers that use different synthesis techniques:

Scythe Wang et al. (2017b), which uses enumerative search; ILASP Law et al. (2020b), which

is based on constraint solving; and ProSynth Raghothaman et al. (2020b), which uses a hybrid

approach by combining search with constraint solving.

ILASP and ProSynth phrase the synthesis problem as a search through a finite space of candidate

rules. In order to evaluate them on our benchmark suite, we generated candidate rules for each

benchmark using mode declarations in ILASP. A mode declaration is a syntactic restriction on the

candidate rules such as the length of the rule, number of times a particular relation can occur, and

the number of distinct variables used. In our experiments we only focus on the number of times an

input relation occurs in a rule, and the number of distinct variables used. Providing a suitable set of

mode declarations is a delicate balancing act: generous mode declarations can hurt scalability while

insufficient mode declarations can result in insufficient candidate rules to synthesize the desired

program. Given a query, one can recover the minimum mode declarations required to generate it. For

example, for the program in Equation 2.1 in the running example, we have the mode declarations:

#modeb(2, GreenSignal(var(V)), (positive)).

#modeb(2, HasTraffic(var(V)), (positive)).

#modeb(1, Intersects(var(V),var(V)), (positive)).

32

Table 3.1: Benchmark characteristics. For each benchmark, we summarize the number of input-output
relations, number of input-output tuples, and whether the intended programs involve disjunctions
(∨) or negations (¬).

Input Output Features
Name #Relations #Tuples #Relations #Tuples

Knowledge Discovery
abduce 2 12 1 8 ∨
adjacent-to-red 4 18 1 4
agent 4 106 1 5 ¬
animals 9 50 4 17
cliquer 1 4 1 4
contains 2 14 1 4
grandparent 2 8 1 7 ¬
graph-coloring 2 19 1 3
headquarters 2 9 1 4
inflammation 12 640 1 49 ∨,¬
kinship 2 8 1 5 ∨
predecessor 1 9 1 9
reduce 2 10 1 6
scheduling 2 8 1 1 ¬
sequential 2 9 3 17 ∨
ship 3 15 1 5
son 3 12 1 3
traffic 3 18 1 2
trains 12 223 1 5
undirected-edge 1 3 1 5 ∨

Program Analysis
arithmetic-error 3 11 1 1
block-succ 3 21 1 1
callsize 3 21 1 3
cast-immutable 3 15 1 2
downcast 5 89 4 175 ¬
increment-float 4 16 1 1
int-field 3 9 1 1
modifies-global 3 9 1 1
mutual-recursion 1 13 1 3
nested-loops 3 39 1 3
overrides 2 6 1 1
polysite 3 97 3 27
pyfunc-mutable 3 19 1 2
reach 3 17 1 2
reaching-def 2 6 1 1
realloc-misuse 3 18 1 1
rvcheck 4 74 1 2
shadowed-var 2 12 1 1

Database Queries
sql 1 ∼ 41 ≤ 6 ≤ 65 1 ≤ 20 ∨,¬

Unsynthesizable Benchmarks
isomorphism 1 2 1 1 -
sql 42 ∼ 44 ≤ 2 ≤ 8 1 ≤ 4 -
traffic-extra-output 3 18 1 3 -
traffic-missing-input 2 8 1 2 -
traffic-partial 3 11 1 1 -

33

#modeh(Crashes(var(V))).

#maxv(2).

This specifies for each candidate rule the output relation is Crashes, the input relations GreenSignal

and HasTraffic occur at most twice, Intersects occurs at most once, and at most two distinct

variables are used. This particular choice of modes generates 97 rules. Increasing the mode

declarations results in a larger space of candidate rules. For our suite of benchmarks, we observed

that a given input relation occurs in a rule at most thrice (such as in sequential), and the number

of distinct variables in a single rule are at most 10 (as in increment-float). This allowed us to

generate two set of candidate rules per benchmark:

1. Task-Agnostic Rule Set: Candidate rules where any given input relation occurs at most thrice

and the number of distinct variables is at most 10, and

2. Task-Specific Rule Set: Candidate rules generated using the minimum mode declarations for the

desired program.

With a threshold of 300 seconds, the candidate rule enumerator timed out when generating the

task-agnostic rule set for 31 of the 79 benchmarks and the task-specific rule set for 2 benchmarks.

We summarize the number of candidate rules generated per benchmark in Appendix A.

Similar to EGS, Scythe does not require a set of candidate rules, but the fragment of relational

queries targeted by Scythe is SQL (with selection, join, projection, constant comparison, aggregation,

and union). In order to compare the four tools fairly, we disable Scythe’s support for aggregations.

Also, Scythe supports complete labeling, that is every tuple either occurs in O+ or O−; therefore,

we consider the set of negative examples O− to be all tuples of appropriate arity that do not occur

in O+.

3.4.3. Q1: Performance

We ran EGS and the three baselines (with ProSynth and ILASP with two sets of candidate rules

each) on all 79 benchmarks with a timeout of 300 seconds. We tabulate the results in Appendix A,

and present a graphical summary in Figure 3.4.

34

Figure 3.4: Results of our experiments using EGS, Scythe, ILASP, and ProSynth to solve a suite of
79 benchmarks. A datapoint (n, t) for a particular tool indicates that it solved n of the benchmarks
in less than t time. Note EGS was the only tool to solve all 79 benchmarks. L and F refer to
Task-Specific and Task Agnostic Rule Sets respectively.

35

EGS runs fastest with an average runtime of under a second and no timeouts. In fact, for all but 6

benchmarks, EGS returns a solution in less than one second, and never takes more than 33 seconds

for any benchmark. Scythe takes an average of 7.6 seconds for 62 benchmarks and times out on 17

of the rest.

When provided with a task-specific rule set, both ILASP and ProSynth exhibit competitive

performance on a subset of the benchmarks, and return a solution in less than one second for 57 and

51 benchmarks respectively. Still, their performance suffers on the more complicated benchmarks,

and they exhibit timeouts on 7 and 21 of the 79 benchmarks, respectively. However, when provided

with a task-agnostic rule set, the performance of both tools quickly degrades, and they timeout on

51 and 77 benchmarks, respectively.

All three baselines are disadvantaged by the enumeration required, and this causes EGS to outperform

them, especially on benchmarks with larger numbers of input tuples, larger numbers of relations, or

complex target queries. ProSynth and ILASP sometimes outperform EGS when provided with a

task-specific choice of target rules on particularly simple benchmarks. However, we emphasize that,

in all these cases, all three tools solve the problem in less than one second.

Notably, there are four benchmarks where EGS succeeds, but where all other tools time out: animals,

sequential, downcast, and polysite. Upon examination, these benchmarks reveal the situations

which cause the baseline techniques to underperform. For example, the animals benchmark involves

classifying animals into their taxonomic classes based on their characteristics which are represented

through 9 input relations. The larger number of input relations induces a complex search space

causing Scythe to timeout. Furthermore, ILASP enumerates over 2000 candidate rules, even in

the task-specific setting, causing both ILASP and ProSynth to also timeout.

3.4.4. Q2: Quality of Programs

We investigated the quality of the synthesized programs for each of the 79 benchmarks and observed

that the program synthesized by EGS captures the target concept. For all but two cases, the programs

generated by EGS also matched a program crafted by a human programmer. The two outliers

36

are sequential and sql36. In sequential, one of the tasks is to learn the great-grandparent

relation. The desired program has eight rules (each representing a combination of the mother and

father input relations to form rules of size three); however, we are provided with only two output

tuples, and hence we learn a program with 2 rules that correctly explains the data. This can be fixed

by adding more training data such that it covers all cases of the target concept. In case of sql36,

the task involves comparing numbers; however, the input only includes the successor relation. The

output of EGS therefore unfolds the greater-than relation using a four-way join of successors. While

this is the smallest query that one can generate consistent with the examples, a more succinct query

can be learned if we are provided an input table for the greater-than relation. In general, we observe

overfitting when either there exists a program consistent with the input-output examples that is

smaller than the desired program (as sequential) or when the training data does not represent all

of the desired features of the target program (as in sql36). In general, one can overcome these cases

by providing richer input-ouput examples.

One may also observe overfitting when our heuristic generates a consistent but larger program. This

is possible as the priority function greedily optimizes over explanatory power and size simultaneously.

We have not observed this case in any of our 78 benchmarks.

We also manually inspected the outputs of the baselines. The programs synthesized by ProSynth

and ILASP are identical to ours in the cases when the tools terminate (in both, task-agnostic and

task-specific rule sets). However, the programs synthesized by Scythe are neither small nor easy to

generalize. In many cases, including knowledge discovery benchmarks such as adjacent-to-red,

graph-coloring, and scheduling, we find the synthesized queries to be inscrutable. Appendix B

compares the output of EGS and Scythe on these three benchmarks.

3.4.5. Q3: Unrealizability

To test the completeness guarantees provided by the EGS algorithm, we evaluated it on 7 unrealizable

benchmarks. The results of these experiments are summarized in Table 3.2.

The first benchmark, isomorphism, is the simplest benchmark which does not admit a solution. In

37

Table 3.2: Unrealizable benchmarks. For each benchmark, we summarize runtimes on EGS and
the three baselines. Note that Scythe overfits sql42 and traffic-partial using operators like
comparisons and negation.

Benchmark EGS Scythe ILASP ProSynth

isomorphism 0.1 - 0.2 12.4
sql42 0.2 1.79 0.6 -
sql43 0.1 - - -
sql44 0.1 - - -
traffic-extra-output 0.2 - 0.2 0.1
traffic-missing-input 0.1 - 0.1 0.4
traffic-partial 59.5 2.33 0.2 1.5

this benchmark, we have the input I = {edge(a, b), edge(b, a)}, and attempt to distinguish between

the two vertices by specifying the outputs, O+ = {a} and O− = {b}. From symmetry considerations,

it follows that the benchmark does not admit a solution, and our algorithm successfully reports this

in less than one second, while Scythe times out on this benchmark, and ILASP and ProSynth

claim that there is no solution with respect to the given mode declarations.

We remark that while ILASP and ProSynth do not provide completeness guarantees like we do,

Lemma 3.2.2 allows us to also strengthen their claims. Observe that as the input I has only two

tuples, and any rule explaining the tuple needs at most one join. This can be used to construct

an upper bound on the mode declaration which permits ILASP and ProSynth to also prove the

unrealizability of the benchmark. However, as these mode declarations grow with the set I, we

observe time outs in other unrealizable benchmarks.

The next three benchmarks sql42–sql44 are sourced from the Scythe’s benchmark suite, and

involve some form of aggregation, which is unsupported by EGS. The task in sql42 is to assign row

numbers to the tuples, in sql43 is to get the top two records grouped by a given parameter, and in

sql44 is to sum items using several IDs from another table. EGS proves the unrealizability of each

of these tasks in less than a second. For sql42, Scythe produces an overfitting solution (using

comparison operators) and ILASP proves the absence of a solution in less than a second. The mode

declarations for these benchmarks were the same as that for the task-agnostic rule set.

The final three unrealizable benchmarks are modifications of the running example generated by

38

adding noise. In traffic-extra-output we have a constant in the output that does not occur

in the input, in traffic-missing-input we do not provide the Intersects input relation, and in

traffic-partial we remove certain input and output tuples which are essential to explain the

crashes. While Scythe overfits a solution to traffic-partial using negation, EGS takes about a

minute to prove that there cannot exist a solution which does not involve negation or aggregations.

39

CHAPTER 4

Synthesis of Queries with Comparison Operators

Unlike the queries discussed in Chapter 3, real world queries involve features beyond multi-column

outputs, disjunction, and negation. In particular, queries for practical application in domains

such as bioinformatics Seo (2018), big-data analytics Shkapsky et al. (2016), robotics Poole (1995),

networking Loo et al. (2009), and program analysis Naik et al. (2021b) require comparison predicates.

Consider the example of university records of students taking courses, subjects students are majoring

in, and departments in a university, as shown in Figure 4.1. Suppose the user intends to discover a

concept that explains students ‘Alice’ and ‘Bob’, but excludes ‘Charlie’ and ‘David’. The simplest

explanation is that ‘Alice’ and ‘Bob’ take an undergraduate course (a course with ID less than 500)

in the Engineering school. This explanation can be expressed as the SQL query shown in Figure 4.1c.

The output examples, both positive and negative, are represented by entries from a single column

(or a subset of columns) as in Figure 4.1b. We illustrate the two aforementioned challenges using

this example.

Learning the join policy corresponds to learning the projections and joins that correspond to

the SELECT and FROM clauses in Figure 4.1c. Search-based query synthesis techniques have made

significant strides in learning relational queries over multiple tables by effectively enumerating the

possible ways in which tables may be joined, thereby specializing in navigating the network of tables

in a relational database. ILP techniques use language bias mechanisms such as mode declarations

and meta-rules while program synthesis methods enumerate candidate programs using syntactic

constraints or an explicit list of candidate rules to define a hypothesis space and explore the different

key-foreign key pairs to join tables. Example-guided techniques rely on the underlying patterns in

the data to discover them. All of these techniques struggle to address the challenge of synthesizing

comparison predicates like courseID < 500 or school = Engineering required by the target query.

Most query synthesis techniques require additional supervision from the user in the form of an

exhaustive list of constants that may be used in comparisons. On the other hand, decision tree

40

registration
studentID deptCode courseID

Alice Comp. 201
Alice Chem. 310
Alice Mech. 550
Bob Mech. 320
Bob Mech. 550

Charlie Chem. 310
David Comp. 500
David Mech. 502
Erin Chem. 310

department
deptCode school
Chem. Arts and Science
Comp. Engineering
Math. Arts and Science
Mech. Engineering

major
studentID deptCode

Alice Chem.
Bob Comp.

Charlie Math.
David Chem.
Erin Mech.

(a) Instances of tables registration, department, and major provided as the input relations I.

Positive Labels (O+)
Alice
Bob

Negative Labels (O−)
Charlie
David

(b) Labeled output examples O+ and O−.

SELECT registration.studentID

FROM registration JOIN department ON

registration.deptCode = department.deptCode

WHERE registration.courseID < 500 AND

department.school = “Engineering”

(c) The target SQL query QEX.

Figure 4.1: Example of a task to synthesize a relational query that takes instances of tables
registration, department, and major (as in 4.1a) as input relations I, and outputs a set of student
constants that contains all elements of O+ and does not contain any elements in O− (as in 4.1b).
The query in 4.1c is a solution to this task.

41

learning techniques Wu et al. (2007); Quinlan (1986) solve this problem in a limited setting in which

the data is provided as a single table, where each row represents an instance of the input, and

each column represents a feature of the instance Mitchell (1997); Kumar et al. (2016). In such a

setting, the labeling is given by a partition of the instances into positive and negative examples.

These techniques then construct classifiers using greedy information gain heuristics to search for and

combine locally optimal comparison predicates.

However, using these techniques requires additional user supervision to produce the single table

they take as input. This is typically done by performing key-foreign key joins to construct such a

single table and then applying a feature selection method Guyon et al. (2006). For example, the

user would have to provide the table from Figure 4.2a to the learning algorithm, along with the

correct labels for each row, to obtain the decision tree in Figure 4.2b that corresponds to the WHERE

clause in the target query. To obtain this table, the user must manually join the registration and

department tables over the deptCode column. This process is tedious and prodigal as it requires a

careful analysis of the relational database, and errors in the process can introduce data redundancy

and impact the efficiency of the learning algorithm. Manually doing so also becomes intractable for

databases with several tables, necessitating the automation of this process. Additionally, the user

must provide accurate labels to obtain the correct decision tree, though there is no clear way to do

so given only the output examples.

We thus observe a dichotomy of existing techniques — they either support multi-table databases

(as with search-based relational query synthesis) or excel at learning comparison predicates (as

in the case of decision trees), but not both. We leverage the strengths of the two paradigms to

design an end-to-end algorithm for the synthesis of relational queries that feature both comparison

predicates and joins across multiple tables. Specifically, we focus on the class of select-project-join

(SPJ) queries like the one in Figure 4.1c which constitute an important fragment of relational

algebra Imieliński and Lipski (1984). These queries feature equi-joins, that is joins across tables

parameterized by a set of columns (with matching types), as well as categorical and numerical

comparisons for selections.

42

studentID deptCode courseID school label
Alice Comp. 201 Engineering ✓
Alice Chem. 310 Arts and Science ×
Alice Mech. 550 Engineering ×
Bob Mech. 320 Engineering ✓
Bob Mech. 550 Engineering ×

Charlie Chem. 310 Arts and Science ×
David Comp. 500 Engineering ×
David Mech. 502 Engineering ×
Erin Chem. 310 Arts and Science ?

(a) The result of joining registration and department over the deptCode
columns of each table.

courseID < 500?

×school = Engineering?

✓ ×

yes no

yes no

(b) A decision tree for classifying rows of the table in
Figure 4.2a. It can be flattened to a Boolean formula
(courseID < 500) ∧ (school = Engineering).

Figure 4.2: Each candidate join can be translated to a single table. The table in 4.2a represents
the join of registration and department tables. The label column denotes the ideal labels which
result in learning the decision tree in Figure 4.2b. The user can annotate the rows of this table as
positive (✓) or negative (×) to support decision tree learning. On running a decision tree algorithm
on it, we get the tree in Figure 4.2b.

43

Our key insight is to interpret the query synthesis problem as a search across a two-dimensional space

defined by comparison predicates on one side and candidate joins on the other. To efficiently search

through this space, we introduce an interleaved approach that allows us to leverage the strengths of

both decision tree learning and search-based synthesis.

This interleaved approach seeks to address the challenge of finding the optimal join policy by enumer-

ating different projection and join policies as partial queries, each producing a single intermediate

table over which a decision tree could be learned to generate the comparison predicates for the target

query. We use the example-guided search strategy Thakkar et al. (2021) to enumerate these queries

as it prioritize joins with fewer tables, thus synthesizing queries that contain only sufficient and

necessary features from the database.

Once we generate a candidate single intermediate table, the next step is to synthesize comparison

predicates. Classical decision tree learning techniques require the rows of the intermediate table to

be labeled, while in our setting, only certain constants (or tuples of constants) are labeled. There

is no straightforward way to handle this discrepancy without additional user supervision. We

fundamentally modify the classical decision tree learning algorithm ID3 Quinlan (1986) by changing

the definition of entropy and information gain used by it and present it in Section 4.1.2.

Together, the search for candidate joins and the modified decision tree learning procedure can work in

tandem to synthesize the relational queries with categorical and numerical comparisons. In practice,

our algorithm synthesizes queries that are general (that is, it does not overfit the data) and of minimal

size. We also prove the completeness of the algorithm—it synthesizes a query consistent with the

training data iff there exists such a query. We implement this interleaved approach as Libra, and

evaluate it on a benchmark suite of 1,475 instances of SPJ queries from the Spider Yu et al. (2018)

and Geography Finegan-Dollak et al. (2018); Zelle and Mooney (1996); Iyer et al. (2017) datasets

over 160 different databases, each with multiple tables. Libra solves 1,361 of these instances with a

timeout of 10 minutes per task, and takes 58.9 seconds on average per instance. We also compare

with state-of-the-art tools Scythe and PatSQL that can synthesize select-project-join queries. They

can solve 195 and 673 instances, and take 139.50 and 23.13 seconds on average per task respectively.

44

Examples

Examples
Enumerator Evaluator

⋯

Consistent?

Priority queue of enumeration contexts

Yes

No

Figure 4.3: Architecture of the Libra algorithm. The algorithm interleaves decision tree learning
of comparison predicates with example-guided enumeration of candidate joins. Throughout, we
maintain the size of the program and check against this size to ensure that the synthesized query is
minimal among all consistent queries (subject to optimality of decision tree learning).

All the benchmarks solved by the baselines are also solved by at least one instance of our framework,

and our framework additionally solves a significantly larger set of the total benchmarks which the

baselines fail to solve.

4.1. Algorithm

In this section we describe the end-to-end Libra algorithm, which takes input-output examples

E = (I,O+, O−) as input and returns a relational query Q consistent with E. Algorithm 4 summarises

the procedure and Figure 4.3 presents its architecture.

We start with an example-guided search to construct a partial query with projection and joins (and

without the comparisons for the selection operator). This partial query is constructed by analyzing

patterns of co-occurrence of constants in the input-output examples Section 4.1.1 formalizes these

patterns as enumeration contexts that can be translate into partial queries with projection and join

operators. These correspond to the step 2 of the algorithm.

To synthesize categorical and numerical comparisons for the selection operator we turn to supervised

learning. We maintain the enumeration contexts in a priority queue L ordered by increasing size.

For each context C in L, we convert C into a single table Tc through a join of the input relation

tables that occur in C. This is followed by the modified decision tree learning procedure (DTL)

which completes the query. This corresponds to step 4a-4c.

In step 4d, we expand the context by one tuple. This corresponds to considering a join with an

45

Algorithm 4 Libra(I,O+, O−), where I is the set of input tuples, and O+ and O− are the sets of
positively and negatively labeled output tuples respectively.

1. Set ans = unsat and N = ∞.
2. For an arbitrary t ∈ O+, let Ct be the initial contexts that explain t as defined in Equation 4.1.

3. Initialize the priority queue as L = Ct.
4. While L is non-empty:

(a) Pick the smallest size element C ∈ L, and remove it from the queue: L := L\{C}.
(b) If |C| > N , exit the loop and go to Step 5.
(c) For each table TC constructed using Equation 4.4:

i. Let ⊤ be a node of an empty decision tree. Run DTL(TC ,⊤, O+, O−).
ii. If DTL(TC ,⊤, O+, O−) returns a tree ∆ such that |∆|+ |C| ≤ N and entropy of |∆|

is 0,
A. Set ans = Q(TC ,∆) as defined in Equation 4.6.
B. Set N = |C|+ |∆|.

(d) For each tuple t′ that shares a constant with a tuple in C, update:

L = L ∪ {C ∪ {t′}}.

5. Return ans.

(Alice, Mech., 550)

(Alice, Comp., 201)

(David, Comp., 500)

(Mech., Engineering)

(Comp., Engineering)

(Alice, Chem.)

(Charlie,Math.)

Figure 4.4: A collection of rows of the input table I. Two rows are shown connected with an edge if
they share a constant. The shaded part represents a context C ⊆ I which corresponds to the join in
Equation 4.2.

additional table. Therefore, the steps 4a-4c explore comparison predicates and step 4d explores joins.

Through the two, we search through the two-dimensional search space.

Throughout the algorithm, we maintain the size of the query Q as variable N and guarantee that the

query Q has minimal size among all queries consistent with the input-output example (subject to

the optimality of the decision tree). Additionally, if no such query exists, the algorithm terminates

and returns unsat. We prove this completeness result in Theorem 4.1.1.

46

4.1.1. Example-Guided Enumeration of Projection and Joins

An enumeration context is a non-empty subset of the input tuples, C ⊆ I. The shaded part

of Figure 4.4 corresponds to the context C = {(Alice, Comp., 201), (Comp.,Engineering)}. An

enumeration context C ⊆ I is said to explain a tuple t ∈ O+ when for each column c of t, there is a

tuple tc ∈ C such that for some column c′ in tc, we have t.c = tc.c
′.

Given a tuple t ∈ O+, we construct the initial set of enumeration contexts for step 2 of Algorithm 4

by considering enumeration contexts:

Ct = {{tc : for each column c of t,

there exists a column c′ of tc such that t.c = tc.c
′}}

(4.1)

In step 4d we extend a context C by adding a tuple t′ such that for some t ∈ C, there is an edge

t → t′ ∈ E with appropriate labels. One can translate a context C = {t1, . . . , tn} and an output

tuple t into a partial query with projection and joins.

Consider the output ‘Alice’ that is explained by the context

C = {(Alice, Comp., 201), (Comp., Engineering)}

. This can be translated to the query:

SELECT registration.studentID

FROM registration JOIN department

ON registration.deptCode = department.deptCode

(4.2)

This is because the constant ‘Alice’ occurs in the column studentID of registration, and

the tuples from the tables registration and department share a constant for the columns

department.deptCode and registration.deptCode. In general, given an output tuple t and a

context C ⊆ I, we first consider the sequence of columns (Tπ1 .cπ1 , . . . Tπk
.cπk

) from where we get the

47

constants in t. These will correspond to the columns for the projection operator. For each tuple ti in

C, we consider the table Ti. These will correspond to the tables to be joined. In order to construct

the parameters for the join, for each ti ∈ C, let Ei be the set of predicates of the form (ti.c = t′.c′)

where t′ ∈ {t1, . . . , ti−1}. Then, we can construct the queries of the form:

SELECT (Tπ1 .cπ1 , . . . Tπk
.cπk

)

FROM (. . . (T1 JOIN T2 ON θ2) . . . JOIN Tn ON θn)

(4.3)

Where each θi is a conjunction of comparison predicates that label edges in Ei. We consider all

possible non-empty subsets of the labels in Ei, and therefore, for each pair (t, C) of output tuple

and context, there may be multiple candidate joins.

4.1.2. Supervised Learning of Comparisons for Selection

We now turn to decision trees to add a selection operator to the query in Equation 4.3. Our approach

is motivated by the Iterative Dichotomiser 3 (ID3) algorithm for learning decision trees Quinlan

(1986). We first need to convert the tables T1, . . . , Tn in context C into one single table TC . This is

achieved by implementing the join in Equation 4.3, that is we consider the output of the SQL query:

SELECT ∗ FROM (. . . (T1 JOIN T2 ON θ2) . . . JOIN Tn ON θn) (4.4)

This join produces a single table. As before, each context corresponds to multiple joins and hence

there are multiple candidates for TC . We consider all of them in our search.

We start by introducing some notation. Let γ be the schema of the output tuples, that is the types

of the columns from which we draw output tuples. Let πγ(TC) represent the projection of TC to the

columns in γ. Then, the entropy of a node N is defined as:

p = P (O+|πγ(TC), O
+ ∪O−) =

|πγ(TC) ∩O+|
|πγ(TC) ∩ (O+ ∪O−)|

n = P (O−|πγ(TC), O
+ ∪O−) =

|πγ(TC) ∩O−|
|πγ(TC) ∩ (O+ ∪O−)|

48

TC with (school = Engineering)
studentID deptCode courseID school

Alice Comp. 201 Engineering
Bob Mech. 320 Engineering
Alice Mech. 550 Engineering
Bob Mech. 550 Engineering

David Comp. 500 Engineering
David Mech. 502 Engineering

(a) Table with rows of TC that satisfy the predicate
(school = Engineering).

TC with ¬(school = Engineering)
studentID deptCode courseID school

Alice Chem. 310 Arts and Science
Charlie Chem. 310 Arts and Science
Erin Chem. 310 Arts and Science

(b) Table with rows of TC that do not satisfy the
predicate (school = Engineering).

Figure 4.5: In order to compute the information gain of a comparison predicate at a given node, we
split the rows at the node into two parts, those that satisfy the predicate and the others that don’t.
Here, we have split the joined table TC (from Figure 4.2a) on the predicate (school = Engineering).

S(N) = − (p log2 p+ n log2 n)

Here, we restrict our analysis to output tuples that occur in O+ or O− only. Consider the joined

table in Figure 4.2a. We can compute the entropy of the node with label (school = Engineering):

p = P ({Alice,Bob}|{Alice,Bob, Charlie,David}) = 1

2

n = P ({Charlie,David}|{Alice,Bob, Charlie,David}) = 1

2

S(N) = −
(
1

2
log2

1

2
+

1

2
log2

1

2

)
= 1

Here, we do not consider ‘Erin.’ This is our first concrete modification to the decision tree learning

algorithm.

A comparison predicate a splits the table TC into two: σa(TC) which comprises of rows that satisfy a

and σ¬a(TC) which comprises of rows that do not satisfy a. Let σa(TC) correspond to a node L and

σ¬a(TC) correspond to a node R. Then we can compute their entropies S(L) and S(R) just as above.

Consider the predicate (school = Engineering) which splits the joined table in Figure 4.2a into two

tables as shown in Figure 4.5. Let σ(school=Engineering)(TC) form node L and σ¬(school=Engineering)(TC)

form node R. The entropies S(L) and S(R) are 0.918 and 1 respectively.

We can now compute the information gain. Information gain is defined as the difference between the

49

entropy of the node and the weighted sum of the entropy of its children. That is, the information

gain at node N is of the form:

IG(N) = S(N)− (αS(L) + βS(R))

where α+ β = 1. In a classical setting, the coefficients α and β are the ratio of the number of rows

corresponding to the child nodes L and R. In our study, we focus on projection, and only the tuples

in O+ and O−. For ease of notation, let |πγ(σa(TC)) ∩ (O+ ∪O−) |, the number of rows in σa(T),

projected to columns γ, that occur in either O+ or O− be λa (and analogously for σ¬a(TC) be λ¬a).

Then information gain at Node N with comparison predicate a is defined as:

IG(N, a) = S(N)−
(

λa

λa + λ¬a
S(L) +

λ¬a
λa + λ¬a

S(R)

)
(4.5)

In our running example, λa is 3 and λ¬a is 2. This gives us an information gain of 0.0328. The

change in the weighted sum is our second concrete modification to decision tree learning.

The decision tree learning algorithm as described in Algorithm 5 starts with the table T and node N

as an input. We introduce node N so we can call this procedure recursively. If O+ or O− is empty,

we return the trivial tree with N as the only node. Otherwise, we construct a set of comparison

predicates of the form (T.c ∽ k), where T.c is a column of the table T , k is a constant that occurs in

the column T.c, and ∽ is a comparison operator (in our case either =, <, or ≤. Then, similar to the

classical algorithm, we pick a comparison predicate a that maximizes the information gain IG(N, a).

If no comparison predicate can maximize the information gain beyond 0, we return the trivial tree

with N as the only node, labeled with ‘?’ and terminate the process. This is the case where there is

no classifier for the given input data.

Otherwise, we split the table T on predicate a as tables σa(T) and σ¬a(T), introduce child nodes L

and R corresponding to them, and call the DTL process recursively on the children of N . When we

call DTL on the L and R nodes, we ensure that the O+ and O− are updated to the output tuples

that occur in σa(T) and σ¬a(T).

50

Algorithm 5 DTL(T,N,O+, O−), where T is a table, N is a node, and O+ and O− are the sets of
positively and negatively labeled tuples respectively.

1. If O+ is empty, label N with ×, return the leaf node N , and terminate.
2. If O− is empty, label N with ✓, return the leaf node N , and terminate.
3. Otherwise, let A = {}.
4. For each column c in T ,

(a) if c is of the categorical type, then for each constant k in column c, update:

A = A ∪ {(T.c = k)}

(b) if c is of the numerical type, then for each constant k in column c, update:

A = A ∪ {(T.c < k), (T.c ≤ k)}

5. For each a ∈ A, compute IG(N, a) using the formula in Equation 4.5.
6. Find a predicate a for which IG(N, a) is maximum. If the maximum for IG(N, a) is 0, label

N as ?, return the leaf node N , and terminate the process.
7. Otherwise, label N with predicate a and create new nodes L and R as left child and right

child of N respectively.
8. Recursively compute:

∆L = DTL(σa(T), L,O+ ∩ πγ(σa(T)), O
− ∩ πγ(σa(T))) and

∆R = DTL(σ¬a(T), R,O+ ∩ πγ(σ¬a(T)), O
− ∩ πγ(σ¬a(T))),

where γ is the sequence of projected columns for the output.
9. Return the tree with root node N , left sub-tree ∆L and right sub-tree ∆R.

51

courseID < 500?

school = Engineering? courseID ≤ 502?

✓ ? × ✓

yes no

yes no yes no

Figure 4.6: The decision tree generated by the process DTL on TC (from Figure 4.2a) with
O+ = {Alice,Bob} and O− = {Charlie,David}.

On executing the DTL procedure on our running algorithm, we get a tree as in Figure 4.6. Observe

that it has a redundant right subtree, and one of the leaves is labeled ‘?’. Instead, the desired tree is

the one in Figure 4.2b.

The problem of finding a minimal decision tree, or even approximating it, is NP-complete Sieling

(2008). Therefore we opt for a greedy search that is computationally efficient. Instead of considering

all possible Boolean combinations of comparison predicates, Algorithm 5 makes locally optimal

decisions, it enabling it to handle large data-sets efficiently and produces satisfactory results in

practice. While it is possible that locally optimal choices may not lead to the smallest decision tree,

it most often leads to good enough solution that is succinct and general, as observed in Section 4.2

The soundness check of Algorithm 4 also ensures that while DTL may generate a larger tree, the

synthesized query will always be consistent with the given input-output examples. Greedy heuristics

based on information gain commonly used in decision tree learning and search algorithms for this

reason Quinlan (1986); Su and Zhang (2006); Suthaharan (2016).

By using the greedy heuristic, DTL generates a perfect separator between O+ and O−, however, we

only need a partial separator. That is, we seek a relational query Q that captures some derivation

for each tuple in O+, and no derivation for any tuple in O−. We do not have a stronger requirement

that Q should capture all derivations for tuples in O+. On the other hand, the decision tree attempts

to branch till every node is at entropy 0, that is every node either leads to tuples in O+ or O−

exclusively, instead of stopping when there is at least one leaf node corresponding to every tuple in

O+. As our setting allows for a weaker notion of separation, we can further trim the decision trees.

52

More concretely, the right branch of the root node in the tree in Figure 4.2b corresponds to rows with

studentID values in {Alice, Bob David}, as all three of them are taking courses with courseID ≥ 500.

DTL naturally assumes that one needs to branch further to separate Alice and Bob from David.

However, it is not necessary as the node labeled ✓can explain Alice and Bob. Similarly, at the leaf

labeled ‘?,’ the projected column has values {Alice,Charlie}, and we do not have any comparison

predicate that separates them.

We implement an lazy version of DTL to achieve the trimmed decision trees. This is our third

modification to classical decision tree learning. In the DTL process, we introduce a set of unexplained

output tuples O?, initialized to O+ and a first-in-first-out (FIFO) queue that maintains a list of

nodes, initialized to {N}. Throughout the algorithm, we update O? by removing the output tuples

that are already explained by a particular leaf of the decision tree. While there exist any unexplained

tuples, we dequeue a node from the queue and branch it out as described in Algorithm 5. Instead of

calling the process recursively, we enqueue the children and then eventually get to them only when

there are unexplained tuples. This lazy evaluation allows us to generate smaller trees with fewer

redundancies. With this modification, we get the desired tree depicted in Figure 4.2b.

In summary, the three modifications allow us to adapt decision tree learning to our setting. Addi-

tionally, these modifications do not compromise any guarantees about termination of the procedure

or size of the learned decision tree Mitchell (1997).

4.1.3. Interleaving Decision Tree Learning with Example-Guided Search for Joins

A decision tree ∆ can then be converted to a boolean formula σ∆ in disjunctive normal form. For

each leaf of the tree that is marked ✓, we consider a clause that is composed of the conjunction

of the predicate at its parent node (if the node is a left child, and the negation of the predicate

otherwise). And then, we construct the disjunction of each of these clauses. For example, we can

translate the tree in Figure 4.2b to the formula (courseID < 500) ∧ (school = Engineering). The

negations, if any, can be removed by considering the negated comparison operators (̸=, >, and ≥).

Therefore we can convert a joined table TC and decision tree ∆ into a query Q(TC ,∆) by using the

53

boolean formula σ∆ to complete the query in Equation 4.3. This gives us the query:

SELECT (T.c1, . . . , T.ck)

FROM (. . . (T1 JOIN T2 ON θ1) . . . JOIN Tn ON θn−1)

WHERE σ∆

(4.6)

Figure 4.3 summarizes Libra. The end-to-end algorithm guarantees completeness:

Theorem 4.1.1 (Completeness). If there exists a relational query consistent with the input-output

example E = (I,O+, O−), then Libra produces a query Q consistent with E.

The proof of this theorem relies on the completeness of the example-guided enumeration and the

completeness of decision tree learning. We assume the reader is familiar with the analogous guarantees

for example-guided synthesis of conjunctive queries Thakkar et al. (2021), and those for classical

decision trees. Observe that if a context C explains a tuple t, then all contexts C ′ ⊇ C, also explain t.

We can consider the largest context C = I, that is, the set of all input tuples, to prove the following

lemma:

Lemma 4.1.2. If there exists a relational query consistent with the input-output example E =

(I,O+, O−), then there exist a decision tree ∆ with predicates of the form (T.c ∽ k) where T is an

input table, c is a column of T , and k is a constant in the column c, such that the query Q(TI ,∆) is

consistent with E.

It follows from the completeness of example-guided enumeration that a decision tree must exist,

however, it remains to show that the predicates for the decision tree must be of the said form.

Without loss of generality, suppose the comparison predicate is of the form (T.c > k1), where k1

does not occur in c. The arguments for other comparison operators is analogous. Observe that

must exist the greatest lower bound k2 of k1 in c (that is, k2 = max{k ∈ c : k < k1}). Replacing

the predicate by (T.c > k2) does not change the semantics of the query with respect to input I,

as there are no constants in between k1 and k2. By systematically replacing the predicates in a

query consistent with E, we can prove that there must exist a query where the selection operator

54

corresponds to a decision tree of the said form. As we exhaustively enumerate all possible predicates,

we can guarantee:

Lemma 4.1.3. Given a table T , a node N and output tuples partitioned as O+ and O−, if there

exists a decision tree that separates O+ from O−, then DTL(T,N,O+, O−) will return such a tree.

Together, Lemma 4.1.2 and Lemma 4.1.3 can prove Theorem 4.1.1.

Additionally, observe that at each step of the algorithm, we maintain the constant N that tracks the

size of the query. As the contexts are maintained in increasing order of size, the number of joins in

the enumerated queries is always increasing.

4.2. Evaluation

We have implemented the Libra algorithm in Scala. In this section, we evaluate it on a large-scale

benchmark suite. First, we measure the performance of our algorithm compared to state-of-the-art

synthesis tools. We do so by comparing the number of instances solved by each tool and the time

taken by each tool to do so. Next, we evaluate the generality of the solutions generated by each tool.

To do so at scale, we leverage Occam’s razor to use the succinctness of a query as a proxy of how

specific a query is to the training data. As such, we propose to answer two main research questions

through this evaluation:

Q1. Performance: How effective is Libra on synthesis tasks from different domains in terms of

synthesis time?

Q2. Succinctness: How large are the programs synthesized by Libra compared to the reference

solution?

We discuss our benchmark suite in Section 4.2.1 and the baselines against which we compare Libra in

Section 4.2.2 along with the setup for each. We present our findings for Q1 and Q2 in Sections 4.2.3

and 4.2.4. We performed all experiments on a Linux server equipped with an 18-core, 36-thread

Xeon Gold 6154 CPU running at 3 GHz and with 394 GB of RAM.

55

4.2.1. Benchmarks

We evaluate Libra on the set of all SPJ instances from the Spider Yu et al. (2018) and Geogra-

phy Finegan-Dollak et al. (2018); Zelle and Mooney (1996); Iyer et al. (2017) datasets. Spider is

an open-access large-scale manually annotated dataset. There are 1,203 SPJ instances in the Spider

dataset over 159 databases. On the other hand, Geography is a dataset of SQL queries about US

geography. We use version 4 of the modified SQL dataset for Geography from Finegan-Dollak et al.

(2018); Zelle and Mooney (1996); Iyer et al. (2017). Upon deduplication of the queries, we extract

272 SPJ instances, all over the same database, giving us a total of 1,475 instances over both datasets.

For each benchmark, we consider the tables from its corresponding database as the input tables and

the result of running the ground truth query over that database as the output table.

Each benchmark has 2 to 26 input tables (with a median of 8), each with 1 to 352 columns (with

a median of 30), containing 8 to around 553k tuples in the input tables (with a median of 937).

Additionally, each benchmark is labeled with a ground truth query that serves as a reference solution.

This reference solution is used to obtain the output examples for the corresponding benchmark.

Overall, the reference solutions feature a join of at most 6 tables and the use of at most 3 predicates.

4.2.2. Baselines and Setup

We evaluate Libra against the following baselines in Sections 4.2.3 and 4.2.4: Scythe Wang et al.

(2017a), which synthesizes SQL queries using enumerative search, and PatSQL Takenouchi et al.

(2021), which uses relational algebra properties to perform a more scalable enumerative search.

We now discuss the experimental setup for each benchmark. For each benchmark, we provide each

tool with the corresponding input and output tables as described in Section 4.2.1. We initialize

O+ as the set of all expected output tuples. Since both Scythe and PatSQL require exhaustive

labeling, i.e. any tuple not labeled as O+ is considered to be O−, we initialize O− to be all tuples of

appropriate arity that do not occur in O+ for all tools being compared. The benchmarks are labeled

with a reference solution which identifies each column of the input tables as either categorical,

numerical, or uncomparable.

56

0 200 400 600 800 1000 1200 1361
solved instances

0

100

200

300

400

500

600

tim
e

(s
)

Scythe
PATSQL
Libra

Figure 4.7: Performance of Libra against Scythe and PatSQL on the 1,475 benchmarks from
the Spider and Geography datasets. Each data point (n, t) for a tool indicates that it solved n
benchmarks each within t seconds.

For the baselines Scythe and PatSQL, the user is required to specify constants that may occur in

the comparison predicates. We recover the list of constants that occur in the reference solution and

provide it to the two baselines as additional supervision which is not provided to Libra.

4.2.3. Performance

We run Libra, Scythe, and PatSQL on all 1,475 benchmarks with a timeout of 10 minutes and

summarize the performance of each tool in a cactus plot in Figure 4.7. From this figure, we see

that Libra solves the most number of benchmarks, solving 1,361 out of 1,475 in an average of 58.9

seconds, and solves 1,097 of those within 10 seconds. Of the 1,361 solved benchmarks, 1,090 are SPJ

instances from the Spider dataset, while 271 are from the Geography dataset.

The plot for Libra plateaus at 600 seconds since it searches for a minimal solution to a benchmark,

but returns the best solution found so far when it times out. PatSQL is outperformed by Libra,

solving 673 benchmarks in an average of 23.13 seconds, and 548 in 10 seconds. Scythe solves only

195 benchmarks, in an average of 139.50 seconds, and only 15 in 10 seconds. All of the benchmarks

solved by both PatSQL and Scythe are SPJ instances from the Spider dataset; neither tool solves

a single instance from the Geography dataset. Also, PatSQL solves 2 benchmarks unsolved by

Libra, while all benchmarks solved by Scythe are solved by Libra.

57

Among the benchmarks that Libra uniquely solves, a significant portion of the benchmarks have

ground truths involving many joins, but with a few shared constants between tables, leading to a

sparse tuple co-occurrence graph while there are syntactically many possible joins. The following

generated query which Libra is the only to produce (and which happens to match the reference

solution) shows how the example-guided technique allows for learning very large queries and combined

with decision tree learning allows for learning complex SPJ queries:

SELECT employee.emp_fname, class.class_room

FROM (((class JOIN employee ON class.prof_num = employee.emp_num)

JOIN professor ON employee.emp_num = professor.emp_num)

JOIN department ON department.dept_code = professor.dept_code)

WHERE department.dept_name = “Accounting”

The example-guided strategy used by Libra allows it to explore solutions of a larger size more

quickly than syntax-guided strategies since the smaller joins that are syntactically valid but don’t

explain any output tuple are skipped. This results in Libra solving benchmarks with reference

solutions of a larger size where other baselines would require a longer time to search through the

hypothesis space even with the additional supervision that was provided to each.

However, it is difficult to scale Libra over larger input databases. For the 114 benchmarks unsolved

by Libra, over 70% have more than 5,000 tuples, and all have tables with over 20 columns, with

a median of 64 columns. Libra faces two main issues when solving these benchmarks. First, it

may struggle to build the tuple co-occurrence graph that it uses to enumerate contexts, and second,

frequently occurring constants can result in a large number of contexts to be enumerated. The

second case is true for the 2 benchmarks that PatSQL solved which were unsolved by Libra, since

they contained 43 and 20 columns, with 103 and 577 rows respectively. However, the ground truth

solutions for those benchmarks could be easily explored by syntax-guided processes, with one of the

benchmarks consisting only of joins, and so PatSQL was able to synthesize them.

58

1 2 3 4 5 6 7
Size of the target query

0

100

200

300

400

500

600

Nu
m

be
r o

f b
en

ch
m

ar
ks

Scythe
PatSQL
Libra
Reference

Figure 4.8: Sizes of generated programs for Libra, Scythe, and PatSQL. The bars represent the
benchmarks with reference solution of a given size that are solved by each tool, and the hatched
bar represents the subset of these queries that are minimal. Since 99% of the queries generated by
Libra are minimal, there is very little visible unhatched bar.

4.2.4. Succinctness

We now turn to evaluating the quality of the programs in terms of succinctness. Algorithm 4 is

sound by construction, that is the synthesized query is always consistent with the training data.

In order to inspect for generalizability, we use the size of the query as a measure of its specificity

with respect to the training data, where a more succinct query is assumed to be less specific to the

particular data, and we rely on Occam’s razor to assess over-fitting.

The size of the query is defined as the sum of the number of tables joined and the number of

comparison predicates in the selection operator in the disjunctive normal form (DNF). We summarize

the size of the programs synthesized by both instances of Libra and the baselines in Figure 4.8.

We observe that 1,339 of the 1,361 programs (around 99%) synthesized by Libra are minimal, that

is, the size of the query is equal to or smaller than that of the reference solution. In 271 of the

1,361 programs, Libra generates a smaller query than the reference solution. This is a peculiar case

common to programming-by-examples where the input-output examples under-specify the task. That

is, the input-output examples do not feature all the cases that the synthesis tool should consider.

Here is an example of one of the benchmarks where the input table campuses consists of columns

for the id, campus, location, county, and year for a set of college campuses, and the input table

59

csu_fees consists of columns for campus, year, and campus fee for a set of campuses. The reference

solution is:

SELECT campusfee FROM campuses

JOIN csu_fees ON campuses.id = csu_fees.campus

WHERE (campuses.campus = “San Francisco State University”)

AND (csu_fees.year = 1996)

Instead of this solution, Libra generates the query:

SELECT campusfee FROM csu_fees

WHERE (csu_fees.campus = “18”)

This is because the campus name “San Francisco State University" occurs only once in campuses

with id “18", and the only row with campus “18" in csu_fees has year of 1996. Therefore, the

conjunction on both the campus name and year is unnecessary and there is also no longer a need for

the join of campuses with csu_fees since selecting campus “18" directly from csu_fees is sufficient.

There are 22 benchmarks where the size of the query generated by Libra is larger than the reference

solution. On manual inspection of these benchmarks, we observe that the larger size is due to

the sub-optimal size of the decision tree generated by DTL. As discussed before, the problem of

finding a minimal decision tree is intractable and hence we adopt a greedy heuristic-based search.

Therefore, any minimality guarantee will be subject to the performance of the decision tree, but we

quantitatively observe that 99% of the synthesized programs are minimal.

For the baselines, we observe that the size of the synthesized programs is usually large. In contrast

to Libra, only 115 of the 673 (17%) programs synthesized by PatSQL are minimal, and only 99

of the 195 (51%) programs synthesized by Scythe are minimal. Figure 4.8 shows the number of

benchmarks each tool finds a solution for at each reference benchmark size shown on the x-axis, and

the subset of these solutions which are minimal is shown in a bright color. We see Libra consistently

outputs minimal solutions across program sizes.

60

CHAPTER 5

Synthesis of Recursive Relational Queries

In the context of programming-by-examples, recursion is crucial to synthesizing queries that generalize

to arbitrary data [Cropper and Dumančić (2022)]. Recursive queries also find applications in numer-

ous domains, including knowledge discovery Bohan et al. (2011), program reasoning Sivaraman et al.

(2019); Naik et al. (2021a), and database querying Wang et al. (2022). Significant strides have

been made in this area by techniques including constraint solving, enumerative search, and their

combinations.

As discussed in Chapter 1, it is a greater challenge to specify the language bias mechanisms in

presence of invented and recursive predicates. Determining a suitable set of templates is a delicate

balancing act: overly general templates hurt scalability whereas overly constrained templates fail to

synthesize the desired program.

On the other hand, there exist fully automated techniques to synthesize non-recursive relational

queries, as discussed in the previous chapters.

In this chapter, our goal is to address the gap between template-free techniques to synthesize

non-recursive queries and template-dependent techniques to synthesize recursive queries. We observe

that previous synthesis techniques for non-recursive queries are successful at inferring patterns in

data of finite size but are limited in generalizing those patterns to perform computation on data of

arbitrary size. Additionally, the recursive techniques are successful in generalizing the patterns once

templates summarize some patterns in the data and constrain the space of candidate programs. We

therefore seek to leverage the strengths of the two paradigms to construct an end-to-end template-free

algorithm for synthesizing recursive relational queries.

We materialize this insight as a two-phase synthesis engine called Mobius as depicted in Figure 5.1. In

the first phase, we synthesize a non-recursive query Q using example-guided synthesis of conjunctive

queries. In the second phase, we use this non-recursive query to constrain the hypothesis space

61

Input-output
examples

Pattern Enu-
merator

Non-recursive query

Query Normalizer

Normalized query

Query Evaluator

Provenance-Guided
Generalizer

Constraint Solver

Generalized
query

Figure 5.1: The architecture of the Mobius synthesis engine. We start by using a pattern enumerator
(such as EGS) to generate a non-recursive query that is consistent with the input-output examples,
and then generalize it into a recursive query using a provenance-guided generalization algorithm.
This procedure, Generalize, repeatedly uses a constraint solver to generate candidate solutions
whose consistency it determines using Souffle query evaluator Zhao et al. (2020). Analysis of
failed candidate solutions result in additional constraints that are fed back to the constraint solver
thereby pruning the search space in subsequent iterations.

to queries that generalize it. Our key technical contribution is a procedure Generalize that

realizes this generalization through provenance-guided unification of invented predicates. While

these predicates may not feature in Q itself, we propose a normalization procedure that exposes

them by rewriting Q to a semantically equivalent query Q. Then, generalization proceeds in an

iterative fashion that involves synergistic interaction between a constraint solver (z3) and a query

evaluator (Souffle). In each iteration, the former selects a candidate unification µ, and the latter

checks whether the resulting query µ(Q) is consistent with the given input-output data. If so, the

process terminates; otherwise, the constraints are updated to avoid the ill-fated unification choice

and the process is repeated.

A naive constraint formulation suffers from prohibitively slow convergence in practice due to an

exponential number of unification choices. To accelerate the process, we develop a novel provenance-

guided technique that leverages data provenance a derivation tree that serves as a witness of a given

spurious tuple to identify a minimal incorrect core of the ill-fated unification choice (Cheney et al.

(2009); Zhao et al. (2020)). We thereby eliminate from future consideration all other unification

choices that are similarly destined to derive the spurious tuple.

62

a b c

d

e f

(a) Graph G.

Input I
edge(a,b), edge(b,c),
edge(c,a), edge(c,d),
edge(c,e), edge(e,f),
edge(f,a)

(b) Input edge relation.

Positive labels O+:
scc(a,a), scc(a,b), scc(a,c),
scc(c,b), scc(e,f), scc(f,e),

Negative labels O−:
scc(a,d), scc(c,d), scc(c,e),
scc(d,e), scc(c,f), scc(e,c)

(c) Positive and negative labels for scc.

Figure 5.2: The synthesis task is specified as a search for a relational query P that takes the graph
G as an input and returns a set of pairs of vertices O such that O is a superset of O+ and disjoint
from O−. We call such a query consistent with the input-output examples.

5.1. Demonstrative Example

We begin with a high-level overview of our end-to-end synthesis framework. As a running example,

we consider the task of synthesizing a query that computes the relation induced by the strongly

connected components (SCCs) in a directed graph.

5.1.1. Problem Setting

Figure 5.2a shows a directed graph and Figure 5.2b describes its adjacency relation edge. A user

can provide this relation as an input I to a synthesis engine with the intent to synthesize a query

that computes a relation scc representing SCCs in the graph. In order to express this intent, they

label some pairs of vertices as positive tuples O+ and some as negative tuples O− such that the

tuples in O+ must be present in relation scc while those in O− must be absent. Figure 5.2c shows

an example of the positive and negative labelled output tuples. The synthesis task is to find a query

P consistent with (I,O+, O−), that is, a query that takes I, the edge relation, as an input and

generates all tuples in O+ but none in O−.

63

The following relational query P≤3
scc is consistent with (I,O+, O−):

r1 : scc(x, x) :- edge(x, y), edge(y, x).

r2 : scc(x, y) :- edge(x, y), edge(y, x).

r3 : scc(x, x) :- edge(x, y), edge(y, z), edge(z, x).

r4 : scc(x, y) :- edge(x, y), edge(y, z), edge(z, x).

r5 : scc(x, z) :- edge(x, y), edge(y, z), edge(z, x).

(5.1)

P≤3
scc is a collection of rules {r1, . . . , r5}. We can interpret each rule in P≤3

scc as a Horn clause. For

instance, the second rule means that if both tuples (x, y) and (y, x) are in the edge relation, then

vertices x and y are in the same SCC.

As we can observe, P≤3
scc correctly captures all SCCs in the graph of Figure 5.2a, and in general, in

all directed graphs with SCCs of size 2 or 3. A program synthesis technique such as example-guided

synthesis (EGS) can efficiently synthesize such queries. However, the goal of the synthesis task is to

find a query that is not only consistent with the user input, but also generalizes to match the intent

of the user.

5.1.2. Synthesis of Recursive Queries

We next illustrate a query for computing SCCs that matches user intent.

The following relational query Pscc computes SCCs in a given graph:

r′1 : scc(x, y) :- path(x, y), path(y, x).

r′2 : path(x, z) :- path(x, y), path(y, z).

r′3 : path(x, y) :- edge(x, y).

(5.2)

Observe that Pscc uses a predicate path which is not pre-defined (that is, it does not occur as an

input to the synthesis task) and also calls itself in rule r′2. A predicate that does not appear in the

synthesis task as an input or an output predicate is called an invented predicate. A predicate that

64

can call itself by applying a series of rules is called a recursive predicate. Our goal is the discovery

of succinct and general queries such as Pscc that potentially use invented and recursive predicates.

Further, observe that a non-recursive query synthesis engine such as EGS or Scythe cannot

generate Pscc, nor can we modify them to directly enumerate such a query as they do not support

recursive or invented predicates. Two principal challenges when synthesizing such queries: First,

the outputs of intermediate relations are under-constrained and are not explicitly specified in the

input-output examples. This significantly inhibits the ability of the synthesizer to prune candidate

queries during search. Second, synthesis engines which attempt to enumerate candidate programs

also need constraints on the number and schema of these intermediate predicates. Tools such as

ProSynth and ILASP that support recursion would require additional supervision in form of

the correct set of mode declarations that specify the invented and recursive predicates with their

schema. Although GenSynth is able to discover invented predicates, it implicitly assumes that

they must share schema with one of the input or output predicates already provided as part of the

problem description. In our experiments in Section 5.5, we will present benchmarks that require

both predicate invention as well as schema invention, and observe that state-of-the-art tools fail to

correctly synthesize these queries.

We leverage a non-recursive query P≤3
scc that can be generated without templates (by using EGS) as

a starting point for the search for Pscc. Observe that Pscc generalizes P≤3
scc. That is, on any graph

Pscc will also report all pairs of vertices generated by P≤3
scc. In addition, for graphs with SCCs of

size 4 or more, Pscc can report pairs of vertices scc(x, y) that P≤3
scc would miss.

In order to generalize it, we first normalize the given query, that is, convert it into a semantically

equivalent query where a premise comprises of at most one input predicate or two invented predicates.

65

For ease of notation, let Q = P≤3
scc. The normal form Q for the query Q would look like:

ρ1 : scc(x, x) :- R1(x, y), R1(y, x).

ρ2 : scc(x, y) :- R1(x, y), R1(y, x).

ρ3 : scc(x, x) :- R1(x, y), R2(y, x).

ρ4 : scc(x, y) :- R1(x, y), R2(y, x).

ρ5 : scc(x, y) :- R2(x, y), R1(y, x).

ρ6 : R2(x, z) :- R1(x, y), R1(y, z).

ρ7 : R1(x, y) :- edge(x, y).

(5.3)

Observe that rules ρ1, . . . , ρ5 in Q correspond exactly to the rules r1, . . . , r5 in Q, and uses two

invented predicates R1 and R2. The rules for these invented predicates are ρ6 and ρ7.

At this point, we can highlight our key insight. There is a correspondence between the rules ρ6 and

ρ7 in Q and the rules r2 and r3 in Pscc. These rules are identical up to renaming of the predicates.

That is, if we could map R1(x, y) and R2(x, y) to path(x, y), we would have synthesized the rules r2

and r3 in Pscc. Applying this mapping to the rest of the rules gives us a query similar to Pscc.

Our generalization technique builds on this insight and identifies an efficient way to search for such

a map that unifies invented predicates. Also observe that normalization automatically discovers

schema of the intermediate relations, thus eliminating the need for them to be explicitly provided as

a part of the input. In this context, the normalized program Q effectively serves as a template and

constraints the space of candidate programs to those that can be generated by unification.

5.1.3. Provenance-Guided Generalization

In order to search for a query P that generalizes Q, we seek ways to unify the invented predicates R1

and R2. Section 5.4 details out a way to encode this as a constraint satisfaction problem. We start

with a bound on the number of invented predicates. For the sake of example, let it be 1. That is, we

wish to map R1 and R2 to the same predicate, say S1. Clearly, there are four ways to permute the

66

variables for R1 and R2, and each of them gives us a map:

µ1 : R1(x, y) 7→ S1(x, y), R2(x, y) 7→ S1(x, y)

µ2 : R1(x, y) 7→ S1(x, y), R2(x, y) 7→ S1(y, x)

µ3 : R1(x, y) 7→ S1(y, x), R2(x, y) 7→ S1(x, y)

µ4 : R1(x, y) 7→ S1(y, x), R2(x, y) 7→ S1(y, x)

In order to apply a unification µ to Q, we replace each occurrence of R1(x, y) and R2(x, y) with

µ(R1(x, y)) and µ(R2(x, y)) respectively in each rule. For example, on applying µ2 to Q we get the

query T (Q,µ2):

µ2(ρ1) : scc(x, x) :- S1(x, y), S1(y, x).

µ2(ρ2) : scc(x, y) :- S1(x, y), S1(y, x).

µ2(ρ3) : scc(x, x) :- S1(x, y), S1(x, y).

µ2(ρ4) : scc(x, y) :- S1(x, y), S1(x, y).

µ2(ρ5) : scc(x, y) :- S1(y, x), S1(y, x).

µ2(ρ6) : S1(x, z) :- S1(y, x), S1(z, y).

µ2(ρ7) : S1(y, x) :- edge(x, y).

Observe that if a tuple is produced by Q, then for any unification map µ, the same tuple can

be generated by T (Q,µ) by applying the corresponding set of rules. We formally prove this in

Theorem 5.4.3. However, it is possible that T (Q,µ) has an output larger than Q. In this sense,

unification leads to generalization. We call T (Q,µ) a candidate query.

We then check if the candidate query T (Q,µ) is consistent with the input-output example (I,O+, O−).

If it is, then we can return it as a synthesized result. On the other hand, it is also possible that such

a generalization is too general, that is, it also generates some of the tuples in O−.

67

In the example above, the tuple scc(c, d) can be generated by T (Q,µ2) while c and d are not in

the same SCC. We can analyze the derivation tree for a tuple like scc(c, d) to assign blame to

a part of the unification map. This blame can be converted into a constraint to rule out future

unification maps where similar patterns may occur, and thereby guide the search towards correct

generalizations.

In order to implement this, we set up an interactive process involving a constraint solver that

proposes candidate queries and a query evaluator that verifies whether the candidate is consistent

with the input-output example. In the case where the candidate is not consistent, the query evaluator

provides a derivation tree of every tuple in t ∈ O− that can be generated by the candidate. We use

these derivation trees to craft the constraints.

The key insight of the provenance-guided technique is to leverage the derivation tree of an unexpected

tuple. The derivation tree allows us to identify a number of unifications that lead to such a tuple

and they can be avoided in future iterations.

Eventually, the constraint solver proposes the unification map µ1. Not only is the query T (Q,µ1)

consistent with (I,O+, O−), it is also similar to the intended query Pscc. It has the rules:

µ1(ρ1) : scc(x, y) :- S1(x, y), S1(y, x).

µ1(ρ2) : scc(x, y) :- S1(x, y), S1(y, x).

µ1(ρ3) : scc(x, x) :- S1(x, y), S1(y, x).

µ1(ρ4) : scc(x, y) :- S1(x, y), S1(y, x).

µ1(ρ5) : scc(x, y) :- S1(x, y), S1(y, x).

µ1(ρ6) : S1(x, z) :- S1(x, y), S1(y, z).

µ1(ρ7) : S1(x, y) :- edge(x, y).

The rules µ1(ρ2), µ1(ρ5), and µ1(ρ6) correspond exactly to the rules r′1, r′2, and r′3 in Pscc (Equa-

tion 5.2). The rules µ1(ρ4), and µ1(ρ5) are identical to µ1(ρ1) or can be derived using it. Using the

68

rules µ1(ρ1) and µ1(ρ5), one can derive the rule µ1(ρ1) and µ1(ρ3). Once simplified, this gives a

correct and interpretable solution to the problem originally posed in Figure 5.2.

5.2. Minimal Generalization Problem

Our ultimate goal is to synthesize a recursive relational query which is consistent with given input-

output examples. Given a set of input tuples, I, and a set of output tuples partitioned as O+ and

O−, tools such as EGS and Scythe can effectively synthesize queries P such that P generates

tuples in O+ and does not generate any tuple in O−. However, these are non-recursive query. As

discussed in the overview, we are interested in the generalization problem where given a query Q

that is consistent with the input-output examples, we wish to find a query P that generalizes it. For

this purpose, we first define subsumption:

Definition 5.2.1 (Subsumption). A relational query P subsumes a relational query Q if for any set

of input tuples I, JQK(I) ⊆ JP K(I).

That is, for any input I, if Q generates a tuple t, then P also generates t. For example, the query

Pscc subsumes P≤3
scc We can now define the size of a relational query. The size of a query is the sum

of size of the rules in the query. For example, the size of the query Pscc is 5 and of P≤3
scc is 11. We

can now define the minimal generalization problem:

Problem 5.2.2 (Minimal Generalization). Given an input-output example E = (I,O+, O−), and a

relational query Q consistent with E, find a relational query P that subsumes Q, is consistent with

E, and is of minimal size among such queries.

For example, the user may specify the input and output tuples and seek a query that explains the

relation between input and output tuples. They may use the query P≤3
scc generated by EGS as a seed

in order to search for the query Pscc that uses invented and recursive predicates so it can match

user intention.

69

5.3. The Synthesis Algorithm

In this section we describe the end-to-end Mobius algorithm, which takes an input-output example

E = (I,O+, O−) as input and returns a relational query P (which potentially has invented and

recursive predicates). Algorithm 6 summarises the procedure.

Algorithm 6 Mobius(I,O+, O−), where (I,O+, O−) is an instance of the synthesis task.
1. Let Q0 = EGS(I,O+, O−). If EGS fails to return a relational query, end the procedure and

return unsat.
2. Initialize Q := ∅.
3. While there is a tuple t ∈ O+ \ JQK(I):

(a) Let r ∈ Q0 derive t. Update Q := Q ∪ {r}.
(b) Let Q = Normalize(Q).
(c) Compute P = Generalize(Q, I,O−).
(d) If O+ ⊆ JP K(I), end the procedure and output t.

We start with using a non-recursive query synthesizer EGS. The output of EGS, Q0, is a non-

recursive query. We construct a query Q ⊆ Q0 on demand, initialized to the empty set, that grows

till the synthesized query is not consistent with (I,O+, O−).

In order to generalize the query Q, we first normalize it to Q. We discuss the normalization procedure

in Section 5.3.2. The normalized query is then provided as an input to the provenance-guided

generalization procedure which we discuss in Section 5.4.

5.3.1. Example-guided Synthesis

Example-guided Synthesis (EGS) is a template-free algorithm to synthesize non-recursive queries

from input-output examples. While EGS supports features such as multi-way joins and unions,

it does not allow for invented or recursive predicates. Therefore, on inherently recursive tasks,

EGS cannot synthesize the intended query. P≤3
scc is an example of a query that EGS may generate.

Additionally, EGS cannot be modified to generate recursive programs as it not a syntax-guided tool.

However, EGS does provide a completeness guarantee that if there exists a non-recursive query

consistent with the input-output example (I,O+, O−), then EGS will find a consistent query Q0. We

can prove that there exists a recursive relational query consistent with a given input-output example

E = (I,O+, O−) only if there is a non-recursive query that is consistent with E. Therefore, when

70

EGS returns unsat, we can conclude that there does not exist a query (recursive or non-recursive)

that is consistent with the input-output example. Using this, we can prove:

Theorem 5.3.1 (Completeness). If there exists a query consistent with the input-output example

E = (I,O+, O−), then Mobius produces a relational query P consistent with E.

This is because we use EGS as a first step in the process, which allows Mobius to ensure that if

there is no consistent query, then we do not proceed with a futile search. On the other hand, if EGS

produces a query, Mobius only further generalizes it and in the worst case, it may output the same

query (after normalization). This allows us to conclude a completeness guarantee for the end-to-end

synthesis procedure:

5.3.2. Normalization

Once we have the query Q0, we construct Q on demand. Then, in Step 3b, we normalize Q to Q.

Normalization introduces invented predicates in the query which we further use for generalization

through unification. The following definition of a normal query is motivated by the Chomsky Normal

Form for context-free languages Sipser (2012).

Definition 5.3.2 (Normal Form). A relational query is said to be in the normal form if every rule

is of one of the two forms:

R(x⃗) :- R1(x⃗1), R2(x⃗2)

R(x⃗) :- Rin(x⃗in)

where R, R1, and R2 are invented predicates and Rin is an input predicate. That is, the body of a

rule either has two invented predicates or one input predicate.

For example, P≤3
scc in Equation 5.1 is not in normal form while Pscc in Equation 5.2 is. Analogous to

context-free languages, the normalization of relational queries can be carried out by rewriting the

rules into semantically equivalent rules and introducing invented predicates, and we can show that

every query can be normalized. We employ a greedy heuristic to normalize queries that allows us to

71

minimize the size of the number of invented predicates as well as their arity.

Let a given rule be of the form:

R(x⃗) :- R1(x⃗1), R2(x⃗2), . . . , Rn(x⃗n).

We partition the literals in the body into two disjoint sets Sl and Sr such that the number of variables

shared by literals in Sl and literals in Sr are minimal. Let x⃗l be a vector of variables that occur

in the literals in Sl and either in x⃗ or a literal in Sr. Similarly, let x⃗r be a vector of variables that

occur in the literals in Sr and either in x⃗ or a literal in Sl. Then, we can rewrite r as:

R(x⃗) :- Rl(x⃗l), Rr(x⃗r)

Rl(x⃗l) :- Ri1(x⃗i1), . . . , Rin(x⃗in)

Rr(x⃗j) :- Rj1(x⃗j1), . . . , Rjm(x⃗jm),

where we have Sl = {Ri1(x⃗i1), . . . , Rin(x⃗in)} and Sr = {Ri1(x⃗i1), . . . , Rin(x⃗in)}. We can iteratively

apply this rewriting rule to normalize the query. Observe that this is a greedy process, and hence

minimality of the normal form is not guaranteed.

Secondly, instead of recreating Rl and Rr at every step of the normalization procedure, we reuse

the invented predicates. That is, if there are two predicates which are described by syntactically

identical rule bodies (up to permutation of variables) that exists in the query, we require only one of

them. This allows us to reuse predicates and shrink the search space. If one chooses not to reuse

the predicates, they will be eventually unified during the generalization step. However, this heuristic

allows us to reduce the size of the search space and hence accelerate the synthesis process. Note

that this optimization does not compromise the end-to-end guarantee of Theorem 5.3.1. For the

running example, the normalization of P≤3
scc generates the query Q in Equation 5.3.

72

5.4. Provenance-guided Generalization

We can use the normalized relational query as a template to constrain the space of candidate

queries to only those which can be constructed by unification of predicates. As discussed in the

overview, the user may provide a query like P≤3
scc (Equation 5.1) and intend to generalize it to Pscc

(Equation 5.2). In the rest of this section, we develop a provenance-guided technique to solve the

minimal generalization problem (Problem 5.2.2) for queries in the normal form. We have named this

provenance-guided generalization procedure Generalize and outline it in Algorithm 7.

Algorithm 7 Generalize(Q, I,O−), where Q is a normalized query, I is the set of input tuples
and O− is the set of negatively labeled output tuples.

1. Initialize ϕ := ϕ0(Q).
2. Let Q have K invented predicates. Then, for k = 1 to k = K:

(a) Let µ = Generalize(Q, k, ϕ).
(b) If the Generalize procedure fails to find a unification map µ, then break the loop.
(c) Otherwise, let P = T (Q,µ).

i. If JP K(I) ∩O− = ∅, end the procedure and return P .
ii. Otherwise, for each t in JP K(I) ∩O−, update:

ϕ := ϕ ∧ Constraint(Q,µ, t).

We can show that Generalize solves the generalization problem (Problem 5.2.2) for normal queries

with the guarantee that the output of Algorithm 7 will have the least number of invented predicates.

Theorem 5.4.1. Given a normalized query Q, input tuples I and negatively labeled output tuples

O−, the query P generated by Generalize(Q, I,O−) is a normalized query that subsumes Q, does

not generate tuples in O−, and has the fewest invented predicates among all such queries.

The proof of this theorem relies on Theorem 5.4.3 which ensures that P subsumes Q, the soundness

check in step 2(c)i of Algorithm 7 that ensures no tuple in O− are generated, and the fact that

step 2 of Algorithm 7 searches for the least number of invented predicates incrementally. Therefore,

Algorithm 6 solves Problem 5.2.2 when the input is a normalized query Q. In cases where the input

query is not normalized, we can guarantee subsumption but not minimality. The rest of this section

discusses the details of the algorithm.

73

5.4.1. Generalization Algorithm

This algorithm approaches generalization as a unification procedure. That is, as explained in the

overview, we rewrite the literals in the query. In order to carry out this process, we seek a map µ

from the literals using the invented predicates in Q to literals using fresh invented predicates. For

this section, we consider the following query Q0 that uses three invented predicates R1, R2, and R3:

ρ1 : scc(x, y) :- R1(x, y), R2(x, y).

ρ2 : R1(x, y) :- edge(x, y).

ρ3 : R2(x, z) :- R1(z, y), R1(y, x).

ρ4 : R3(x, z) :- R1(x, y), R2(z, y).

(5.4)

Here, the predicate R1(x, y) represents that there is an edge between x and y, R2(x, z) represents

there is a path of length two from z to x and R3(x, z) represents there is a path of length three from

x to z. Consider a unification map µ that maps all of R1(x, y), R2(x, y), and R3(x, y) to an invented

predicate S1(x, y). Formally, we define:

Definition 5.4.2 (Unification Map). Given query Q with invented predicates in R and variables in

X, and a set of invented predicates S that do not occur in Q, a unification map µ : R ·X∗ → S ·X∗

is a function from literal R(x⃗) in Q that use predicate R ∈ R to a literal S(x⃗′) that uses predicate

S ∈ S and where x⃗′ is a permutation of variables x⃗.

In order to apply a unification map µ to a query Q, we replace each occurrence of the literal R(x⃗) in

Q with S(x⃗′). We denote such a query with T (Q,µ) where T is a transformation that applies µ to

Q. In the running example, we have T (Q0, µ):

µ(ρ1) : scc(x, y) :- S1(x, y), S1(x, y).

µ(ρ2) : S1(x, y) :- edge(x, y).

µ(ρ3) : S1(x, z) :- S1(z, y), S1(y, x).

µ(ρ4) : S1(x, z) :- S1(x, y), S1(z, y).

(5.5)

74

This method of unification provides a subsumption guarantee that the query T (Q0, µ) generates all

the tuples generated by Q0:

Theorem 5.4.3 (Subsumption). For every relational query Q and a unification map µ, the query

T (Q,µ) subsumes Q, that is, on every input I, JQK(I) ⊆ JT (Q,µ)K(I).

Proof. Consider a tuple t that can be derived by Q and has a derivation tree τ . Then, to prove that

t can be derived by T (Q,µ), we construct a derivation tree for t in T (Q,µ) by replacing each rule ρ

in t by µ(ρ). It is immediate that the constructed tree uses rules in T (Q,µ) to derive t.

However, T (Q,µ) may derive undesirable tuples, for instance, consider the tuple scc(c, d) derived by

T (Q0, µ) (as shown in Figure 5.3a). Hence, T (Q0, µ) is an incorrect generalization and we would like

to prune it out in the next iteration of the generalization procedure. Observe that for a given query

Q, the space of unification maps is finite. One can enumerate all unification maps, construct the

corresponding queries and check if they are consistent with the input-output example. If there are

K predicates in Q and k predicates after unification, then the number of possible maps are given by:

K∑
k=1

{
K

k

}
(K − k)n! ≥ n!

N∑
k=1

(
K

k − 1

)
(K − k) ∽ n!2K ≥ 2n+K ,

where
{
K
k

}
is the Stirling number of the second kind and we assume that each predicate has arity n

and the signatures are untyped. This implies that number of candidate queries that can be generated

by unification grow exponentially in both the number of invented predicates in the normalized query

as well as the arity of the predicates, making an exhaustive search infeasible. Therefore we reduce

this search problem to a constraint satisfaction problem by encoding the possible unification maps

as variables, and prune it using provenance.

5.4.2. Encoding Generalization as Constraint Satisfaction

Let the bound on the number of invented predicates in the candidate query be k. Then, for every

invented predicate R of arity n in Q, we introduce:

1. an integer variable c(R) such that 1 ≤ c(R) ≤ k, and

75

2. for each integer i such that 1 ≤ i ≤ n, an integer variable p(R, i) such that 1 ≤ p(R, i) ≤ n.

Additionally, we have the constraint that each p(R, i) should be unique for i. That is, for all relations

R and indices i and j, p(R, i) = p(R, j) =⇒ i = j.

The conjunction of the above constraints form the initial constraint ϕ0(Q). In order to interpret

an assignment to this encoding as a unification, we say that the literal R(x1, . . . , xn) is mapped to

Sc(R)(xp(R,1), . . . , xp(R,n)).

5.4.3. Provenance-Guided Constraint Generation

Observe that µ is an incorrect generalization and we would like to eliminate the assignment that

leads to it. For this purpose, we carefully analyze the program T (Q0, µ). Intuitively, it is clear that

unifying R1 and R2 can lead to an incorrect program as the former represents paths and the latter

represents reverse paths. Therefore, one can assign the blame of incorrect generalization to the

unification of R1(x, y) with R2(x, y), and this is independent of how R3(x, y) is unified with either

of the two.

In general, the goal is to identify a minimal set of predicates whose unification leads to incorrect

generalization, and use this to prune out all unification maps that contain them. For this purpose,

we construct a program that is equivalent to T (Q,µ) by introducing tunneling clauses to Q. In the

unification map if some predicate R(x⃗) is unified with R′(x⃗′), then we add the rules R(x⃗) :- R′(x⃗′)

and R′(x⃗′) :- R(x⃗). For a query Q and unification map µ, the program constructed using the

tunneling clauses is represented as T ′(Q,µ). We wish to show that T (Q,µ), the program generated

by unifying predicates in Q is semantically equivalent to T ′(Q,µ), the program generated by adding

the tunneling clauses.

Theorem 5.4.4 (Tunneling). The programs T (Q,µ) and T ′(Q,µ) are semantically equivalent.

Proof. Consider an input I. We will show that T (Q,µ) can derive a tuple t using input I, if and

only if, T ′(Q,µ) can derive t. The proof in both directions proceed by structural induction on the

derivation tree of t.

76

In the forward direction, consider a derivation of t in T (Q,µ). If R(x⃗′) is unified to S(x⃗), for every

rule of the form S(x⃗) :- Rin(x⃗in) we introduce the rule R(x⃗′) :- Rin(x⃗in). For every rule µ(ρ) of the

form S(x⃗) :- S1(x⃗1), S2(x⃗2), consider the rules µ(ρ1) and µ(ρ2) whose heads derive the predicates

S1(x⃗1) and S2(x⃗2). Let ρ be R(x⃗) :- R1(x⃗1), R2(x⃗2) and the heads of ρ1 and ρ2 be R′
1(x⃗

′
1) and

R′
2(x⃗2)

′ respectively. As we have µ(ρ) using the heads of µ(ρ1) and µ(ρ2), we have that R1(x⃗1) is

unified with R′
1(x⃗

′
1) to form S1(x⃗1) (and similarly for S1(x⃗1)). Hence, we can introduce the rules ρ

and the tunneling clauses R1(x⃗1) :- R′
1(x⃗

′
1) and R′

1(x⃗
′
1) :- R1(x⃗1). The corresponding derivation tree

in T ′(Q,µ) can derive t.

Now consider a derivation tree in T ′(Q,µ). If it uses a rule ρ ∈ Q, we introduce the rule µ(Q). If it

uses a tunneling clause R1(x⃗1) :- R2(x⃗2), then it must be the case that µ unifies R1(x⃗1) and R2(x⃗2)

to some S(x⃗). Then, we introduce the rule S(x⃗) :- S(x⃗). The corresponding tree derives t using rules

in µ(Q) along with tautological rules of the form S(x⃗) :- S(x⃗). Observe that tautological rules can

be eliminated in the derivation tree as their head is the same as the predicate in the premise. This

gives us a derivation tree for t using rules µ(Q).

Therefore, any tuple that can be derived in µ(Q) can be derived in T ′(Q,µ), and they are semantically

equivalent queries.

Below is the query with tunneling clauses for the running example Q0 with unification µ (that is,

T (Q0, µ) as in Equation 5.5) .

ρ1 : scc(x, y) :- R1(x, y), R2(x, y). ρ6 : R1(x, y) :- R3(x, y).

ρ2 : R1(x, y) :- edge(x, y). ρ7 : R2(x, y) :- R1(x, y).

ρ3 : R2(x, z) :- R1(z, y), R1(y, x). ρ8 : R2(x, y) :- R3(x, y).

ρ4 : R3(x, z) :- R1(x, y), R2(z, y). ρ9 : R3(x, y) :- R1(x, y).

ρ5 : R1(x, y) :- R2(x, y). ρ10 : R3(x, y) :- R2(x, y).

77

edge(c, d)

S1(c, d)

edge(c, d)

S1(c, d)

scc(c, d)

(a) Example derivation tree of the output tuple
scc(c, d) for the query T (Q0, µ).

edge(c, d)

R1(c, d)

R2(c, d)

edge(c, d)

R1(c, d)

scc(c, d)

(b) Example derivation tree of the output tuple
scc(c, d) for the query T ′(Q0, µ).

Figure 5.3: The derivation tree of the tuple scc(c, d) for the queries T (Q0, µ) and T ′(Q0, µ). The
input to the query is the graph of Figure 2.3a.

On evaluating the program T (Q0, µ) on the input graph of Figure 5.2b, we observe that it derives the

tuple scc(c, d). By Lemma 5.4.4, T ′(Q0, µ) also derives scc(c, d). Figure 5.3 shows the derivation

tree for the two programs.

We will use the derivation tree of scc(c, d) in T ′(Q,µ) to assign the blame of generating a tuple

in O−. That is, in the running example, we analyze the derivation tree in Figure 5.3b and seek all

tunneling rules used in the derivation. Observe that the tree uses only the rule ρ7 which corresponds

to unifying R1(x, y) and R2(x, y). Any unification map that unifies these two predicates (with the

same rearrangement of variables) will generate scc(c, d) and we can eliminate them in the future

iterations. However, the derivation tree does not use a rule with R3, and hence we can conclude that

a unification of R3 is irrelevant to the derivation of the undesirable tuple. In this sense, the analysis

of the derivation tree gives us a part of the unification to assign blame for generating a tuple in O−.

In general, if the derivation tree includes a tunneling clause of the form R(x⃗1) :- R′(π(x⃗)) for some

permutation of variables π, we add the constraint:

¬

(
c(R) = c(R′) ∧

k∧
i=1

p(R, i) = p(R′, π(i))

)
,

where k is the arity of R. This constraint prunes out all unifications where R(x⃗1) is unified with

R′(π(x⃗)). If the derivation tree uses more than one tunneling clause, we take the conjunction of all

78

of them.

The process of constructing the derivation tree of a tuple t in T ′(Q,µ) is implemented as a subroutine

Constraint(Q,µ, t), and is used in Algorithm 7.

5.5. Experimental Evaluation

Our implementation of Mobius consists of approximately 1,300 lines of Python code. We use

Souffle Zhao et al. (2020) to evaluate candidate queries and compute data provenance, and we

use z3 to solve the constraints generated by the Generalize procedure. Our evaluation in this

section attempts to answer the following questions:

Q1. Effectiveness: How effective is Mobius in synthesizing queries with a variety of recursion

schemes compared to state-of-the-art tools?

Q2. Generalizability: Does predicate unification improve accuracy when the learned query is tested

on unseen data?

Q3. Expressibility: How does the expressive power of Mobius compare against the baselines?

Q4. Convergence: Does accounting for data provenance improve convergence time?

We describe our benchmark suite in Section 5.5.1 and the three baselines against which we compare

Mobius in Section 5.5.2. We present our findings for Q1, Q2, Q3, and Q4 in Sections 5.5.3–5.5.6

respectively.

5.5.1. Benchmarks

We evaluate Mobius on a suite of 21 synthesis tasks obtained from the domains of knowledge

discovery and program analysis. The intended solutions for all of these tasks involve the use of

recursion. We present a summary of these benchmarks in Table 5.1. The benchmarks are divided

into seven categories:

1. Transitive Closure: This is the simplest example of a recursive query that constructs the

transitive closure of the input predicate. We use the example of reachability in directed graphs

79

for this category.

2. Boolean Transitive Closure: This category comprises of queries that involve transitive closure

and some Boolean operation such as conjunction or disjunction. It includes five benchmarks

that draw from the domains of knowledge discovery and program reasoning.

3. Linear Queries : A linear query is one where the invented (or output) predicate occurs at most

once in each rule Abiteboul et al. (1994). While the previous two benchmark categories also

include only linear queries, this category includes three benchmarks from knowledge discovery

that are not covered by Boolean transitive closure.

4. Intersection: These queries correspond to intersection of linear queries (such as scc is an

intersection of path and its reverse). This category consists of two benchmarks.

5. Schema Invention: The monochromatic query corresponds finding monochromatic paths in a

vertex colored graph. We discuss it in detail in Section 5.5.4.

6. Non-linear Queries: These are three other queries from knowledge discovery and program

analysis that cannot be expressed as a linear query.

7. Mutual Recursion: This category consists of six linear and non-linear queries involving mutual

recursion, that is, they have two or more recursive predicates that call each other.

These benchmarks are collected from previous literature on relational query synthesis and express a

diverse range of challenges from across different application domains.

5.5.2. Baselines

We compare Mobius with three state-of-the-art synthesizers that use different synthesis tech-

niques: GenSynth Mendelson et al. (2021), which uses an evolutionary search algorithm, and

ILASP Law et al. (2020a) and Popper Cropper and Morel (2021), which are based on constraint

solving techniques.

ILASP and Popper model the synthesis problem as a search through a finite space of candidate

80

Table 5.1: Table summarizing benchmark characteristics. We evaluate Mobius on a suite of 21
benchmarks featuring diverse recursion schemes. For each benchmark, we summarize the number of
input-output relations and the number of input-output tuples. Ten of these benchmarks use invented
predicates.

Name Brief description Input Output
Preds Tuples Preds Tuples

transitive closure
path graph reachability Raghothaman et al. (2020a) 1 7 1 31

boolean transitive closure
ancestor find ancestor in a family tree Muggleton et al. (2015) 2 8 1 19
connected unidirectional graph reachability Mendelson et al. (2021) 1 20 1 104
escape escape analysis for Java Si et al. (2018) 4 13 1 6
union-find equivalence of elements in same set Si et al. (2018) 3 21 1 36
wikiedits extract edit history in Wikipedia 4 16 1 7

linear queries
rsg reverse-same-generation in family tree Abiteboul et al. (1994) 3 17 1 11
sgen same generation in family tree Abiteboul et al. (1994) 1 7 1 21
zero checking equality of numbers 2 12 1 38

intersection
blue-and-green graph reachability with two colored paths 2 9 1 5
scc compute SCCs in graph Raghothaman et al. (2020a) 1 10 1 25

schema invention
monochromatic monochromatic paths in a vertex colored graph 2 134 1 56

non-linear queries
andersen inclusion-based pointer analysis for C Andersen (1994) 4 7 1 7
dyck well balanced parentheses 2 10 1 8
modref mod-ref analysis for Java Si et al. (2018) 7 18 5 34

mutual recursion
1-call-site 1-call-site pointer analysis for Java Whaley and Lam (2004) 7 28 1 4
1-object 1-object-sensitive pointer analysis Milanova et al. (2002) 9 40 1 4
1-object-1-type 1-type-1-object sensitive analysis Smaragdakis et al. (2011) 10 48 1 6
1-type 1-type-sensitive pointer analysis Smaragdakis et al. (2011) 10 42 1 5
2-call-site 2-call-site pointer analysis for Java Whaley and Lam (2004) 7 30 1 4
buildwall learn a stable wall strategy Muggleton et al. (2015) 4 30 1 4

queries. In order to evaluate them in our setting, we generated candidate rules for each of the 20

benchmarks using instance-specific mode declarations. A mode declaration is a syntactic constraint

on the candidate queries such as the length of the rule or the number of times a particular relation

can occur in its body. In particular, we provide ILASP with the names and signatures of all

predicates, including invented predicates, whether they can appear as the head of a clause, and the

maximum number of times each predicate can appear in a clause body. In addition, we also provide

the maximum number of variables in each rule. Similarly, we provide Popper with bounds on the

number of learned rules, their lengths, and the number of variables which can occur in each rule.

We ensure uniformity by running all baselines in single-threaded mode.

For each benchmark query, we recovered the minimum mode declarations required from its reference

solution. For example, for the query:

path(x, z) :- path(x, y), path(y, z).

81

path(x, y) :- edge(x, y).

We have the mode declarations:

#modeb(1, edge(var(V), var(V)), (positive)).

#modeb(2, path(var(V), var(V)), (positive)).

#modeh(path(var(V), var(V))).

#maxv(3).

These mode declarations specify that edge and path predicates may appear in rule bodies, and

also specify the maximum number of times they may be used. Additionally, the head of a rule can

only have path or scc predicate, and no rule should use more than 3 variables. That is, the mode

declaration implicitly specify that there is only one recursive predicate path. In case of invented

predicates, the user must explicitly provide the invented predicate along with its schema.

Lemma 4.2 of 3.2.2 alternatively provides an instance-agnostic technique to derive mode declarations.

However, as we will see in our evaluation in Section 3.4.3, the baseline tools often run out of time

with even the more constrained instance-specific settings, thereby rendering this instance-agnostic

approach infeasible.

In summary, we make the most favorable case for these baselines by choosing the tightest set of

mode declarations that contains the reference solution for the corresponding synthesis task.

5.5.3. Effectiveness

We compared the performance of Mobius against the baselines by running each of them on the

benchmarks. We set a uniform timeout of 15 minutes for all tools, and ran the experiments on

a desktop workstation with a Ryzen 9 5950X CPU and 128 GB of memory running Linux. We

measured the running time of each of these tools on each benchmark. We present the running times

in Table 5.2 and present an alternative visualization in Figure 5.4a.

Overall, Mobius consistently produces solutions in the least time, despite requiring lesser guidance

82

Table 5.2: Table summarizing effectiveness of synthesis. We evaluate Mobius and the three baselines
on a suite of 21 benchmarks. All tools are run in single-threaded mode. Mobius successfully
synthesizes all benchmarks with an average run-time of 23.1 seconds, while GenSynth, ILASP,
and Popper time out on 7 benchmarks each. Note that GenSynth and Popper fail to find a
solution for 1 and 7 benchmarks respectively.

Name Runtime
Mobius GenSynth ILASP Popper

path <1 <1 <1 <1
ancestor <1 5.0 timeout 21.8
connected 1.2 - timeout -
escape <1 4.5 1.0 -
union-find 1.0 2.1 20.2 timeout
wikiedits 1.5 157.8 1.0 42.1
rsg 1.8 39.5 27.9 3.7
sgen 1.3 6.5 2.3 <1
zero 11.1 timeout 3.4 -
blue-and-green 1.6 17.9 3.1 3.2
scc 2.2 4.7 timeout -
monochromatic 14.2 5.1 timeout timeout
andersen 5.7 timeout 554.8 timeout
dyck 133.9 565.9 52.1 -
modref 275.8 timeout timeout -
1-call-site 1.1 timeout timeout timeout
1-object 1.4 753.7 299.9 timeout
1-object-1-type 20.8 timeout 455.9 24.6
1-type 3.1 timeout timeout timeout
2-call-site 1.2 timeout 406.5 timeout
buildwall 2.3 44.3 194.3 -

than all three baseline tools. Across the 21 benchmarks, on average, Mobius requires 41%, 76%,

and 60% of the time needed by GenSynth, ILASP and Popper respectively. Observe also that

it is the only tool which does not timeout on any benchmark, and in several instances is the only

system which successfully synthesizes a solution.

We note that Mobius solves all but two synthesis tasks in less than 30 seconds. In the two most

expensive benchmarks, modref (a program analysis task) and dyck (matching well-parenthesized

strings), more than 85% of the final synthesis time is needed by EGS to produce the seed query in

Step 1 of Algorithm 6 (Figure 5.4b shows a breakdown of the time needed for the initial synthesis of

non-recursive queries).

Additionally, ILASP and Popper fail to solve 7 and 14 problem instances respectively. For Popper,

these failures arise both from running out of time and because of its inability to synthesize invented

predicates. In particular, it reports infeasibility for five synthesis tasks, including the SCC query

(which requires the invented predicate path).

83

(a) Comparing the performance of Mobius, GenSynth,
ILASP, and Popper on the suite of 21 benchmarks.

(b) Comparing the total runtime of the end-
to-end Mobius tool against the time spent
in the non-recursive phase that uses EGS
for the suite of 21 benchmarks.

Figure 5.4: Summary of the runtime of Mobius on the benchmark suite for the effectiveness study.
Mobius outperforms the state-of-the-art baselines GenSynth, ILASP, and Popper. The synthesis
time of Mobius is split between the non-recursive phase where we use EGS and the generalization
phase where we use a provenance-guided search.

84

5.5.4. Generalizability

Next, we asked whether the generalization algorithm improves the accuracy of learned queries when

they are applied to previously unseen datasets. In order to determine the empirical accuracy of

Mobius and to compare it to that of EGS and GenSynth, we focused on three synthesis tasks

involving graph properties: path, connected, and scc. The two vertices x and y are related by

connected(x, y) if there is either a path from x to y or a path from y to x. It is therefore similar to

SCC, with the top-level conjunction instead replaced with a disjunction.

We used the same training data as in Section 5.5.3. The test data is generated by sampling graphs

of increasing size (ranging from 10 to 50 vertices) that contain Hamiltonian cycles. The Hamiltonian

cycle ensures that all sampled graphs are non-trivial, i.e., ∅ ⊊ path, connected, scc ⊊ V × V . The

experiment is repeated 10 times and the mean values are reported in Figure 5.5.

The queries learned by EGS only achieve at most 62%, 81%, and 37% test accuracy in each of the

three queries. This is unsurprising: because the test graph is larger than any of the training graphs,

it is unlikely for non-recursive queries learned by EGS to achieve perfect accuracy in test.

Two expected trends are also evident from this: First, the test accuracy of EGS decreases as the size

of the input graph increases. On average, the accuracy falls by over half for graphs with 50 vertices

compared to those with 10 vertices. Second, complex benchmarks such as scc that involve invented

predicates show significant drops in accuracy compared to relatively simpler benchmarks such as

path and connected.

On the other hand, observe that Mobius consistently achieves perfect test accuracy consistently. In

other words, Algorithm 7 effectively transforms the non-recursive query to produce a query with

recursive and invented predicate that generalizes to arbitrarily large unseen data.

Another effect of predicate unification is that the learned queries are smaller than the seed non-

recursive queries. Over sufficiently large training datasets, the compressed query stops growing

once the Generalize procedure has identified the target concept, while the non-recursive query

generated by EGS continues to grow as larger instances of these patterns occur in the training data.

85

(a) Generalization study for the
path benchmark.

(b) Generalization study for the
connected benchmark.

(c) Generalization study for the scc
benchmark.

Figure 5.5: Summary of the accuracy studies on three graph benchmarks: path, connected, and
scc. Observe that Mobius achieves perfect accuracy on unseen data as recursion is required to
express the target concepts.

5.5.5. Expressibility

As a next example, consider the case of monochromatic which captures monochromatic paths in

a vertex colored graph. One can interpret this as finding a connected component of friends with

a common characteristic such as having visited the same place or having a shared interest. This

benchmark requires schema invention, that is, it uses an invented predicate with a schema different

from that of the input or output predicates. The following query represents the desired solution:

path(x, y, c) :- edge(x, y), color(x, c), color(y, c).

path(x, z, c) :- path(x, y, c), path(y, z, c).

monochromatic(x, y) :- path(x, y, c).

It uses the invented predicate path with arity 3. Notably, path does not share a schema with any of

the relations described as part of the input-output data. As discussed before, tools such as ILASP

and Popper are limited by requiring the user to specify explicitly specify the invented predicate

and its schema. While GenSynth can automatically invent predicates, it assumes that the invented

predicate shares its schema with either the input or the output predicates, and therefore fails on

86

benchmarks such as monochromatic which require schema invention.

On the other hand, Mobius can effectively invent the predicate path with arity 3 and synthesize

the desired program. This example highlights our two key contributions:

1. The two-phased approach of first synthesizing a non-recursive query and then generalizing it

allows for synthesis of queries with recursive and invented predicates (including those with

new schemas), and

2. The end-to-end synthesis technique is complete (as proved in Theorem 5.3.1) and does not

require additional supervision from the user in terms of mode declarations or schemas for

invented predicates.

5.5.6. Convergence

Finally, we ask whether accounting for data provenance in the generalization process improves

convergence time. We construct a variation of Algorithm 7 where the assignment in Step 2(c)ii is

instead replaced by:

ϕ := ϕ ∧
∨
v

(v ̸= µ(v)),

where v ranges over all variables currently in context. In other words, we prohibit the constraint

solver from producing the same unification map µ in future, but do not perform failure analysis or

generalization of any kind.

We ran this modified algorithm on all 20 benchmarks with the same 15 minute time limit as before.

In this setting, the algorithm only succeeds on 4 of the 20 synthesis tasks: path, ancestor, union-find,

and escape. Observe that all of these are variations of transitive closure. The non-recursive seed

queries produced by EGS were correspondingly small and had fewer invented predicates. This

greatly reduced the size of the search space, making an exhaustive search feasible. On the other

hand, for most other benchmarks, we conclude that provenance-guided generalization is crucial for

successful termination.

87

1.0 10.0
Running time of EGS (seconds)

1.0

10.0

Ru
nn

in
g

tim
e

of
 M

öb
iu

s (
se

co
nd

s)

Figure 5.6: Comparison of the running time of EGS and Mobius on a suite of 79 non-recursive
benchmarks. Because Mobius begins with seed queries produced by EGS, all points are naturally
to the top-left of the y = x diagonal. The dotted line corresponds to Mobius taking twice the time
needed by EGS. Only 6 benchmarks take longer to complete.

5.5.7. Performance on Non-Recursive Benchmarks

The user may occasionally be unaware of whether the intended solution for a problem instance

requires the use of recursion. In these cases, they may directly call Mobius in order to synthesize a

program, instead of beginning with an exploratory run of a non-recursive query synthesizer. Therefore,

in our final experiment, we analyze the performance of Mobius on a suite of 79 non-recursive

benchmarks, drawn from the evaluation of EGS in 3.4.1.

We summarize our observations of running time in Figure 5.6. On average, recursive synthesis

imposes only a 57% time overhead, and in all but 6 of the benchmarks, end-to-end synthesis using

Mobius requires less than 2× the time needed for synthesis using EGS.

Additionally, it is possible that Mobius generalizes the non-recursive program to a more succinct

non-recursive program using an invented predicate. We see this in the case of generating the

grandparent relation. EGS generates:

grandparent(x, z) :- mother(x, y), mother(y, z).

88

grandparent(x, z) :- mother(x, y), father(y, z).

grandparent(x, z) :- father(x, y), mother(y, z).

grandparent(x, z) :- father(x, y), father(y, z).

While this is a correct solution, Mobius generalizes it by inventing a predicate corresponding to

the parent relation (denoted below with S), and returns the following solution with the size of the

program reduced from 8 to 4:

S(x, y) :- mother(x, y).

S(x, y) :- father(x, y).

grandparent(x, z) :- S(x, y), S(y, z).

89

CHAPTER 6

Synthesis in Presence of Noise

In many real-world scenarios, data is rarely perfect and often contains some degree of noise. Therefore,

it is important to consider synthesis in the presence of noise to ensure that the resulting programs

are robust and can perform well even when the input data is not ideal.

When it comes to synthesizing programs in the presence of noisy data, there are several techniques

that can be leveraged to mitigate the negative effects of this noise. For example, the input-output

data can be pre-processed through data cleaning. By removing or correcting incorrect or irrelevant

data, we can improve the quality of the data set and reduce the impact of noise on the final output.

On the other hand techniques such as ensemble learning can improve the overall performance of the

system and reduce the impact of individual noisy data points.

In the context of relational queries, constraint solving tools such as Zaatar, Popper, and ILASP

and evolutionary algorithms such as GenSynth can support learning in presence of noise. Motivated

by the parallelization in GenSynth, we adapt Algorithm 1 of Chapter 3 to handle noisy input-output

examples during the learning process.

6.1. Problem Formulation

For our setting, we assume that noise can either feature as the occurrence of:

1. Undesirable tuple in positive output examples O+,

2. Desirable tuples in negative output examples O−,

3. Missing input example in I, or

4. Additional input example in I

Due to the definitions of positive and negative output examples, we do not need to consider the case

when we are missing any tuples from them.

90

W
IL

LI
A

M
 S

T

LIBERTY ST

WALL ST

B
RO

A
D

W
AY

W
HITEHALL ST

(a)

Intersects

Broadway Liberty St
Broadway Wall St
Broadway Whitehall
Liberty St Broadway
Liberty St William St
Wall St Broadway
Wall St William St
Whitehall Broadway
William St Liberty St
William St Wall St

GreenSignal

Broadway
Liberty St
William St
Whitehall

HasTraffic

Broadway
Wall St
William St
Whitehall

Crashes

Broadway
Whitehall
Liberty St

(b)

Figure 6.1: Data describing traffic conditions in a city: (6.1a) Map of the city, (6.1b) and listing of
the input and output relations. The output relation Crashes has an additional undesirable tuple
Liberty St

Consider the example from Section 2.1 with traffic and car crashes in a city as depicted in Figure 6.1.

However, observe that compared to Section 2.1, the output table Crashes contains an additional

undesirable tuple Liberty St, highlighted in italics. In this case, we would like to synthesize the desired

query:

Crashes(x) :- Intersects(x, y), HasTraffic(x), HasTraffic(y),

GreenSignal(x), GreenSignal(y),

However, observe that the query produces the output {Broadway,Whitehall} instead of the desired

output {Broadway,Whitehall, Liberty St}, and therefore it is not consistent with the input-output

examples. Therefore, in order to support robust learning, we need to first define ϵ-consistency.

91

Definition 6.1.1 (ϵ-consistency). Given ϵ ∈ [0, 1] and input-output examples E = (I,O+, O−), a

query Q is said to be ϵ-consistent with E if |O+ ∩ JQK(I)| ≥ (1− ϵ)|O+| and |O− ∩ JQK(I)| ≤ ϵ|O−|.

Observe that under this definition, with ϵ = 1
3 , the above query is partially consistent with the

input-output examples in Figure 6.1. With this definition, we can reformulate Problem 2.3.1:

Problem 6.1.2 (Robust Relational Query Synthesis Problem). Given input tuples I, output tuples

partitioned as O+ and O−, and an error threshold ϵ ∈ [0, 1], return a relational query Q such that Q

is ϵ-consistent with (I,O+, O−) if such a query exists, and unsat otherwise.

6.2. Synthesis Algorithm

In order to support robust relational query synthesis, we modify Algorithm 1 and 3 from Chapter 3

by using the definition of ϵ-consistency as well as parallelization. This section extensively uses

notation introduced in Chapter 3.

Algorithm 8 ExplainCell-R(I,R(c), O−, ϵ), where t = R(c) is an output tuple with a single field.
Produces an enumeration context C ⊆ I such that rC 7→t is consistent with the example (I, {t}, O−).

1. Let GI = (D,E) be the constant co-occurrence graph as defined in Section 3.1
2. Initialize the priority queue, L:

L := {{t′} | t′ ∈ I contains the constant c}.

Each element C ∈ L is a subset of the input tuples, C ⊆ I.
3. While L ̸= ∅:

(a) Pick the highest priority element C ∈ L, and remove it from the queue: L := L \ {C}.
(b) If rC→t is ϵ-consistent with (I, {t}, O−), then return C.
(c) Otherwise:

i. Let N = {c ∈ D | ∃t′ ∈ C where t′ contains c}.
ii. For each constant c ∈ N , edge e = c →R c′ in GI , and for each additional input tuple

t′ ∈ I \ C which witnesses e, update:

L := L ∪ {C ∪ {t′}}.

4. Now, since L = ∅, return unsat.

We first modify Algorithm 1 by introducing the notion of ϵ-consistency, to get Algorithm 8 as

described above. Concretely, Algorithm 8 differs from Algorithm 1 only at line 3b. Then, the

ExplainTuple procedure of Algorithm 2 can be canonically extended to support ϵ-consistency in a

92

similar way to get the procedure ExplainTuple-R.

ExplainTuple-R. allows us to tackle three of the four scenarios in which noise may be introduced in

the input-output examples, that is, the cases when either there is noise in the input examples, or

there is a desirable tuple in the negatively labelled outputs. However, it does not address the case

when there may be an undesirable tuple in the positive examples, and in particular, when we make

an unfortunate choice for the selected t for ExplainCell-R.

For this purpose, we introduce parallelization in Algorithm 3. That is, for each tuple t ∈ O+ we

search for conjunctive queries qt that may explain t (up to ϵ-consistency), and maintain a set Q that

is their union. The entire search can be paused when Q is ϵ-consistent with the given input-output

examples. The EGS-R procedure of Algorithm 9 realizes the same. The correctness and completeness

of Algorithm 9 follows from that of Algorithm 3 in Chapter 3.

Algorithm 9 EGS-R(I,O+, O−, ϵ). Given an example M = (I,O+, O−) and ϵ ∈ [0, 1], finds a UCQ
Q ϵ-consistent with M if such a query exists, and returns unsat otherwise.

1. Initialize Q to be the empty query, Q := ∅.
2. For each tuple t ∈ O+, in parallel:

(a) Synthesize an explanation,

Ct = ExplainTuple-R(I, t, O−, ϵ),

and construct qt = rCt→t. If no solution is found terminate the parallel search for the
given t.

(b) Otherwise, update: Q := Q ∪ {qt}
(c) If Q is ϵ-consistent with M , terminate all parallel threads and return Q.

3. If Q is not Q is not ϵ-consistent with M , return unsat.

6.3. Experimental Evaluation

We have implemented the EGS-R algorithm in Python which makes calls to the EGS algorithm from

Chapter 3. In this section, we evaluate it to determine the effectiveness of EGS-R on synthesis tasks

in presence of noise.

We have selected 12 knowledge discovery tasks from Section 3.4.1 that involve 5 or more output

tuples. This is because the threshold of error depends on the fraction of noisy tuples to the desired

tuples. That is, for benchmarks such as scheduling with only one output tuple, adding noise has a

93

Figure 6.2: Results of our experiments using EGS and EGS-R on a suite of 12 knowledge discovery
benchmarks. A datapoint (n, t) indicates that the corresponding tool solved n of the benchmarks in
less than t time.

grave impact compared to a benchmark such as inflammation that has 49 output tuples.

We performed all experiments on a server running Ubuntu 18.04 LTS over the Linux kernel version

4.15.0. The server was equipped with an 18 core, 36 thread Xeon Gold 6154 CPU running at 3 GHz

and with 394 GB of RAM. Unlike EGS, EGS-R is multi-threaded and hence the results may vary

based on the degree of parallelization.

In order to set up the benchmarks, we added to or removed tuples from the input-output examples

at random. At any point, the ratio of edits was bounded by 20% across all benchmarks. Then, we

ran EGS-R on them with a timeout of 600 seconds. In order to compare EGS-R with EGS, we also

ran EGS on the selected benchmarks (without adding noise).

We observe that the EGS-R terminates on all benchmarks and takes an average time of 3.23 seconds

even with up to 20% noise. This is a significant blow-up compared to EGS which takes an average

of 0.66 seconds on these 18 tasks. This blow-up can be attributed to the tool choosing an erroneous

tuple to begin the search as well as the time for the Python implementation of EGS-R to call on

the Scala implementation of ExplainCell-R. In general, we observe a smooth trend across the 12

94

benchmarks with no outliers.

On qualitatively examining the synthesized queries, we observe that while they are ϵ-consistent with

the given input-output examples, they do not necessarily generalize to the desired output. Consider

abduce, a benchmark that synthesizes the grandparent relation using a family tree. Due to the

nature of the noise, we end up eliminating a corner case which yields a solution of the form:

grandparent(x, y) :- father(x, z), father(z, y).

grandparent(x, y) :- father(x, z), mother(z, y).

grandparent(x, y) :- mother(x, z), father(z, y).

And fails to include:

grandparent(x, y) :- mother(x, z), mother(z, y).

This is an example of EGS-R over-fitting due to under-generalization. Identifying rules such as the

one above when the problem instance is under-specified (here, due to noise) remains a core challenge

for programming-by-example Halbert (1984).

95

CHAPTER 7

Conclusion and Future Work

The work in this thesis proposes methods for example-guided synthesis of relational queries with

varying levels of expressiveness and addresses the challenge of learning these queries from a small set

of demonstrative input-output examples. The evaluation of the approaches on an expansive set of

benchmarks demonstrates its effectiveness in generating efficient and accurate queries. In addition,

the experiments have shown that the method is able to handle noisy and incomplete data and can

outperform state-of-the-art systems.

The contribution of this work is not only limited to the proposed method, but opens up several

possibilities in the domain of programming-by-example, and proposes program synthesis as a

promising direction for improving the usability and accessibility of database systems. Additionally,

it can be used in the context of knowledge discovery to learn intepretable hypotheses from data.

Example-guided synthesis can find application in designing developer tools that allow non-expert

end-users to generate challenging and complex programs by providing only a small set of input-output

examples. Another compelling use case is writing program analyses. Information from the analyzed

programs can be extracted and represented as relational data. The user can provide a set of output

examples (for instance by highlighting the section of code in an IDE), and we can synthesize a

hypothesis explaining the highlighted outputs.

Limitations and Future Work

We now discuss a few limitations of the Example-Guided Approach and outline opportunities for

future work:

1. Expressiveness: While the presented approach targets rich fragments of relational queries

with features such as conjunction, negation, recursion, predicate invention, and numerical and

categorical comparisons, it currently does not support aggregation.

However, tools such as Scythe and PatSQL can support more expressive features such as

96

aggregation, group-by operators, and ordering. This makes them a better fit for the SQL

domain. Two ways in which example-guided synthesis can be extended to support aggregation

are adding support for user-provided templates and interactive synthesis.

As discussed before, this thesis explores the trade-off between instance-specific supervision and

expressibility of synthesis tools. In that sense, seeking additional supervision from the user

beyond the input-output examples can help guide the synthesis process. This is especially

important for aggregators that lead to constant invention, that is in the case of operators like

sum, count, or average, when the output can have a constant that does not occur in the input.

In such scenarios, an approach that is based on co-occurence of constants is bound to fail.

The second approach relies on the user’s ability to provide the outputs of sub-queries of the

target query, for example the sub-query to which the aggregator is applied. A co-occurence

based approach is useful in such a scenario and effectively bypasses the need to synthesize

aggregation.

2. Scalability: Another challenge with a data-driven approach like example-guided synthesis is

that is heavily depends on the size of the data. As proved in Section 2.4, the query synthesis

problem is co-NP complete and hence we do not have any efficient algorithms to solve it. While

this is not a major challenge for applications in end-user programming where there are only

a small number of input-output examples, the approach is limited for applications such as

knowledge discovery where the provided data-set might be expansive.

A part of that can be mitigated by employing alternative representations of co-occurrence of

constants (such as the one in Section 4.1.1), adopting heuristics that expedite the search, as

well as identify ways in which the end-user can provide additional supervision to prune the

search.

3. Robustness: In Chapter 6, we adapt the example-guided technique to support synthesis in

presence of noise. However, this is an ad-hoc modification of the synthesis algorithm and

requires the user to additionally specify a threshold of noise. As discussed in Section 6.3,

97

the the introduction of noise may lead to under-specification of the problem instance, in

particular, for end-user programming where the size of input-output examples is already small.

Secondly, it remains to quantitatively study how the noise in the input examples translate

to the requirements for the threshold ϵ that is necessary for the EGS-R procedure as well as

evaluate the efficacy of EGS-R with change in the degree of noise.

4. Usability: The above three points add up to the user-experience and usability for the tool.

The implementations developed for this thesis are yet to be integrated into one end-to-end

tool that supports the diverse set of features detailed here.

Additionally, the problem formulation requires the user to explicitly specify positive and

negative examples. The underlying algorithms can be seconded with a more user-friendly

set-up where the problem specification can be provided intuitively and implicitly, for example,

by graphical or logical representations.

Additionally, there are a few instances where the tool may generate an incorrect (that is,

different from the target) query. In such a case, neither does the tool provide any feedback

to the user on how to better specify the problem instance and nor can the user provide any

feedback to the synthesizer to revise the solution. Adding support for feedback can significantly

improve the usability of the tool.

In general, while the dissertation outlines the core algorithmic ideas for example-guided

synthesis of relational queries, it also opens up opportunities to develop usable and user-

oriented applications.

5. Under-generalization: As discussed in Section 6.3, and in general, complex benchmarks with

small training data suffer from under-generalization. This is because the variety of scenarios

covered by the training data may be insufficient to completely convey user intent, resulting

into over-fitting queries which are not general enough. As such, this is a well-known limitation

of synthesis tools operating in the programming-by-example (PBE) paradigm Halbert (1984).

One can overcome this limitation by using a richer set of input-output examples that cover all

98

features of the target query.

6. Over-generalization: Conversely, the synthesis algorithm might discover spurious patterns

in the training data which allow it to further compress the learned queries. Analogous to

the previous limitation, this occurs when the user fails to provide sufficiently many negative

examples to preclude overfitting. Providing a representative set of examples can become

burdensome in the case of complex concepts. Interactive program synthesis Le et al. (2017)

has the potential to overcome this limitation. Exploring the space of tradeoffs between fully

automatic synthesis and the inclusion of a user who actively guides and refines the synthesis

process is an exciting direction of future research.

7. Greedy Hueristics: Throughout the algorithms presented in this dissertation, we adopt greedy

hueristics and optimizations. For example, the implementation of the priority queue in

Algorithm 1 and the normalization strategies in Mobius. While these heuristics improve the

performance of the tool, they can compromise guarantees such as minimality of the solution.

Based on the choice of local decisions made by the tools, the synthesized query may also lead

to an over-fitting query, a non-minimal query, or a query that, while equivalent to user intent,

may be challenging to interpret due to gratuitous predicates. A potential future direction is to

study the impact of these heuristics and develop robust alternatives to them.

99

BIBLIOGRAPHY

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level.
Pearson, 1st edition, 1994.

Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. Constraint-based synthesis
of Datalog programs. In Proceedings of the International Conference on Principles and Practice
of Constraint Programming (CP), 2017.

Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language. PhD
thesis, DIKU, University of Copenhagen, 1994.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: Object-oriented queries
on relational data. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), 2016.

Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. Flashrelate: Extracting relational
data from semi-structured spreadsheets using examples. SIGPLAN Not., 50(6):218–228, June 2015.
ISSN 0362-1340. doi: 10.1145/2813885.2737952. URL https://doi.org/10.1145/2813885.2737952.

David Bohan, Geoffrey Caron-Lormier, Stephen Muggleton, Alan Raybould, and Alireza Tamaddoni-
Nezhad. Automated discovery of food webs from ecological data using logic-based machine learning.
PLOS One, 6(12), 2011.

James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases, 1(4):379–474, 2009. ISSN 1931-7883.

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387,
jun 1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL https://doi.org/10.1145/362384.
362685.

Andrew Cropper and Sebastian Dumančić. Inductive Logic Programming at 30: A new introduction.
Journal of Artificial Intelligence Research, 74, 2022. URL https://www.jair.org/index.php/jair/
article/view/13507.

Andrew Cropper and Rolf Morel. Learning programs by learning from failures. Machine Learning,
110:801–856, 2021.

C Date. SQL and Relational Theory: How to Write Accurate SQL Code. O’Reilly Media, Inc., 2009.
ISBN 0596523068.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sada-
sivam, Rui Zhang, and Dragomir Radev. Improving text-to-sql evaluation methodology. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 351–360, July 2018. URL http://aclweb.org/anthology/P18-1033.

100

https://doi.org/10.1145/2813885.2737952
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://www.jair.org/index.php/jair/article/view/13507
https://www.jair.org/index.php/jair/article/view/13507
http://aclweb.org/anthology/P18-1033

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An evolving query
language for property graphs. In Proceedings of the International Conference on Management of
Data (SIGMOD), 2018.

Todd J. Green. LogiQL: A declarative language for enterprise applications. In Proceedings of the
Symposium on Principles of Database Systems (PODS), 2015.

J. Grzymala-Busse. Selected algorithms of machine learning from examples. Fundam. Informaticae,
18, 1993.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. SIG-
PLAN Not., 46(1):317–330, January 2011. ISSN 0362-1340. doi: 10.1145/1925844.1926423. URL
https://doi.org/10.1145/1925844.1926423.

Isabelle Guyon, Masoud Nikravesh, Steve Gunn, and Lotfi A. Zadeh, editors. Feature Extraction.
Springer Berlin Heidelberg, 2006. doi: 10.1007/978-3-540-35488-8. URL https://doi.org/10.1007/
978-3-540-35488-8.

Daniel Conrad Halbert. Programming by Example. PhD thesis, 1984. AAI8512843.

Tomasz Imieliński and Witold Lipski. The relational model of data and cylindric algebras.
Journal of Computer and System Sciences, 28(1):80–102, 1984. ISSN 0022-0000. doi: https:
//doi.org/10.1016/0022-0000(84)90077-1. URL https://www.sciencedirect.com/science/article/
pii/0022000084900771.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 963–973, 2017.
URL http://www.aclweb.org/anthology/P17-1089.

Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. To join or not to join?
thinking twice about joins before feature selection. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, page 19–34, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450335317. doi: 10.1145/2882903.2882952. URL
https://doi.org/10.1145/2882903.2882952.

Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set programs. In
Proceedings of the European Conference on Logics in Artificial Intelligence (JELIA), 2014.

Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for inductive learning of answer
set programs. CoRR, abs/2005.00904, 2020a.

Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for inductive learning of answer
set programs. CoRR, abs/2005.00904, 2020b.

101

https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
https://www.sciencedirect.com/science/article/pii/0022000084900771
https://www.sciencedirect.com/science/article/pii/0022000084900771
http://www.aclweb.org/anthology/P17-1089
https://doi.org/10.1145/2882903.2882952

Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit Gulwani.
Interactive program synthesis. ArXiv, abs/1703.03539, 2017.

Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros
Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative networking.
Communications of the ACM, 52(11), November 2009.

M. Martin, B. Livshits, and M. Lam. Finding application errors and security flaws using PQL: a
program query language. In Proceedings of the ACM International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2005.

Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, and Mayur Naik. GenSynth: synthe-
sizing datalog programs without language bias. In Proceedings of the Conference on Artificial
Intelligence (AAAI), 2021.

Ana Milanova, Atanas Rountev, and Barbara Ryder. Parameterized object sensitivity for points-
to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2002, pages 1–11. ACM, 2002. ISBN
1-58113-562-9.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. ISBN 978-0-07-042807-2.

Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In New Generation
Computing. Academic Press, 1990.

Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive learning of
higher-order dyadic Datalog: Predicate invention revisited. Machine Learning, 100(1), 2015.

Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, and Mukund
Raghothaman. Sporq: An interactive environment for exploring code using query-by-example. In
Proceedings of the ACM Symposium on User Interface Software and Technology (UIST), 2021a.

Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, and Mukund
Raghothaman. Sporq: An interactive environment for exploring code using query-by-example.
In The 34th Annual ACM Symposium on User Interface Software and Technology, pages 84–99,
2021b.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL. 34(3),
2009.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, page
179–190, New York, NY, USA, 1989. Association for Computing Machinery. ISBN 0897912942.
doi: 10.1145/75277.75293. URL https://doi.org/10.1145/75277.75293.

102

https://doi.org/10.1145/75277.75293

David Poole. Logic programming for robot control. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’95), 1995.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1), 1986.

Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and Bernhard Scholz.
Provenance-guided synthesis of datalog programs. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), 2020a.

Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and Bernhard Scholz.
Provenance-guided synthesis of datalog programs. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), 2020b.

Jiwon Seo. Datalog extensions for bioinformatic data analysis. In 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1303–1306.
IEEE, 2018.

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo.
Big data analytics with datalog queries on spark. In SIGMOD. ACM, 2016.

Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and Mayur Naik. Syntax-
guided synthesis of Datalog programs. In Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2018.

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing Datalog programs
using numerical relaxation. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI 2019, pages 6117–6124. AAAI Press, 2019. ISBN 978-0-9992411-4-1.

Detlef Sieling. Minimization of decision trees is hard to approximate. Journal of Computer
and System Sciences, 74(3):394–403, May 2008. doi: 10.1016/j.jcss.2007.06.014. URL https:
//doi.org/10.1016/j.jcss.2007.06.014.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim. Active inductive
logic programming for code search. In Proceedings of the 41st International Conference on
Software Engineering, ICSE, pages 292–303. IEEE, 2019. doi: 10.1109/ICSE.2019.00044. URL
https://doi.org/10.1109/ICSE.2019.00044.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well: Understanding
object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, pages 17–30. ACM, 2011. ISBN 978-1-4503-
0490-0. doi: 10.1145/1926385.1926390. URL http://doi.acm.org/10.1145/1926385.1926390.

103

https://doi.org/10.1016/j.jcss.2007.06.014
https://doi.org/10.1016/j.jcss.2007.06.014
https://doi.org/10.1109/ICSE.2019.00044
http://doi.acm.org/10.1145/1926385.1926390

Jiang Su and Harry Zhang. A fast decision tree learning algorithm. In Proceedings of the 21st
National Conference on Artificial Intelligence - Volume 1, AAAI’06, page 500–505. AAAI Press,
2006. ISBN 9781577352815.

Shan Suthaharan. Decision Tree Learning, pages 237–269. Springer US, Boston, MA, 2016.
ISBN 978-1-4899-7641-3. doi: 10.1007/978-1-4899-7641-3_10. URL https://doi.org/10.1007/
978-1-4899-7641-3_10.

Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. Patsql: Efficient synthesis of sql
queries from example tables with quick inference of projected columns. Proc. VLDB Endow.,
14(11):1937–1949, jul 2021. ISSN 2150-8097. doi: 10.14778/3476249.3476253. URL https:
//doi.org/10.14778/3476249.3476253.

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund
Raghothaman. Example-guided synthesis of relational queries. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, PLDI
2021, page 1110–1125, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383912. doi: 10.1145/3453483.3454098. URL https://doi.org/10.1145/3453483.3454098.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin,
and Rajeev Alur. TRANSIT: Specifying protocols with concolic snippets. In Proceedings of the
ACM Conference on Programming Language Design and Implementation (PLDI), 2013.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive SQL queries
from input-output examples. In Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), 2017a.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive SQL queries
from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, pages 452–466. ACM, 2017b. ISBN
978-1-4503-4988-8.

Yisu Remy Wang, Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, and Dan Suciu.
Optimizing recursive queries with progam synthesis. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22, page 79–93, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392495. doi: 10.1145/3514221.3517827. URL
https://doi.org/10.1145/3514221.3517827.

John Whaley and Monica Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2004, pages 131–144. ACM, 2004. ISBN 1-58113-807-5. doi:
10.1145/996841.996859. URL http://doi.acm.org/10.1145/996841.996859.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand,

104

https://doi.org/10.1007/978-1-4899-7641-3_10
https://doi.org/10.1007/978-1-4899-7641-3_10
https://doi.org/10.14778/3476249.3476253
https://doi.org/10.14778/3476249.3476253
https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1145/3514221.3517827
http://doi.acm.org/10.1145/996841.996859

and Dan Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems,
14(1):1–37, December 2007. doi: 10.1007/s10115-007-0114-2. URL https://doi.org/10.1007/
s10115-007-0114-2.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

John M. Zelle and Raymond J. Mooney. Learning to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth National Conference on Artificial Intelligence -
Volume 2, pages 1050–1055, 1996. URL http://dl.acm.org/citation.cfm?id=1864519.1864543.

David Zhao, Pavle Subotic, and Bernhard Scholz. Debugging large-scale datalog: A scalable
provenance evaluation strategy. ACM Trans. Program. Lang. Syst., 42(2), 2020.

105

https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
http://dl.acm.org/citation.cfm?id=1864519.1864543

APPENDIX A

Run-time Comparisons

Table A.1: Performance of EGS, Scythe, ILASP, and ProSynth on 20 knowledge discovery
benchmarks.

Benchmark EGS Scythe ILASP
Task-Agnostic

Rule Set

ILASP
Task-Specific

Rule Set

ProSynth
Task-Agnostic

Rule Set

ProSynth
Task-Specific

Rule Set

#Rules
Task-Agnostic

#Rules
Task-Specific

Knowledge Discovery
abduce 0.4 – – 6.1 – – – 4917
adjacent-to-red 0.4 1.5 365.7 0.3 – 0.8 209799 101
agent 0.8 – – 0.3 – 1.8 – 142
animals 0.4 – – – – – 1242184 2000
cliquer 0.3 0.7 1.0 0.2 – 0.7 1484 79
contains 0.3 0.8 176.1 0.2 – 0.1 7557 1
grandparent 0.5 – – 5.9 – – – 4917
graph-coloring 0.4 5.2 177.2 0.1 – 0.3 96079 23
headquarters 0.3 0.7 11.2 0.2 – 0.1 4057 1
inflammation 0.6 – – 3.0 – – – 847
kinship 0.5 – – 5.8 – – – 4917
predecessor 0.2 1.7 1.2 0.2 – 0.1 1484 5
reduce 0.3 0.7 114.8 0.1 – 0.1 7557 1
scheduling 0.4 1.5 336.7 0.1 – 0.2 160016 16
sequential 0.8 – – – – – – –
ship 0.3 1.3 – 1.2 – – – 1426
son 0.3 1.1 – 1.0 – – – 1199
traffic 0.5 6.5 143.9 0.3 – 0.7 93326 97
trains 0.4 – – 3.3 – – – 601
undirected-edge 0.3 1.0 1.3 0.2 – 0.3 1484 79

Table A.2: Performance of EGS, Scythe, ILASP, and ProSynth on 18 program analysis bench-
marks.

Benchmark EGS Scythe ILASP
Task-Agnostic

Rule Set

ILASP
Task-Specific

Rule Set

Prosynth
Task-Agnostic

Rule Set

Prosynth
Task-Specific

Rule Set

#Rules
Full

#Rules
Task-Specific

Program Analysis
arithmetic-error 0.2 1.0 – 0.1 – 0.1 263853 13
block-succ 0.4 – – 9.9 – – – 9758
callsize 0.3 1.2 20.2 0.2 – 0.4 14446 11
cast-immutable 0.3 1.2 420.0 0.1 – 0.1 225108 18
downcast 1.8 – – – – – – 3392
increment-float 0.3 1.6 58.5 0.1 – 0.1 19594 10
int-field 0.3 0.5 – 0.3 – 0.2 – 109
modifies-global 0.3 0.7 23.3 0.1 – 0.1 17679 6
mutual-recursion 0.3 1.3 1.2 0.2 – 0.1 1484 25
nested-loops 2.9 – – 1.1 – – – 1053
overrides 0.3 1.2 – 1.6 – – – 1804
polysite 3.8 – – – – – – 1025
pyfunc-mutable 0.4 2.0 17.0 0.2 – 0.1 12185 6
reach 0.3 1.0 545.3 0.3 – 0.2 256549 15
reaching-def 0.2 0.8 – 0.3 – 0.1 – 8
realloc-misuse 0.4 – – 0.1 – 0.2 669744 22
rvcheck 0.6 – – 29.0 – – – 20186
shadowed-var 0.3 1.8 – 0.3 – 0.2 13291 38

106

Table A.3: Performance of EGS, Scythe, ILASP, and ProSynth on 41 database querying tasks.

Benchmark EGS Scythe ILASP
Task-Agnostic

Rule Set

ILASP
Task-Specific

Rule Set

Prosynth
Task-Agnostic

Rule Set

Prosynth
Task-Specific

Rule Set

#Rules
Task-Agnostic

#Rules
Task-Specific

Relational Queries
sql01 0.4 1.4 108.3 0.3 – 2.7 82475 200
sql02 0.2 1.5 21.0 0.3 – 1.9 22073 212
sql03 0.4 4.7 – 1.2 – 22.6 381295 752
sql04 0.4 3.3 – 0.2 – 0.1 763408 2
sql05 0.2 2.5 4.6 0.2 – 0.1 1571 1
sql06 0.3 1.2 – 0.5 – 0.1 – 21
sql07 0.6 3.7 – 0.2 – 0.3 258271 36
sql08 0.3 – 21.4 0.1 – 0.1 14415 11
sql09 0.4 2.1 – 0.4 – 0.1 – 8
sql10 0.3 8.4 1.4 0.1 2.8 0.1 331 1
sql11 0.2 49.7 40.8 0.2 – 0.1 14415 11
sql12 0.3 4.1 – 0.2 – 0.1 – 2
sql13 0.3 3.0 – 0.1 – 0.1 86032 3
sql14 0.4 2.3 – 0.2 – 0.1 182739 8
sql15 0.6 2.4 – 1.1 – – – 1461
sql16 0.4 10.4 – 0.6 – 0.1 – 3
sql17 0.3 4.8 – 0.2 – 0.1 187020 2
sql18 0.2 2.1 31.9 0.1 – 0.1 14403 1
sql19 0.5 3.1 – 1.7 – – – 1832
sql20 0.2 1.5 0.8 0.2 5.5 0.1 344 1
sql21 0.3 3.5 325.0 0.1 – 0.1 86032 3
sql22 1.9 6.3 92.5 0.2 – 1.1 54821 51
sql23 0.3 6.3 – 0.1 – 0.1 2037 2
sql24 0.2 1.4 10.9 0.1 – 0.1 1958 2
sql25 0.4 17.0 13.4 0.1 – 0.3 8946 9
sql26 0.3 14.7 11.2 0.1 – 0.1 4445 4
sql27 0.5 5.9 22.6 0.1 – 0.2 13810 18
sql28 0.3 8.2 403.5 0.2 – 0.1 181232 22
sql29 0.3 1.0 – 0.3 – 0.2 – 76
sql30 0.3 3.1 – 0.3 – 0.1 763408 2
sql31 0.4 2.1 73.1 0.2 – 2.5 53813 166
sql32 0.3 17.0 418.3 0.1 – 0.1 225108 18
sql33 0.4 2.8 – 4.6 – – – 6632
sql34 0.2 3.2 540.3 0.1 – 0.1 225108 18
sql35 0.7 – – 0.5 – 0.1 – 4
sql36 32.6 199.8 – – – – – 247986
sql37 0.7 12.7 – – – – – –
sql38 0.5 – 22.0 0.3 – 0.2 13810 18
sql39 6.8 11.7 – 4.9 – 1.7 – 325
sql40 0.3 6.5 – – – – – 559577
sql41 0.2 3.9 – 0.1 – 0.1 – 44

107

APPENDIX B

Quality of Synthesized Programs

Here we describe the output of EGS and Scythe on three knowledge-discovery benchmarks:

adjacent-to-red, graph-coloring, and scheduling.

adjacent-to-red

The target program identifies vertices neighboring red colored vertices. It can be expressed as:

target(v) :- edge(v, v′), color(v′, c), red(c).

Scythe synthesizes the following query:

Select t4.Col_02 From (Select t2.Col_0, t2.Col_01, t2.Col_1,

t2.Col_02, t2.Col_11, t6.Col_0 As Col_03 From (Select *From

(Select t5.Col_0, t5.Col_01, t5.Col_1, t1.Col_0 As Col_02,

t1.Col_1 As Col_11 From (Select * From (Select Red.Col_0,

t3.Col_0 As Col_01, t3.Col_1 From Red Join Color As t3) As

t5 Where t5.Col_0 = t5.Col_1) Join Edge As t1) As t2

Where t2.Col_01 = t2.Col_11) Join Green As t6) As t4;

graph-coloring

The target program identifies mistakes in vertex coloring, that is, it identifies vertices v which have

neighbors v′ with the same color. It can be expressed as:

target(v) :- edge(v, v′), color(v, c), color(v′, c).

Scythe synthesizes the following query:

Select t3.Col_01 From (Select t1.Col_0, t1.Col_1, t1.Col_01,

t1.Col_11, t2.Col_0 As Col_02, t2.Col_1 As Col_12 From

108

(Select * From (Select Color.Col_0, Color.Col_1, t4.Col_0

As Col_01, t4.Col_1 As Col_11 From Color Join Color As t4)

As t1 Where t1.Col_1 = t1.Col_11) Join Edge As t2) As t3

Where t3.Col_0 = t3.Col_12 And t3.Col_01 = t3.Col_02;

scheduling

The target program identifies scheduling conflicts, that is, it identifies days d on which for some time

slot s, two distinct classes c and c′ are scheduled. It can be expressed as:

conflict(d) :- assigned(d, s, c), assigned(d, s, c′),¬(c = c′).

Scythe synthesizes the following query:

Select t3.Col_0 From (Select t1.Col_0, t1.Col_1, t1.Col_2,

t1.Col_01, t1.Col_11, t1.Col_21, t4.Col_0 As Col_02,

t4.Col_1 As Col_12, t4.Col_2 As Col_22 From (Select *

From (Select Assigned.Col_0, Assigned.Col_1, Assigned.Col_2,

t2.Col_0 As Col_01, t2.Col_1 As Col_11, t2.Col_2 As Col_21

From Assigned Join Assigned As t2) As t1 Where

t1.Col_0 = t1.Col_01 And t1.Col_1 < t1.Col_11) Join

Assigned As t4) As t3 Where t3.Col_11 < t3.Col_12 And

t3.Col_2 = t3.Col_22;

109

	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Problem Formulation
	Synthesis of Conjunctive Queries
	Synthesis of Queries with Comparison Operators
	Synthesis of Recursive Relational Queries
	Synthesis in Presence of Noise
	Conclusion and Future Work
	BIBLIOGRAPHY
	Run-time Comparisons
	Quality of Synthesized Programs

