
Abstract Value Iteration for Hierarchical Reinforcement Learning

Kishor Jothimurugan Osbert Bastani Rajeev Alur
University of Pennsylvania University of Pennsylvania University of Pennsylvania

Abstract

We propose a novel hierarchical reinforce-
ment learning framework for control with
continuous state and action spaces. In our
framework, the user specifies subgoal regions
which are subsets of states; then, we (i) learn
options that serve as transitions between
these subgoal regions, and (ii) construct a
high-level plan in the resulting abstract deci-
sion process (ADP). A key challenge is that
the ADP may not be Markov, which we ad-
dress by proposing two algorithms for plan-
ning in the ADP. Our first algorithm is con-
servative, allowing us to prove theoretical
guarantees on its performance, which help
inform the design of subgoal regions. Our
second algorithm is a practical one that in-
terweaves planning at the abstract level and
learning at the concrete level. In our exper-
iments, we demonstrate that our approach
outperforms state-of-the-art hierarchical re-
inforcement learning algorithms on several
challenging benchmarks.

1 INTRODUCTION

Deep reinforcement learning (RL) has recently been
applied to solve challenging robotics control problems,
including multi-agent control (Khan et al., 2019), ob-
ject manipulation (Andrychowicz et al., 2020), and
control from perception (Levine et al., 2016). In these
applications, the approach is typically to learn a policy
in simulation and then deploy this policy on an actual
robot. Our focus is on the problem of using RL to
learn a robot control policy in simulation.

A key challenge in this setting is that long-horizon
tasks are often computationally intractable for RL,

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

at best requiring huge amounts of computation to
solve (Andrychowicz et al., 2020). Hierarchical RL
is a promising approach to scaling RL to long-horizon
tasks. The idea is to use a high-level policy to generate
a sequence of high-level goals, and then use low-level
policies to generate sequences of actions to achieve
each successive goal. By abstracting away details of
the low-level dynamics, the high-level policy can effi-
ciently plan over much longer time horizons.

There are two approaches to designing the high-level
policy. First, we can use model-free RL to learn the
high-level policy (Nachum et al., 2018, 2019). While
this approach is very general, it cannot take advantage
of the available structure in the high-level planning
problem. Alternatively, we can use model-based RL—
i.e., learn a model of the high-level planning problem
and then plan in this model. This approach can signif-
icantly improve performance by leveraging high-level
structure. However, they are typically restricted to
finite state and action spaces (Gopalan et al., 2017;
Abel et al., 2020; Winder et al., 2020); at best, they
can handle continuous state spaces but finite action
spaces (Roderick et al., 2018).

We propose a hierarchical RL algorithm using model-
based RL for high-level planning that can handle con-
tinuous state and action spaces. To ensure that our
model of the high-level problem is finite, we abstract
over both states and actions. First, to abstract over
states, we consider subgoal regions that are subsets of
states; intuitively, they should aggregate states with
similar transition probabilities and rewards. Subgoal
regions are similar to abstract states but do not need
to cover the entire state space (Dietterich, 2000; Andre
and Russell, 2002). Next, to abstract over actions, we
consider options (also called abstract actions, tempo-
ral abstractions, or skills), which are low-level policies
designed to achieve short-term goals such as walking
to a goal or grasping an object (Precup et al., 1998;
Sutton et al., 1999; Theocharous and Kaelbling, 2004).
Intuitively, subgoal regions finitize the state space and
options finitize the action space. Finally, our algo-
rithm represents the high-level planning problem as
an abstract decision process (ADP) whose states are

ar
X

iv
:2

01
0.

15
63

8v
2

 [
cs

.L
G

]
 2

5
Fe

b
20

21

Abstract Value Iteration for Hierarchical Reinforcement Learning

subgoal regions and whose actions are options.

One question is how to obtain the subgoal regions and
options. Similar to previous works (Gopalan et al.,
2017; Winder et al., 2020; Abel et al., 2020), which as-
sume that the state abstractions are provided by the
user, we assume that the subgoal regions are given
by the user. Given subgoal regions, our algorithm
uses model-free RL to automatically train options that
serve as transitions between these subgoal regions.

We believe domain experts can often provide effective
choices of subgoal regions; thus, our approach gives
the user a way to express domain knowledge to im-
prove performance. Furthermore, many recent RL al-
gorithms ask the user to provide significantly more in-
formation to improve performance—e.g., a high-level
plan for solving the task (Sun et al., 2019; Jothimuru-
gan et al., 2019). Finally, in the spirit of probabilistic
road maps (LaValle, 2006), we consider automatically
constructing subgoal regions by randomly sampling
them; we find that this approach has higher sample
complexity but still achieves good reward.

A challenge is that the ADP may not be an MDP—i.e.,
it may not satisfy the Markov condition that transition
probabilities and rewards only depend on the current
subgoal region. In particular, an option may not work
equally well for different states in a single subgoal re-
gion, and thus, the transition probabilities depend on
the state, which violates the Markov condition.

We propose two algorithms for planning in the ADP
that address this challenge. First, robust abstract value
iteration (R-AVI) models the unknown perturbations
adversarially. This algorithm is designed so we can
theoretically characterize the properties of our ap-
proach. In particular, we establish bounds on its per-
formance and discuss how these bounds can guide the
design of subgoal regions that yield good performance
in the context of our approach. Second, alternating ab-
stract value iteration (A-AVI) does not model the un-
known perturbations. To account for the non-Markov
nature of the ADP, it alternates between (i) planning
in the ADP to construct a high-level policy, and (ii)
updating its estimates of the ADP transition proba-
bilities and rewards based on the current high-level
policy. This algorithm is designed to be practical; it
does not have theoretical guarantees but performs well
in practice.

We demonstrate that our approach outperforms sev-
eral state-of-the-art baselines, including approaches
that solve the ADP without accounting for uncer-
tainty (Winder et al., 2020), HIRO (which does not
require user-provided subgoal regions) (Nachum et al.,
2018), and SpectRL (which requires user-provided
information that is more complex than subgoal re-

gions) (Jothimurugan et al., 2019), on both a robot
navigating a maze of rooms as well as the MuJoCo Ant
performing sequences of tasks (Todorov et al., 2012;
Nachum et al., 2018).

Illustrative example. Consider the example in Fig-
ure 1 (a). The goal is for the robot to drive from an
initial state (in the blue square region) to a goal re-
gion (the green square). The states are S ⊆ R3, where
s = (x, y, θ) encodes the (x, y) position of the robot
and its orientation θ. The actions are A ⊆ R2, where
a = (v, φ) encodes its speed v and steering angle φ.
The reward is 1 upon reaching the goal region and 0
otherwise. The user provides the subgoal regions; in
this example, they are the doorway regions that con-
nect the rooms (gray squares). These subgoal regions
are designed to satisfy the conditions based on our the-
oretical analysis of R-AVI: (i) these regions are bottle-
necks, and (ii) the transition probabilities and rewards
are similar across states in a subgoal region. Our al-
gorithm uses model-free RL to learn low-level policies
that serve as transitions between adjacent subgoal re-
gions; the resulting ADP is shown in Figure 1 (b). The
high-level policy we construct is 3→ 1→ 4→ 7→ 9.

Next, (c,d) show why the ADP is not Markov. We as-
sume the robot cannot move backward. If it starts in
state (c), then it can easily take the transition 4→ 7.
However, if it starts in state (d), then it is much more
costly for it to take 4→ 7. One might hope to resolve
this issue by including a distinct subgoal region for ev-
ery heading θ; however, there would then be infinitely
many subgoal regions since θ is continuous. Another
example of why the ADP is not Markov is that the
robot is more likely to run into a wall and incur a
negative reward near the boundary of a subgoal re-
gion than in the interior. In general, the ADP is only
Markov if the transition probabilities and rewards for
all options are exactly the same for all states in a sub-
goal region.

In our experiments, we show that an ablation that
ignores the fact that the ADP is not Markov performs
poorly. We also show that HIRO (Nachum et al., 2018)
and SpectRL (Jothimurugan et al., 2019), which use
model-free RL for high-level planning, perform poorly
since they do not systematically explore in the ADP.

Related work. There has been work on planning
with options (Precup et al., 1998; Sutton et al., 1999;
Theocharous and Kaelbling, 2004), including in the
setting of deep RL (Bacon et al., 2017; Tiwari and
Thomas, 2019). There has been work on leveraging
action abstractions in the setting of deep RL (Kulka-
rni et al., 2016; Nachum et al., 2018, 2019). For in-
stance, Co-Reyes et al. (2018) propose a hierarchical
RL algorithm that uses model-based RL for high-level

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

1

2

3

4

5

6

7

8

9

Subgoal regions Start Goal

1

2

4

3

5

7

6

8

9

1

2

3

4

5 8

7

6

9

Wall Bottleneck Start Goal

1

2

3

4

5 8

7

6

9

Wall Bottleneck Start Goal

1 4 7

2

3

5

6

8

9

(a) (b) (c) (d) (e)

Figure 1: (a) A rooms environment; subgoal regions are in light gray, the starting region is blue, and the goal
region is green. (b) The corresponding abstract graph; transitions are bi-directional. (c, d) Robot in region 4
facing right vs. left. (e) A different choice of subgoal regions.

planning, but they do not leverage state abstractions.
More closely related, there has been work on leverag-
ing state abstractions, typically in conjunction with
action abstractions (Dietterich, 2000; Andre and Rus-
sell, 2002; Theocharous et al., 2005; Li et al., 2006;
Gopalan et al., 2017; Choudhury et al., 2019; Winder
et al., 2020; Abel et al., 2020). For instance, Gopalan
et al. (2017) propose an algorithm for planning in hi-
erarchical MDPs, but assume that the abstract MDPs
are given and furthermore satisfy the Markov prop-
erty. There has been subsequent work that uses model-
based reinforcement learning to learn both the con-
crete and abstract MDPs (Winder et al., 2020); how-
ever, they also do not account for the fact that the ab-
stract MDP may not satisfy the Markov condition, and
their approach is furthermore limited to finite state
MDPs. The most closely related work is Abel et al.
(2020), which analyzes how the failure of the Markov
property affects planning in the abstract MDP. How-
ever, their algorithm still performs planning with re-
spect to the concrete states; thus, their approach scales
poorly with the size of the state space, and furthermore
cannot be applied to continuous state spaces. Finally,
there has been work on performing value iteration with
upper/lower bounds (Givan et al., 2000); however, this
approach only applies to finite MDPs and furthermore
is not designed to handle action abstractions.

There has been work on inferring options, by transfer-
ring options to new domains (Konidaris and Barto,
2007), inferring options in multi-task reinforcement
learning (Stolle and Precup, 2002; Konidaris and
Barto, 2009; Machado et al., 2017; Finn et al.,
2017; Eysenbach et al., 2018), from demonstra-
tions (Hausman et al., 2018), or using expectation-
maximization (Daniel et al., 2016). Similarly, there
has been interest in planning by composing low-level
skills (Burridge et al., 1999; Majumdar and Tedrake,
2017). In contrast, our approach constructs action ab-
stractions from user-provided state abstractions; thus,

our approach has the benefit of not requiring addi-
tional information such as related tasks for learning.
There has also been interest in inferring state ab-
stractions (Ferns et al., 2004; Jong and Stone, 2005;
Abel et al., 2019), by transferring them to new do-
mains (Walsh et al., 2006), from demonstrations (Cobo
et al., 2011), and from options (Jonsson and Barto,
2001; Konidaris et al., 2014). There has been work on
inferring state abstractions (Ferns et al., 2004; Tay-
lor et al., 2009; Täıga et al., 2018; Castro, 2019) and
options (Castro and Precup, 2011) by measuring state
similarity in terms of reward and transition properties,
but only for finite MDPs.

2 PROBLEM FORMULATION

Background. A Markov decision process (MDP) is a
tuple (S,A, T,R, γ, η0), where S ⊆ Rn are the states,
A ⊆ Rm are the actions, T (s, a, s′) = p(s′ | s, a) ∈ R
is the probability density of transitioning from s to s′

on action a, R(s, a) ∈ [0, 1] is the reward for action a
in state s, γ ∈ [0, 1) is the discount factor, and η0 is
the initial state distribution. A (deterministic) policy
is a function π : S → A, where a = π(s) is the action
to take in state s. The value of a state s under policy
π is denoted by V π(s) and the optimal policy is π∗ =
arg maxπ J(π), where J(π) = Es0∼η0 [V π(s0)] is the
expected reward under policy π; we let V ∗ = V π

∗
.

An option o is a tuple (π, I, β), where π is a policy, I ⊆
S is a set of initial states from which π can be used, and
β : S → [0, 1] is the termination probability (Sutton
et al., 1999). A set of options O defines a multi-time
model (S,O, Topt, Ropt) (Sutton et al., 1999), where
for s, s′ ∈ S and o = (π, I, β) ∈ O,

Topt(s, o, s
′) =

∞∑
t=1

γtp(s′ | t, s, o)P (t | s, o)

is the time-discounted probability density of tran-
sitioning from s to s′ when using option o, where

Abstract Value Iteration for Hierarchical Reinforcement Learning

P (t | s, o) is the probability that o terminates after
t steps when starting from s, and p(s′ | t, s, o) is the
probability density of o terminating in s′ when start-
ing from s given that it terminates after t steps. The
expected reward before termination using o from s is

Ropt(s, o) = Es0,a0,...,st∼o

[
t−1∑
i=0

γiR(si, ai) | s0 = s

]
,

where t is the random time at which o terminates when
started at s. A (deterministic) option policy ρ : S → O
maps each state s to an option (π, I, β) = ρ(s) with
s ∈ I, to use starting from s; ρ induces a policy1 πρ
for the underlying MDP. The optimal option policy is
ρ∗(s) = arg maxo∈O Q

∗
O(s, o), where Q∗ is defined by

the Bellman equations (Sutton et al., 1999):

V ∗O(s) = max
o∈O

Q∗O(s, o), (1)

Q∗O(s, o) = Ropt(s, o) +

∫
S
Topt(s, o, s

′)V ∗O(s′)ds′.

We can use these equations in conjunction with option
value iteration to compute V ∗O and Q∗O.

Problem formulation. We assume we have access
to simulation of the concrete MDP M—i.e., we can
obtain samples s′ ∼ p(· | s, a) from the transitions T
using any concrete action a ∈ A from any concrete
state s ∈ S. We also assume we are given a finite set
of subgoal regions S̃, where each s̃ ∈ S̃ is a subset of
concrete states s̃ ⊆ S. We assume they are disjoint—
i.e., s̃ ∩ s̃′ = ∅ if s̃ 6= s̃′.2 Subgoal regions are similar
to abstract states except they do not need to cover the
state space of M. Intuitively, they should include all
subgoals that an optimal policy might need to reach to
achieve the goal. In particular, given the subgoal re-
gions, our algorithm only considers options such that
(i) their initial set is a subgoal region, and (ii) they ter-
minate upon entering any other subgoal region—i.e.,
options serve as transitions between different subgoal
regions.

Definition 2.1. Given subgoal regions S̃, an option
o = (π, I, β) is a subgoal transition if I = s̃ for some
s̃ ∈ S̃ and β(s) = 1(s ∈ S̄ \ s̃), where S̄ ⊆ S is the
union of all subgoal regions—i.e., S̄ =

⋃
s̃∈S̃ s̃.

We also assume we are given a set of edges E ⊆ S̃ × S̃
used to learn the subgoal transitions; by default, we
can take E = S̃ ×S̃. These edges are used to constrain
the number of subgoal transitions—i.e., we only learn
options that serve as transitions between (s̃, s̃′) ∈ E.
We denote by s̃0 ∈ S̃ the initial region and assume that

1The induced policy πρ depends on an additional inter-
nal state (i.e., the option being used) to make decisions.

2Given s̃, s̃′ such that s̃ ∩ s̃′ 6= ∅, we can simply take
s̃′ = s̃′ \ s̃.

the initial state distribution η0 assigns zero probability
to S \ s̃0.

Finally, part of our analysis considers the special case
of reachability problems in deterministic MDPs with
sparse rewards; many MDPs used in practice satisfy
this assumption.

Assumption 2.2. The concrete MDP M has deter-
ministic transitions T : S × A → S. Furthermore,
there is a distinguished subgoal region s̃g ∈ S̃, called
the goal region, such that (i) s̃g is a sink—i.e., for
all s ∈ s̃g and a ∈ A, T (s, a) = s, and (ii) the re-
wards are 1 if transitioning to s̃g and 0 otherwise—i.e.,
R(s, a) = 1(s /∈ s̃g ∧ T (s, a) ∈ s̃g).

3 ROBUST ABSTRACT VALUE
ITERATION

First, we propose robust abstract value iteration (R-
AVI), which takes a set of subgoal transitions O and
computes an option policy ρ̃. This algorithm is in-
tended for theoretical analysis; it provides insights on
what kinds of subgoal regions can achieve good perfor-
mance, which can in turn guide the design of subgoal
regions. In particular, we prove that ρ̃ is close to the
optimal option policy ρ∗ when all states within each
subgoal region are similar. We also provide a way to
construct the subgoal transitions O and show that,
for these options, the computed policy πρ̃ is close to
the optimal policy π∗ forM if the subgoal regions are
bottlenecks and M has sparse rewards.

Algorithm. Recall that we can in principle com-
pute ρ∗ using (1); however, for continuous state spaces,
we would need to use function approximation on V ∗O
to do so. R-AVI leverages subgoal regions to avoid
this issue—in particular, for each subgoal region s̃, it
computes an interval [V ∗inf(s̃), V

∗
sup(s̃)] such that for all

s ∈ s̃, we have V ∗O(s) ∈ [V ∗inf(s̃), V
∗
sup(s̃)]. It uses up-

per and lower bounds on the concrete transitions and
rewards to do so. In particular, for s̃ ∈ S̃, let

T̃inf(s̃, o, s̃
′) = inf

s∈s̃
T̃ (s, o, s̃′)

T̃sup(s̃, o, s̃′) = sup
s∈s̃

T̃ (s, o, s̃′),

where, for s ∈ S, o ∈ O, and s̃′ ∈ S̃,

T̃ (s, o, s̃′) =

∞∑
t=1

γtP (s̃′, t | s, o) (2)

is the time-discounted probability of transitioning
from concrete state s to subgoal region s̃′ using op-
tion o, and where P (s̃′, t | s, o) is the probability that
option o terminates in subgoal region s̃′ after t steps
when starting from s ∈ s̃. The upper and lower bounds

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

on the rewards are similar—i.e., for s̃ ∈ S̃ and o ∈ O,

R̃inf(s̃, o) = inf
s∈s̃

Ropt(s, o)

R̃sup(s̃, o) = sup
s∈s̃

Ropt(s, o).

While computing these bounds may be intractable in
general, they can be approximated via sampling; since
our focus in this section is on theoretical guarantees,
we assume we have computed them exactly. Given
these bounds, R-AVI computes Ṽ ∗z : S̃ → R (for z ∈
{inf, sup}) by solving the recursive equations

Ṽ ∗z (s̃) = max
o∈O

Q̃∗z(s̃, o)

Q̃∗z(s̃, o) = R̃z(s̃, o) +
∑
s̃′∈S̃

T̃z(s̃, o, s̃
′) · Ṽ ∗z (s̃′)

using value iteration. Since there are only finitely
many subgoal regions and options, we can do so using
tabular value iteration even thoughM has continuous
state and action spaces. We define the conservative op-
timal option policy to be ρ̃(s) = arg maxo∈O Q̃

∗
inf(s̃, o),

for all s ∈ s̃ and s̃ ∈ S̃. Note that ρ̃ is only defined on
S̄ and also has a finite representation.

This algorithm can be interpreted as a version of
value iteration on the abstract decision process (ADP)
M̃ = (S̃,O, T̃inf, T̃sup, R̃inf, R̃sup, γ, s̃0), which is sim-
ilar to an MDP except we are only given upper and
lower bounds on the transitions and rewards rather
than a single value. Intuitively, the gap in the differ-
ence between the upper and lower bounds captures the
degree to which M̃ fails to be Markov.

Bound vs. ρ∗. Next, we establish conditions under
which we can bound the performance of ρ̃ compared
to the optimal option policy ρ∗. Let εT be the worst-
case difference between T̃sup

3 and T̃inf, and εR be the

worst-case difference between R̃sup and R̃inf:

εT = max
s̃,s̃′∈S̃, o∈O

T̃sup(s̃, o, s̃′)− T̃inf(s̃, o, s̃
′),

εR = max
s̃∈S̃, o∈O

R̃sup(s̃, o)− R̃inf(s̃, o).

Then, we assume that εT is not too large.

Assumption 3.1. We have |S̃|εT < 1− γ.

As discussed above, εT captures the degree to which
M̃ fails to be Markov. Then, abstract value iteration
converges and ρ̃ has performance close to that of ρ∗.

Theorem 3.2. Under Assumption 3.1, R-AVI con-

verges and J(πρ̃) ≥ J(πρ∗)− (1−γ)εR+|S̃|εT
(1−γ)(1−(γ+|S̃|εT))

.

3If T is deterministic, then T̃sup(s̃, (π, s̃, β), s̃′) = γN ,
where N is the minimum number of steps it takes for π to
reach s̃′ starting from some state s ∈ s̃ (or 0 if π does not
reach s̃′ from any s ∈ s̃).

Constructing subgoal transitions. So far, we have
assumed that O is given. Given subgoal regions S̃
and edges E ⊆ S̃ ×S̃, R-AVI automatically constructs
options that serve as subgoal transitions—namely, it
constructs the following ideal subgoal transitions:

Õ = {(π(s̃, s̃′), s̃, β) | (s̃, s̃′) ∈ E, s̃ 6= s̃′ and s̃ 6= s̃g},

where β is as in Definition 2.1, and

π(s̃, s̃′) = arg max
π

T̃sup(s̃, (π, s̃, β), s̃′) (3)

maximizes the best-case reward for transitioning from
s̃ to s̃′ over initial concrete states s ∈ s̃. We can ap-
proximately compute Õ using model-free RL; however,
as before, our focus is on theoretical guarantees.

Bound vs. π∗. Theorem 3.2 is for a fixed set of op-
tions O—i.e., both ρ̃ and ρ∗ use O. In general, the
choice of O determines how πρ∗ compares to the op-
timal policy π∗ for the underlying MDP M. Suppose
Assumption 2.2 holds; then, we can prove that ρ̃ con-
structed using the ideal subgoal transitions Õ performs
nearly as well as π∗ under the bottleneck assumption.

Assumption 3.3. For any trajectory s0, a0, s1, . . . , st
such that s0 ∈ s̃0 and st ∈ s̃g, there exists a sequence
of indices 0 = i0 < . . . < ik = t and a sequence of
subgoal regions s̃0, . . . , s̃k such that (i) for all 0 ≤ j ≤
k, sij ∈ s̃j , and (ii) for all j < k, (s̃j , s̃j+1) ∈ E.

Intuitively, this assumption says that the subgoal re-
gions are bottlenecks—i.e., any path from an initial
state to a goal state can be represented as a sequence
of subgoal transitions. Then, the option policy ρ̃ R-
AVI computes has performance close to that of the
optimal policy π∗ for the concrete MDP M.

Theorem 3.4. Under Assumptions 2.2, 3.1, & 3.3,

we have J(πρ̃) ≥ J(π∗)− (1−γ)εR+|S̃|εT
(1−γ)(1−(γ+|S̃|εT))

.

This result is stronger than Theorem 3.2 since it com-
pares to π∗, not ρ∗, but relies on stronger assumptions.

Implications. Our results establish two conditions
on the subgoal regions S̃ such that ρ̃ performs nearly
as well as π∗: (i) Theorem 3.2 suggests that for any
option o and subgoal region s̃, the reward and time-
discounted transition probabilities for o are similar
starting from any concrete state s ∈ s̃, and (ii) The-
orem 3.4 suggests that the subgoal regions should be
bottlenecks in the underlying MDP.

4 ALTERNATING ABSTRACT
VALUE ITERATION

There are two shortcomings of R-AVI. First, comput-
ing Õ, T̃inf, and R̃inf may be computationally infeasi-
ble since we only assume the ability to obtain samples

Abstract Value Iteration for Hierarchical Reinforcement Learning

Algorithm 1 (A-AVI) Iterative algorithm for con-
structing hierarchical policy.

1: function LearnPolicy(M, S̃, E,N)
2: Initialize D
3: for i ∈ {1, ..., N} do
4: Learn the ideal subgoal transitions OD
5: Estimate T̃D and R̃D for OD
6: Compute ρ̃D using abstract value iteration
7: for s̃ ∈ S̃ do
8: D̄ ← Distribution over s̃ induced by πρ̃D
9: Update D ← (1− αi)D + αiD̄

10: end for
11: end for
12: return OD, πρD
13: end function

from M. Second, making conservative assumptions
about T̃ and R̃ can lead to suboptimal ρ̃.

We propose alternating abstract value iteration (A-
AVI) (shown in Algorithm 1). This algorithm ad-
dresses the issues with R-AVI by planning according to
the expected values of T̃ and R̃ with respect to some
distribution D over concrete states S. Näıvely, this
approach only works when the ADP M̃ is Markov;
otherwise, the estimates of T̃ and R̃ depend on the
choice of D. To address this issue, A-AVI alternates
between (i) given D, learn the subgoal transitions OD
using model-free RL and estimate the expected values
of T̃ and R̃ for OD, and (ii) given OD and the esti-
mates of T̃ and R̃, compute the optimal option policy
ρD using value iteration, and update D to be the state
distribution induced by using ρD.

Step 1. For step (i), we first define the ideal subgoal
transitions with respect to D to be

OD = {(πD(s̃, s̃′), s̃, β) | (s̃, s̃′) ∈ E, s̃ 6= s̃′, s̃ 6= s̃g}
πD(s̃, s̃′) = arg max

π
Es∼D[T̃ (s, (π, s̃, β), s̃′) | s ∈ s̃],

where T̃ , defined in (2), is the time-discounted prob-
ability density of transitioning to s̃′ from a concrete
state s ∈ s̃. Intuitively, πD(s̃, s̃′) is the policy that
maximizes probability of transitioning to s̃′ from s̃.
Then, computing πD(s̃, s̃′) can be formulated as the
RL problem for the MDP M′ = (S,A, T ′, R′, γ, η′0),
where

T ′(s, a, s′) =

{
T (s, a, s′) if s /∈ S̄ \ s̃

1(s′∈s̃′′)∫
S 1(s′∈s̃′′)ds′ if s ∈ s̃′′ ⊆ S̄ \ s̃

R′(s, a) = 1(s 6∈ s̃′) ·
∫
s̃′
T (s, a, s′)ds′,

and η′0 = Ds̃, where Ds̃ = D | s ∈ s̃ is the conditional
distribution of D given that s ∈ s̃. That is, M′ is the

concrete MDP M except where all subgoal regions in
S̃ \ {s̃} are sinks, the rewards R′ encode that s̃′ is the
goal region, and the initial state distribution is Ds̃.
Since we assumed we can simulate M starting at any
state s ∈ S, we can also simulate M′ by terminat-
ing episodes upon reaching S̄ \ s̃. Thus, existing RL
algorithms can be used to learn these policies.

Step 2. Next, for step (ii), A-AVI plans in the ADP
M̃D, whose transitions T̃D and rewards R̃D are the ex-
pected values of the time-discounted transition proba-
bilities T̃ and rewards R̃, respectively—i.e.,

T̃D(s̃, o, s̃′) = Es∼Ds̃
[T̃ (s, o, s̃′)]

R̃D(s̃, o) = Es∼Ds̃
[R̃(s, o)],

which can be estimated using sampled rollouts. Then,
A-AVI uses value iteration to solve

Ṽ ∗D(s̃) = max
o∈OD

Q̃∗D(s̃, o)

Q̃∗D(s̃, o) = R̃D(s̃, o) +
∑
s̃′∈S̃

T̃D(s̃, o, s̃′) · Ṽ ∗D(s̃′),

and computes the policy ρ̃D : S̄ → OD as ρ̃D(s) =
arg maxo∈OD Q̃

∗
D(s̃, o) for all s ∈ s̃ and s̃ ∈ S̃. Next,

we estimate D to equal the state distribution over S
induced by using policy πρ̃D in the concrete MDPM.
Intuitively, this condition says that πρ̃D is used on the
same state distribution as it was trained. More pre-
cisely, we take D = (1 − αi)D + αiD̄, where D̄ is the
state distribution over S induced by using πρ̃D . This
approach, based on dataset aggregation, is a heuristic
to facilitate convergence of A-AVI (Ross et al., 2011).

R-AVI vs A-AVI. We emphasize that with R-AVI,
we can theoretically characterize the quality of a given
set of subgoal regions, which enables us to guide their
design. The upper and lower bounds in R-AVI are
necessary for the theoretical guarantees, but comput-
ing them for continuous state and action spaces is in-
tractable. Consequently, A-AVI takes a different ap-
proach for dealing with the non-Markov nature of the
ADP; in particular, it uses the expected MDP but then
uses alternation to improve robustness. This makes
A-AVI a practical hierarchical RL algorithm that we
evaluate empirically in our experiments.

5 EXPERIMENTS

We evaluate our approach4 on two continuous con-
trol benchmarks: (i) two room environments where a
robot must navigate a maze of rooms, which are con-
tinuous variants of standard hierarchical RL bench-
marks (Gopalan et al., 2017; Abel et al., 2020) and (ii)

4Our implementation is available at
https://github.com/keyshor/abstract-value-iteration.

https://github.com/keyshor/abstract-value-iteration

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

0 1 2 3 4 5
×107

0.0

0.2

0.4

0.6

0.8

1.0

A-AVI (Ours)
Ablation
HIRO
SPECTRL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
×108

0.0

0.2

0.4

0.6

0.8

1.0 A-AVI (Ours)
Ablation
HIRO
SPECTRL

(a) 9-Rooms (b) 16-Rooms

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
×107

0.0

0.2

0.4

0.6

0.8

A-AVI (Ours)
Ablation
HIRO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

0.0
0.1
0.2
0.3
0.4
0.5
0.6

A-AVI (Ours)
Ablation
HIRO

0.0 0.2 0.4 0.6 0.8 1.0
×107

0.0

0.1

0.2

0.3

0.4

0.5

0.6 A-AVI (Ours)
Ablation
HIRO

(c) AntMaze (d) AntPush (e) AntFall

Figure 2: Comparison with baselines for different environments; x-axis is number of samples (steps) from the
environment, and y-axis is the probability of reaching the goal. Results are averaged over 10 executions.

a hierarchical RL benchmark (Nachum et al., 2018)
based on the MuJoCo ant (Todorov et al., 2012). The
room environments have comparatively simple dynam-
ics, but the high-level task is very challenging due to
the nonconvex state space. Alternatively, the ant en-
vironments have more complex robot dynamics, but
comparatively simple high-level tasks. Our approach,
A-AVI, outperforms state-of-the-art baselines in both
cases.

Room environments. We consider two environ-
ments, 9-Rooms and 16-Rooms, consisting of intercon-
nected rooms. They have states (x, y) ∈ R2 encoding
2D position, actions (v, θ) ∈ R2 encoding speed and
direction, and transitions s′ = s + (v cos(θ), v sin(θ)).
Figure 1 (a) shows 9-Rooms. Subgoal regions are the
light gray squares; edges connect adjacent subgoal re-
gions. The agent starts in a uniformly random state
in the initial subgoal region (the blue square); its goal
is to reach the goal region (the green square). The
agent receives a reward of 1 upon reaching the goal.
We learn subgoal transitions using ARS (Mania et al.,
2018), with a shaped reward equal to the negative dis-
tance to the center of the target subgoal region; each
policy is a fully connected neural network with 2 hid-
den layers with 30 neurons each. We give details in
Appendix B.

Ant environments. We also consider three Mu-
JoCo (Todorov et al., 2012) ant environments from
Nachum et al. (2018): AntMaze (navigate a U-shaped

corridor), AntPush (push away a large block to reach
the region behind it), and AntFall (push a large block
into a chasm to form a bridge to get to the other side).
We consider subgoal regions that are subsets of the
state space where the ant position is in a small rect-
angular region on the plane. AntFall has four subgoal
regions: the initial region, an intermediate region at
each of the two turns, and the goal region. AntPush
has five subgoal regions: the initial region, two at the
bottom-left and top-left corners, one at the gap where
the ant must enter to reach the goal, and the goal
region; in the abstract MDP, there are three paths
from the initial region to the goal region. AntFall
has five subgoal regions: the initial region, three along
the path to the goal region, and the goal region. We
learn subgoal transitions using TD3 (Fujimoto et al.,
2018). To improve sample efficiency, we retain the
state of TD3 (i.e., actor-networks, critic-networks, re-
play buffer, etc.) across iterations of A-AVI. The neu-
ral network architecture and hyperparameters are sim-
ilar to Nachum et al. (2018). We give details, including
visualizations of the subgoal regions, in Appendix B.

Results. We show results in Figure 2. Our approach
tends to perform better than our baselines in tasks
requiring significant exploration—i.e., it substantially
outperforms all baselines for 9-Rooms, 16-Rooms, and
AntFall. We discuss comparisons below.

Comparison to HIRO. We compare to a state-
of-the-art hierarchical deep RL algorithm called

Abstract Value Iteration for Hierarchical Reinforcement Learning

HIRO (Nachum et al., 2018), which uses a high-level
policy to generate intermediate goals that a low-level
policy aims to achieve. As with our algorithm, we used
shaped rewards—i.e., the negative distance from the
current state to the center of the goal region, which is
fixed for each environment. HIRO does not require any
additional information about the environment; in par-
ticular, it is not given the subgoal regions as input. As
seen in Figure 2, HIRO performs substantially worse
on 9-Rooms and 16-Rooms. HIRO does not know the
structure of the state space, so it is unable to discover
the path from the initial region to the goal region and
gets stuck in a local optimum. Intuitively, HIRO is
designed to decouple complex dynamics (e.g., the ant)
from high-level planning (e.g., sequence of tasks), not
to solve challenging high-level planning problems.

Comparison to SpectRL. We compare to Spec-
tRL (Jothimurugan et al., 2019), a framework where
the user specifies a task as a sequence of subgoals
(rather than as a reward function); then, SpectRL uses
the subgoals to generate a reward function. It is essen-
tially a hierarchical RL framework that uses options
but not state abstractions. SpectRL takes as input
not only the subgoals, but also potential sequences of
subgoals that can be used to reach the goal, thereby
requiring additional user-provided information beyond
what is needed by our approach. For each room envi-
ronment, we specify the task as a choice between two
sequences of subgoals representing two paths from the
initial region to the goal region; each subgoal is cen-
tered at a subgoal region along the path. As can be
seen in Figure 2, SpectRL learns policies with subopti-
mal success rates since it sometimes chooses the wrong
path. This shortcoming is because SpectRL does not
solve for the optimal policy at the abstract level; in-
stead, it uses a greedy heuristic.

No alternation. Our A-AVI algorithm uses alter-
nating optimization to handle the non-Markov nature
of the abstract MDP. To evaluate the effectiveness of
this approach, we consider an ablation of our algo-
rithm where D is not updated (equivalently, one it-
eration of A-AVI). This ablation can be thought of
as extending Gopalan et al. (2017) to learn the tran-
sitions and rewards of the abstract MDP, or extend-
ing Winder et al. (2020) to handle continuous state
spaces. As can be seen in Figure 2, our ablation per-
forms poorly, likely because it is unable to account for
the non-Markov nature of the ADP. Empirically, we
observe that the robot often becomes stuck at walls at
the boundary of subgoal regions; these states are very
rarely sampled under the distribution D.

Choice of subgoal regions. We study the impact of
the choice of subgoal regions on performance for the
room environments. Our choice of “doorways” used in

0 1 2 3
×107

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Doorways
Full Rooms
Room Centers

0 2 4 6 8
×107

0.00
0.01
0.02
0.03
0.04
0.05
0.06 Doorways

Full Rooms
Room Centers

(a) 9-Rooms (b) 16-Rooms

Figure 3: Comparison of subgoal regions for room en-
vironments; x-axis is number of samples (steps) from
the environment, and y-axis is the discounted reward.
Results are averaged over 10 executions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×108

0.0

0.2

0.4

0.6

0.8

1.0 A-AVI (Ours)
HIRO

0 1 2 3 4
×102

0.0

0.2

0.4

0.6

0.8

1.0 A-AVI (Ours)
HIRO

(a) Sample Complexity (b) Learning Time

Figure 4: Learning curves of A-AVI with randomly
generated subgoal regions in 9-Rooms; the plots show
the probability of reaching the goal (y-axis) as a func-
tion of (a) number of samples (steps) from the envi-
ronment and (b) time since the beginning of training
(in minutes). Results are averaged over 10 executions.

the above experiments is motivated by our theory for
R-AVI, which suggests that subgoal regions should be
bottlenecks that are small in size. We evaluate two al-
ternatives: (i) “room center” consists of a square at the
center of each room that is the same size and shape as
the doorways, and (ii) “full room” consists of a square
for each room covering the entire room (similar to Abel
et al. (2020)) as shown in Figure 1 (e). Results are
shown in Figure 3. Our original choice “doorways”
achieves the highest discounted reward in all environ-
ments, validating our theory. “Full rooms” performs
poorly, likely because the large regions induce large
defects in the ADP. “Room centers” converges quickly
but to a suboptimal value, likely because the robot
cannot travel diagonally across rooms (e.g., the 1→ 4
transition in Figure 1 (a)). Thus, using smaller sub-
goal regions is crucial for good performance, whereas
using bottlenecks is of secondary importance.

Random subgoal regions. We also consider ran-
domly sampling subgoal regions for the room environ-
ments. We first sample N points uniformly at random
from the 2D plane. For each point, we define a sub-
goal region which is a small square with that point in
its center. Next, we add edges from each point to its

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

1

2

3

4

5

6

7

8

9

0 1 2 3 4
×106

0.0

0.2

0.4

0.6

0.8

1.0

A-AVI
Transfer

(a) 9-Rooms-Obstacle (b) Sample Complexity

Figure 5: Planning using R-AVI in 9-Rooms-Obstacle
using options learned in 9-Rooms; x-axis is the number
of samples (steps) from the environment, and y-axis is
the probability of reaching the goal.

K nearest neighbors. For the 9-Rooms environment,
we set N = 20 and K = 7. As shown in Figure 4,
this approach performs significantly better than HIRO
without any additional input from the user. Although
the sample complexity is high, the learning time is low
since the options are learned in parallel. The learn-
ing curves for the 16-Rooms environment are in Ap-
pendix B.

Transferring learned options. An advantage of our
framework is that the subgoal transitions we learn can
be reused across different tasks. One such task we con-
sider is 9-Rooms-Obstacle shown in Figure 5 (a). Here,
we have added an obstacle to the middle room. The
high-level plan for 9-Rooms is no longer feasible since
the option corresponding to the edge 4 → 7 causes
the robot to collide with the obstacle. Nonetheless, we
can reuse the existing options and compute a different
high-level plan. In this case, we use R-AVI to avoid
re-learning the options (which is significantly more ex-
pensive in terms of sample complexity); it computes
the plan 3 → 1 → 2 → 5 → 8 → 9. As shown in
Figure 5 (b), the new plan achieves a high probabil-
ity of reaching the goal given just a small number of
samples, since we only need a few samples to estimate
T̃inf and R̃inf. Similarly, we were also able to compute
plans for different start and goal regions.

6 CONCLUSIONS

We have proposed a hierarchical RL algorithm that
constructs an abstract high-level model using user-
provided subgoal regions and plans in this high-level
model using abstract value iteration. Future work in-
cludes incorporating algorithms to automatically dis-
cover subgoal regions which would mitigate the need
for additional information from the user as well as ap-
plying the approach to more complex benchmarks.

Acknowledgements

We thank the anonymous reviewers for their insightful
comments. This research was partially supported by
ONR award N00014-20-1-2115, as well as NSF award
CCF 1910769.

References

Abel, D., Arumugam, D., Asadi, K., Jinnai, Y.,
Littman, M. L., and Wong, L. L. (2019). State ab-
straction as compression in apprenticeship learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3134–3142.

Abel, D., Umbanhowar, N., Khetarpal, K., Aru-
mugam, D., Precup, D., and Littman, M. L. (2020).
Value preserving state-action abstractions. In Pro-
ceedings of the International Conference on Artifi-
cial Intelligence and Statistics.

Andre, D. and Russell, S. J. (2002). State abstraction
for programmable reinforcement learning agents. In
AAAI/IAAI, pages 119–125.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefow-
icz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., et al. (2020). Learning
dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3–20.

Bacon, P.-L., Harb, J., and Precup, D. (2017). The
option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence.

Burridge, R. R., Rizzi, A. A., and Koditschek, D. E.
(1999). Sequential composition of dynamically dex-
terous robot behaviors. The International Journal
of Robotics Research, 18(6):534–555.

Castro, P. S. (2019). Scalable methods for comput-
ing state similarity in deterministic markov decision
processes. arXiv preprint arXiv:1911.09291.

Castro, P. S. and Precup, D. (2011). Automatic con-
struction of temporally extended actions for mdps
using bisimulation metrics. In European Work-
shop on Reinforcement Learning, pages 140–152.
Springer.

Choudhury, S., Knickerbocker, J. P., and Kochender-
fer, M. J. (2019). Dynamic real-time multimodal
routing with hierarchical hybrid planning. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages
2397–2404. IEEE.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B.,
Abbeel, P., and Levine, S. (2018). Self-consistent
trajectory autoencoder: Hierarchical reinforcement
learning with trajectory embeddings. In Inter-
national Conference on Machine Learning, pages
1009–1018. PMLR.

Abstract Value Iteration for Hierarchical Reinforcement Learning

Cobo, L. C., Zang, P., Isbell Jr, C. L., and Thomaz,
A. L. (2011). Automatic state abstraction from
demonstration. In Twenty-Second International
Joint Conference on Artificial Intelligence.

Daniel, C., Van Hoof, H., Peters, J., and Neumann, G.
(2016). Probabilistic inference for determining op-
tions in reinforcement learning. Machine Learning,
104(2-3):337–357.

Dietterich, T. G. (2000). State abstraction in maxq
hierarchical reinforcement learning. In Advances in
Neural Information Processing Systems, pages 994–
1000.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S.
(2018). Diversity is all you need: Learning skills
without a reward function. In ICLR.

Ferns, N., Panangaden, P., and Precup, D. (2004).
Metrics for finite markov decision processes. In UAI,
volume 4, pages 162–169.

Finn, C., Yu, T., Fu, J., Abbeel, P., and Levine, S.
(2017). Generalizing skills with semi-supervised re-
inforcement learning. In ICLR.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Ad-
dressing function approximation error in actor-critic
methods. In International Conference on Machine
Learning, pages 1587–1596.

Givan, R., Leach, S., and Dean, T. (2000). Bounded-
parameter markov decision processes. Artificial In-
telligence, 122(1-2):71–109.

Gopalan, N., Littman, M. L., MacGlashan, J., Squire,
S., Tellex, S., Winder, J., Wong, L. L., et al. (2017).
Planning with abstract markov decision processes.
In Twenty-Seventh International Conference on Au-
tomated Planning and Scheduling.

Guadarrama, S., Korattikara, A., Ramirez, O., Cas-
tro, P., Holly, E., Fishman, S., Wang, K., Gonina,
E., Wu, N., Kokiopoulou, E., Sbaiz, L., Smith,
J., Bartók, G., Berent, J., Harris, C., Vanhoucke,
V., and Brevdo, E. (2018). TF-Agents: A library
for reinforcement learning in tensorflow. https:

//github.com/tensorflow/agents. [Online; ac-
cessed 25-June-2019].

Hausman, K., Springenberg, J. T., Wang, Z., Heess,
N., and Riedmiller, M. (2018). Learning an embed-
ding space for transferable robot skills. In ICLR.

Jong, N. K. and Stone, P. (2005). State abstraction
discovery from irrelevant state variables. In IJCAI,
volume 8, pages 752–757.

Jonsson, A. and Barto, A. G. (2001). Automated state
abstraction for options using the u-tree algorithm.
In Advances in neural information processing sys-
tems, pages 1054–1060.

Jothimurugan, K., Alur, R., and Bastani, O. (2019). A
composable specification language for reinforcement
learning tasks. In Advances in Neural Information
Processing Systems, pages 13021–13030.

Khan, A., Tolstaya, E., Ribeiro, A., and Kumar, V.
(2019). Graph policy gradients for large scale robot
control. In CoRL.

Konidaris, G. and Barto, A. G. (2007). Building
portable options: Skill transfer in reinforcement
learning. In IJCAI, volume 7, pages 895–900.

Konidaris, G. and Barto, A. G. (2009). Skill discovery
in continuous reinforcement learning domains using
skill chaining. In Advances in neural information
processing systems, pages 1015–1023.

Konidaris, G., Kaelbling, L., and Lozano-Perez, T.
(2014). Constructing symbolic representations for
high-level planning. In Twenty-Eighth AAAI Con-
ference on Artificial Intelligence.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and
Tenenbaum, J. (2016). Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction
and intrinsic motivation. In Advances in neural in-
formation processing systems, pages 3675–3683.

LaValle, S. M. (2006). Planning algorithms. Cam-
bridge university press.

Levine, S., Finn, C., Darrell, T., and Abbeel, P.
(2016). End-to-end training of deep visuomotor poli-
cies. The Journal of Machine Learning Research,
17(1):1334–1373.

Li, L., Walsh, T. J., and Littman, M. L. (2006). To-
wards a unified theory of state abstraction for mdps.
In ISAIM.

Machado, M. C., Bellemare, M. G., and Bowling,
M. (2017). A laplacian framework for option dis-
covery in reinforcement learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 2295–2304. JMLR. org.

Majumdar, A. and Tedrake, R. (2017). Funnel li-
braries for real-time robust feedback motion plan-
ning. The International Journal of Robotics Re-
search, 36(8):947–982.

Mania, H., Guy, A., and Recht, B. (2018). Simple
random search of static linear policies is competitive
for reinforcement learning. In Advances in Neural
Information Processing Systems, pages 1800–1809.

Nachum, O., Gu, S., Lee, H., and Levine, S. (2019).
Near-optimal representation learning for hierarchi-
cal reinforcement learning. In ICLR.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018).
Data-efficient hierarchical reinforcement learning.
In Advances in Neural Information Processing Sys-
tems, pages 3303–3313.

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

Precup, D., Sutton, R. S., and Singh, S. (1998). The-
oretical results on reinforcement learning with tem-
porally abstract options. In European conference on
machine learning, pages 382–393. Springer.

Roderick, M., Grimm, C., and Tellex, S. (2018). Deep
abstract q-networks. In AAMAS.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduc-
tion of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial in-
telligence and statistics, pages 627–635.

Stolle, M. and Precup, D. (2002). Learning options in
reinforcement learning. In International Symposium
on abstraction, reformulation, and approximation,
pages 212–223. Springer.

Sun, S.-H., Wu, T.-L., and Lim, J. J. (2019). Pro-
gram guided agent. In International Conference on
Learning Representations.

Sutton, R. S., Precup, D., and Singh, S. (1999). Be-
tween mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artifi-
cial intelligence, 112(1-2):181–211.

Täıga, A. A., Courville, A., and Bellemare, M. G.
(2018). Approximate exploration through state ab-
straction. arXiv preprint arXiv:1808.09819.

Taylor, J., Precup, D., and Panagaden, P. (2009).
Bounding performance loss in approximate mdp ho-
momorphisms. In Advances in Neural Information
Processing Systems, pages 1649–1656.

Theocharous, G. and Kaelbling, L. P. (2004). Ap-
proximate planning in pomdps with macro-actions.
In Advances in Neural Information Processing Sys-
tems, pages 775–782.

Theocharous, G., Mahadevan, S., and Kaelbling,
L. P. (2005). Spatial and temporal abstractions in
pomdps applied to robot navigation. Technical re-
port, MIT.

Tiwari, S. and Thomas, P. S. (2019). Natural option
critic. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5175–5182.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE.

Walsh, T. J., Li, L., and Littman, M. L. (2006).
Transferring state abstractions between mdps. In
ICML Workshop on Structural Knowledge Transfer
for Machine Learning.

Winder, J., Milani, S., Landen, M., Oh, E., Parr,
S., Squire, S., desJardins, M., and Matuszek, C.
(2020). Planning with abstract learned models while

learning transferable subtasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34.

Abstract Value Iteration for Hierarchical Reinforcement Learning

A Proofs of Theorems

We first establish some notation. Let V = {V : S → R≥0 | V is Lebesgue-measurable and bounded} denote

the set of all concrete value functions and Ṽ = {Ṽ : S̃ → R≥0} denote the set of all abstract value functions.

Given V ∈ V, we denote by ‖V ‖∞, the `∞-norm of V given by ‖V ‖∞ = sups∈S |V (s)| and similarly for Ṽ ∈ Ṽ,

‖Ṽ ‖∞ = maxs̃∈S̃ |Ṽ (s̃)|. We use F to denote the transformation on V corresponding to (concrete) option value
iteration using the set of options O. More precisely, for any s ∈ S,

F(V)(s) = max
o∈O

Q(V, s, o),

Q(V, s, o) = Ropt(s, o) +

∫
S
Topt(s, o, s

′)V (s′)ds′.

We know that F is a contraction on V (with respect to the `∞-norm on V) and hence limn→∞ Fn(V)(s) = V ∗O(s)
for all s ∈ S and any initial value function V ∈ V. Also, for any option policy ρ : S → O we define the
corresponding value function V ρ given by V ρ(s) = limn→∞ Fnρ (V)(s) where V ∈ V is any initial value function
and Fρ is given by

Fρ(V)(s) = Q(V, s, ρ(s)).

Similarly, for z ∈ {inf, sup}, let F̃z : Ṽ → Ṽ denote the transformation corresponding to abstract value iteration—
i.e., for any s̃ ∈ S̃,

F̃z(Ṽ)(s̃) = max
o∈O

Q̃z(Ṽ , s̃, o),

Q̃z(Ṽ , s̃, o) = R̃z(s̃, o) +
∑
s̃′∈S̃

T̃z(s̃, o, s̃
′) · Ṽ (s̃′).

A.1 Proof of Theorem 3.2

We first prove some useful lemmas.

Lemma A.1. For any finite set B and two functions f1, f2 : B → R, if for all b ∈ B, |f1(b) − f2(b)| ≤ δ then
|maxb∈Bf1(b)−maxb∈Bf2(b)| ≤ δ.

Proof. Let b1 = arg maxb∈Bf1(b) and b2 = arg maxb∈Bf2(b). We need to show that |f1(b1)− f2(b2)| ≤ δ. For the
sake of contradiction, suppose |f1(b1)−f2(b2)| > δ. Then either f1(b1) > f2(b2)+δ or f2(b2) > f1(b1)+δ. Without
loss of generality, let us assume f1(b1) > f2(b2) + δ. Then f1(b1) > f2(b1) + δ which implies |f1(b1)− f2(b1)| > δ,
which is a contradiction.

Lemma A.2. Given any s̃ ∈ S̃ and o ∈ O, ∑
s̃′∈S̃

T̃inf(s̃, o, s̃
′) ≤ γ.

Proof. Fix any s ∈ s̃. Then, ∑
s̃′∈S̃

T̃inf(s̃, o, s̃
′) ≤

∑
s̃′∈S̃

T̃ (s, o, s̃′)

=
∑
s̃′∈S̃

∞∑
t=1

γtP (s̃′, t | s, o)

≤ γ
∑
s̃′∈S̃

∞∑
t=1

P (s̃′, t | s, o)

≤ γ

where the last inequality followed from the fact that the subgoal regions are disjoint.

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

Lemma A.3. For z ∈ {inf, sup}, ∑
s̃∈S̃

T̃z(s̃, o, s̃
′) ≤ γ + |S̃|εT .

Proof. The lemma follows from Lemma A.2 and the definition of εT .

A.1.1 Proof of Convergence

We prove that R-AVI converges by showing that abstract value iteration is defined by a contraction mapping.
Consider, for any s̃ ∈ S̃, o ∈ O, Ṽ1, Ṽ2 ∈ Ṽ and z ∈ {inf, sup},

∣∣Q̃z(Ṽ1, s̃, o)− Q̃z(Ṽ2, s̃, o)
∣∣ =

∣∣∣∣∣ ∑
s̃′∈S̃

T̃z(s̃, o, s̃
′) · Ṽ1(s̃′)−

∑
s̃′∈S̃

T̃z(s̃, o, s̃
′) · Ṽ2(s̃′)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
s̃′∈S̃

T̃z(s̃, o, s̃
′) ·
(
Ṽ1(s̃′)− Ṽ2(s̃′)

)∣∣∣∣∣
≤
∑
s̃′∈S̃

T̃z(s̃, o, s̃
′) ·
∣∣∣Ṽ1(s̃′)− Ṽ2(s̃′)

∣∣∣
≤ ‖Ṽ1 − Ṽ2‖∞

∑
s̃′∈S̃

T̃z(s̃, o, s̃
′)

≤ (γ + |S̃|εT)‖Ṽ1 − Ṽ2‖∞.

where the last inequality followed from Lemma A.3. Using Lemma A.1 we have

|F̃z(Ṽ1)(s̃)− F̃z(Ṽ2)(s̃)| =
∣∣∣max
o∈O

Q̃z(Ṽ1, s̃, o)−max
o∈O

Q̃z(Ṽ2, s̃, o)
∣∣∣

≤ (γ + |S̃|εT)‖Ṽ1 − Ṽ2‖∞.

If γ + |S̃|εT < 1, F̃z is a contraction mapping and hence abstract value iteration is guaranteed to converge.

A.1.2 Proof of Performance Bound

We show the performance bound using the following lemmas. First, we show that the upper and lower values
obtained from abstract value iteration bound the value function of the best option policy ρ∗ for the set of options
O.

Lemma A.4. Under Assumption 3.1, for all s̃ ∈ S̃ and s ∈ s̃, we have

Ṽ ∗inf(s̃) ≤ V ∗O(s) ≤ Ṽ ∗sup(s̃).

Proof. We will prove the upper bound. The lower bound follows by a similar argument. Let V ∈ V and
Ṽ ∈ Ṽ be such that for all s̃ ∈ S̃ and s ∈ s̃, V (s) ≤ Ṽ (s̃). Suppose s̃ ∈ S̃ and s ∈ s̃. Since for any o ∈ O,

Abstract Value Iteration for Hierarchical Reinforcement Learning

∫
S Topt(s, o, s

′)1(s′ ∈ S \ S̄)ds′ = 0, we have

F(V)(s) = max
o∈O

(
Ropt(s, o) +

∫
S
Topt(s, o, s

′)V (s′)ds′
)

= max
o∈O

(
Ropt(s, o) +

∫
S̄

Topt(s, o, s
′)V (s′)ds′

)
= max

o∈O

(
Ropt(s, o) +

∑
s̃′∈S̃

∫
s̃′
Topt(s, o, s

′)V (s′)ds′
)

≤ max
o∈O

(
R̃sup(s̃, o) +

∑
s̃′∈S̃

Ṽ (s̃′)

∫
s̃′
Topt(s, o, s

′)ds′
)

= max
o∈O

(
R̃sup(s̃, o) +

∑
s̃′∈S̃

T̃ (s, o, s̃′) · Ṽ (s̃′)
)

≤ max
o∈O

(
R̃sup(s̃, o) +

∑
s̃′∈S̃

T̃sup(s̃, o, s̃′) · Ṽ (s̃′)
)

= F̃sup(Ṽ)(s̃).

By induction on n, it follows that Fn(V)(s) ≤ F̃nsup(Ṽ)(s̃) for all n ≥ 1. Therefore if V0 and Ṽ0 assign zero to all
states and subgoal regions, respectively, we have

V ∗O(s) = lim
n→∞

Fn(V0)(s) ≤ lim
n→∞

F̃nsup(Ṽ0)(s̃) = Ṽ ∗sup(s̃).

The claim follows.

Next, we bound the gap in the upper and lower value functions as a function of the gaps εT and εR.

Lemma A.5. Under Assumption 3.1, for all s̃ ∈ S̃, we have

Ṽ ∗sup(s̃)− Ṽ ∗inf(s̃) ≤
(1− γ)εR + |S̃|εT

(1− γ)(1− (γ + |S̃|εT))
.

Proof. Let Ṽ1, Ṽ2 ∈ Ṽ be abstract value functions such that Ṽ2(s̃) ≤ min{(1 − γ)−1, Ṽ1(s̃)} for all s̃ ∈ S̃. Then,
for any s̃ ∈ S̃ and o ∈ O,

Q̃sup(Ṽ1,s̃, o)− Q̃inf(Ṽ2, s̃, o)

=
(
R̃sup(s̃, o)− R̃inf(s̃, o)

)
+
(∑
s̃′∈S̃

T̃sup(s̃, o, s̃′) · Ṽ1(s̃′)−
∑
s̃′∈S̃

T̃inf(s̃, o, s̃
′) · Ṽ2(s̃′)

)
≤ εR +

(∑
s̃′∈S̃

T̃sup(s̃, o, s̃′) · Ṽ1(s̃′)−
∑
s̃′∈S̃

(
T̃sup(s̃, o, s̃′)− εT

)
· Ṽ2(s̃′)

)
≤ εR +

∑
s̃′∈S̃

T̃sup(s̃, o, s̃′) ·
(
Ṽ1(s̃′)− Ṽ2(s̃′)

)
+
|S̃|εT
1− γ

≤ εR + ‖Ṽ1 − Ṽ2‖∞
∑
s̃′∈S̃

T̃sup(s̃, o, s̃′) +
|S̃|εT
1− γ

≤ εR + (γ + |S̃|εT)‖Ṽ1 − Ṽ2‖∞ +
|S̃|εT
1− γ

.

Now, using Lemma A.1 we have

|F̃sup(Ṽ1)(s̃)− F̃inf(Ṽ2)(s̃)| ≤ εR + (γ + |S̃|εT)‖Ṽ1 − Ṽ2‖∞ +
|S̃|εT
1− γ

.

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

If we define Ṽ0 to be the zero vector, we can show by induction on n that, for all s̃ ∈ S̃ and n ≥ 0, F̃ninf(Ṽ0)(s̃) ≤
min{(1− γ)−1, F̃nsup(Ṽ0)(s̃)} since the rewards in the underlying MDP are bounded above by 1. Hence, another

induction on n gives us, for all s̃ ∈ S̃ and n ≥ 0,

F̃nsup(Ṽ0)(s̃)− F̃ninf(Ṽ0)(s̃) ≤
(
εR +

|S̃|εT
1− γ

) n∑
k=0

(γ + |S̃|εT)k.

Taking limit n→∞ on both sides gives us the required bound.

Now, we prove the following lemma.

Lemma A.6. For any s̃ ∈ S̃ and s ∈ s̃ we have

V ρ̃(s) ≥ Ṽ ∗inf(s̃),

where ρ̃ is the conservative optimal option policy.

Proof. Let V ∈ V be such that for all s̃ ∈ S̃ and s ∈ s̃, V (s) ≥ Ṽ ∗inf(s̃). Given s̃ ∈ S̃ and s ∈ s̃, we have

Fρ̃(V)(s) = Ropt(s, ρ̃(s)) +

∫
S
Topt(s, ρ̃(s), s′)V (s′)ds′

≥ R̃inf(s̃, ρ̃(s)) +
∑
s̃′∈S̃

Ṽ ∗inf(s̃
′)

∫
s̃′
Topt(s, ρ̃(s), s′)ds′

≥ R̃inf(s̃, ρ̃(s)) +
∑
s̃′∈S̃

T̃ (s, ρ̃(s), s̃′) · Ṽ ∗inf(s̃
′)

≥ R̃inf(s̃, ρ̃(s)) +
∑
s̃′∈S̃

T̃inf(s̃, ρ̃(s), s̃′) · Ṽ ∗inf(s̃
′)

= Q̃∗inf(s̃, ρ̃(s))

= max
o∈O

Q̃∗inf(s̃, o)

= Ṽ ∗inf(s̃)

where the first inequality followed from the fact that
∫
S Topt(s, o, s

′)1(s′ ∈ S \ S̄)ds′ = 0. Now let V0 ∈ V be a

value function such that V0(s) = Ṽ ∗inf(s̃) for all s̃ ∈ S̃ and s ∈ s̃. Then we can show by induction on n that, for

all s̃ ∈ S̃, s ∈ s̃ and n ≥ 0, Fnρ̃ (V0)(s) ≥ Ṽ ∗inf(s̃) and therefore

V ρ̃(s) = lim
n→∞

Fnρ̃ (V0)(s) ≥ Ṽ ∗inf(s̃).

The claim follows.

We are now ready to prove the performance bound in Theorem 3.2. For any s̃ ∈ S̃ and s ∈ s̃, we have

V ρ̃(s) ≥ Ṽ ∗inf(s̃)

= Ṽ ∗sup(s̃)− (Ṽ ∗sup(s̃)− Ṽ ∗inf(s̃))

≥ V ∗O(s)− (Ṽ ∗sup(s̃)− Ṽ ∗inf(s̃))

where the first inequality followed from Lemma A.6 and the second inequality followed from Lemma A.4. Taking
expectation w.r.t. the initial state distribution η0 and applying Lemma A.5 gives us the required claim.

A.2 Proof of Theorem 3.4

Note that this theorem relies on additional assumptions, namely, Assumptions 2.2 and 3.3. We first show the
following lemma.5

5Note that Ṽ ∗sup is an upper bound on the value function; it may exceed the optimal value.

Abstract Value Iteration for Hierarchical Reinforcement Learning

Lemma A.7. For all s0 ∈ s̃0, V ∗(s0) ≤ Ṽ ∗sup(s̃0).

Proof. Let π∗ be the optimal policy. Given an s0 ∈ s̃0, let s0, s1, . . . be the sequence of states visited when
following π∗ starting at s0. If the goal region is not visited, then V ∗(s0) = 0 and the lemma holds. Otherwise,
let t be the first time when st ∈ s̃g. Then V ∗(s0) = γt−1 and there is a subsequence of indices, 0 = i0, . . . , ik = t
and a sequence of subgoal region s̃0, . . . , s̃k such that for all 0 ≤ j ≤ k, sij ∈ s̃j and for j < k, there is an
option oj = (π(s̃j , s̃j+1), s̃j , β) ∈ O∗. Let o∗j denote the modified option (π∗, s̃j , β) where the policy π(s̃j , s̃j+1)
is replaced with π∗. For every 0 ≤ j < k,

γij+1−ij = T̃ (sij , o
∗
j , s̃j+1)

≤ T̃sup(s̃j , o
∗
j , s̃j+1)

≤ max
π

T̃sup(s̃j , (π, s̃j , β), s̃j+1)

= T̃sup(s̃j , oj , s̃j+1).

Since all states in s̃g are sink states, Ṽ ∗sup(s̃g) = 0. Furthermore, for any s ∈ S̄ \ s̃g and any subgoal transition o,

Ropt(s, o) = γ−1T̃ (s, o, s̃g) and hence

R̃sup(s̃k−1, ok−1) = sup
s∈s̃k−1

Ropt(s, ok−1)

= sup
s∈s̃k−1

γ−1T̃ (s, ok−1, s̃g)

= γ−1T̃sup(s̃k−1, ok−1, s̃g)

≥ γt−ik−1−1.

Since R̃sup(s̃j , oj) ≥ 0 for all 0 ≤ j < k, using the definition of Ṽ ∗sup and induction on k− j we can show that for
all 0 ≤ j < k,

Ṽ ∗sup(s̃j) ≥ R̃sup(s̃k−1, ok−1)

k−2∏
q=j

T̃sup(s̃q, oq, s̃q+1) ≥ γt−ij−1

Therefore, Ṽ ∗sup(s̃0) ≥ γt−1 = V ∗(s0).

We are now ready to prove Theorem 3.4. We have

J(π∗)− J(πρ̃) = Es0∼η0 [V ∗(s0)− V ρ̃(s0)]

≤ Es0∼η0 [Ṽ ∗sup(s̃0)− Ṽ ∗inf(s̃0)]

≤ (1− γ)εR + |S̃|εT
(1− γ)(1− (γ + |S̃|εT))

,

where the first inequality followed from Lemmas A.7 & A.6, and the second inequality followed from
Lemma A.56.

B Experimental Details

Additional Figures. Subgoal regions given by “room centers” in the 9-Rooms environment are visualized in
Figure 6 (a). The learning curves for different choices of subgoal regions for the room environments are shown
in Figure 6 (b,c) where we plot the probability of reaching the goal as a function of the number of steps taken
in the environment; in contrast, the cumulative reward plotted in Figure 3 measures not only the probability of
reaching the goal but also the time to reach the goal. In particular, “room centers” can also be used to learn
a policy that reaches the goal with an estimated probability of 1, although they do not satisfy the bottleneck
assumption. Thus, this choice of subgoal regions only reduces the time to reach the goal, not the probability of
reaching the goal.

6Although we assumed that T (s, a, s′) = p(s′ | s, a) defines a probability density function, it is easy to see that lemmas
hold true for the deterministic case as well.

Kishor Jothimurugan, Osbert Bastani, Rajeev Alur

0 1 2 3
×107

0.0

0.2

0.4

0.6

0.8

1.0

Doorways
Full Rooms
Room Centers

0 2 4 6 8
×107

0.0

0.2

0.4

0.6

0.8

1.0

Doorways
Full Rooms
Room Centers

(a) Room Centers (b) 9-Rooms (c) 16-Rooms

Figure 6: Visualization of room centers as subgoal regions (in gray) and comparison of subgoal regions for room
environments; x-axis is number of samples (steps) from the environment, and y-axis is probability of reaching
the goal. Results are averaged over 10 executions.

0.0 0.2 0.4 0.6 0.8 1.0
×109

0.0

0.2

0.4

0.6

0.8
A-AVI (Ours)
HIRO

0.0 0.2 0.4 0.6 0.8 1.0
×103

0.0

0.2

0.4

0.6

0.8
A-AVI (Ours)
HIRO

(a) 16-Rooms (b) Sample Complexity (c) Learning Time

Figure 7: The 16-Rooms environment and learning curves of A-AVI with randomly generated subgoal regions in
16-Rooms; the plots show the probability of reaching the goal (y-axis) as a function of (b) number of samples
(steps) from the environment and (c) time since the beginning of training (in minutes). Results are averaged
over 10 executions.

The 16-Rooms environment is visualized in Figure 7 (a). We also trained policies for the 16-Rooms environment
using randomly generated subgoal regions. For this environment we used N = 25 subgoal regions and K = 7
outgoing edges from each subgoal region. As shown in Figure 7 (b,c) we outperform HIRO on this task as well
without additional input from the user.

The subgoal regions for AntMaze, AntPush, and AntFall are visualized in Figures 8, 9, and 10, respectively.
The red squares are the subgoal regions; in particular, each subgoal region can be described as a constraint
x ∈ [xmin, xmax] ∧ y ∈ [ymin, ymax], where (x, y) ∈ R2 is the position of the center of the ant.

Hyperparameters. For the rooms environment, the subgoal regions are learned using ARS (Mania et al., 2018)
(version V2-t) with neural network policies and the following hyperparameters.

• Step-size α = 0.3.

• Standard deviation of exploration noise ν = 0.05.

• Number of directions sampled per iteration is 30.

• Number of top performing directions to use b = 15.

We retain the parameters of the policies across iterations of A-AVI. In each iteration of A-AVI, we run 300
iterations of ARS for each subgoal transition in parallel. Initially, Ds̃ is taken to be the uniform distribution in
a small square in the center of the subgoal region s̃.

Abstract Value Iteration for Hierarchical Reinforcement Learning

Figure 8: Subgoal Regions for AntMaze

Figure 9: Subgoal Regions for AntPush

Figure 10: Subgoal Regions for AntFall

For the ant environments, the subgoal transitions are learned using TD3 (Fujimoto et al., 2018); each policy is a
fully connected neural network with 300 neurons each and critic architecture is the same as the one in Fujimoto
et al. (2018) except that we use 300 neurons for both hidden layers. We use the TFAgents (Guadarrama et al.,
2018) implementation of TD3 with the following hyperparameters.

• Discount γ = 0.95.

• Adam optimizer; actor learning rate 0.0001; critic learning rate 0.001.

• Soft update targets τ = 0.005.

• Replay buffer of size 200000.

• Target update and training step performed every 2 environment steps.

• Exploration using gaussian noise with σ = 0.1.

We retain the actor and critic networks, target networks, optimizer states and the replay buffers across iterations
of A-AVI. In each iteration of A-AVI, we run TD3 for 100000 environment steps for each subgoal transition.

	1 INTRODUCTION
	2 PROBLEM FORMULATION
	3 ROBUST ABSTRACT VALUE ITERATION
	4 ALTERNATING ABSTRACT VALUE ITERATION
	5 EXPERIMENTS
	6 CONCLUSIONS
	A Proofs of Theorems
	A.1 Proof of Theorem 3.2
	A.1.1 Proof of Convergence
	A.1.2 Proof of Performance Bound

	A.2 Proof of Theorem 3.4

	B Experimental Details

