An Algorithmic Framework for Fairness Elicitation

Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, Zhiwei Steven Wu

We revisit the notion of individual fairness first proposed by Dwork et al. [2012], which asks that "similar individuals should be treated similarly". A primary difficulty with this definition is that it assumes a completely specified fairness metric for the task at hand. In contrast, we consider a framework for fairness elicitation, in which fairness is indirectly specified only via a sample of pairs of individuals who should be treated (approximately) equally on the task. We make no assumption that these pairs are consistent with any metric. We provide a provably convergent oracle-efficient algorithm for minimizing error subject to the fairness constraints, and prove generalization theorems for both accuracy and fairness. Since the constrained pairs could be elicited either from a panel of judges, or from particular individuals, our framework provides a means for algorithmically enforcing subjective notions of fairness. We report on preliminary findings of a behavioral study of subjective fairness using human-subject fairness constraints elicited on the COMPAS criminal recidivism dataset.