We present a stylized model with feedback loops for the evolution of a population's wealth over generations. Individuals have both talent and wealth: talent is a random variable distributed identically for everyone, but wealth is a random variable that is dependent on the population one is born into. Individuals then apply to a downstream agent, which we treat as a university throughout the paper (but could also represent an employer) who makes a decision about whether to admit them or not. The university does not directly observe talent or wealth, but rather a signal (representing e.g. a standardized test) that is a convex combination of both. The university knows the distributions from which an individual's type and wealth are drawn, and makes its decisions based on the posterior distribution of the applicant's characteristics conditional on their population and signal. Each population's wealth distribution at the next round then depends on the fraction of that population that was admitted by the university at the previous round. We study wealth dynamics in this model, and give conditions under which the dynamics have a single attracting fixed point (which implies population wealth inequality is transitory), and conditions under which it can have multiple attracting fixed points (which implies that population wealth inequality can be persistent). In the case in which there are multiple attracting fixed points, we study interventions aimed at eliminating or mitigating inequality, including increasing the capacity of the university to admit more people, aligning the signal generated by individuals with the preferences of the university, and making direct monetary transfers to the less wealthy population.