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Foundations for Private, Fair, and Robust Data Science
Aaron Roth

Much of modern machine learning and statistics is based on the following paradigm: the algo-
rithm designer specifies an objective function, and then optimizes it over some class of models. This
is a powerful methodology, but while it generally results in a tool that is exceedingly good as mea-
sured by the designers narrow objective function, when the optimization is performed over a rich
class of models, the result can have unintended and unanticipated side effects. This is especially
problematic when — as is increasingly the norm — the models are trained on people’s sensitive data,
or deployed to make important decisions about peoples lives. In these cases, the “side effects” can
manifest themselves as gross violations of the social norms that we would expect of human beings
occupying the same parts of the decision making pipelines that we are ceding to algorithms: norms
like privacy and fairness. This training paradigm also assumes that the environment that the al-
gorithm will operate on is static, and so can have unanticipated consequences when the resulting
algorithms and models are deployed in dynamic environments, in which people change their behav-
ior in response to the incentives engendered by the algorithm. And machine learning pipelines make
it easy and tempting to re-use the same datasets over and over again, which can lead to spurious
conclusions.

The main thrust of my research is to discover principled ways to avoid this kind of misbehav-
ior. This includes embedding constraints of “privacy”, “fairness”, and other norms directly into the
design of algorithms, using game theoretic reasoning to make predictions about the effects of algo-
rithmic interventions in dynamic environments, and developing algorithmic principles that lead to
rigorous statistical guarantees when data can be dynamically re-used. This broad research program
involves at least three distinct exercises:

1. Thinking Carefully about Definitions: Words like “privacy” and “fairness” have imprecise
and nuanced meanings, but constraints placed on algorithms must be mathematically precise.
Much of my recent work — especially in algorithmic fairness — has focused on finding mathe-
matical constraints that can represent a meaningful promise made to individuals, while still
being statistically and computationally sound: i.e. we should be able to give algorithms that
satisfy the definitions we adopt — not just on the data we have seen, but also out of sample.

2. Deriving and Analyzing Algorithms: Once we have a formalization of a particular kind of
“fairness” or “privacy”, a particular game theoretic model, or a particular notion of algorithmic
robustness, we need to be able to perform useful computations that satisfy our desiderata. This
is an algorithm design task, relying on tools from theoretical computer science, probability
theory, and optimization. We often want to prove not only that our algorithms satisfy our
definitions, but that they solve some problem optimally subject to their constraints.

3. Mapping Out Tradeoffs: A lesson one quickly learns in this area is that nothing comes for
free. Definitions of fairness, privacy, and robustness are actually parameterized: one can ask
for these things to varying quantitative degrees. But asking for a little more “fairness” or
“privacy” will usually come at a cost: often to the accuracy of some analysis, but sometimes
also to e.g. other incomparable notions of fairness. Part of my work involves mapping out
optimal tradeoffs between different desiderata — both in the worst case, using mathematical
tools, and on particular datasets using empirical methods.

Finally, one of the joys of being a professor is communicating discoveries to others and facilitat-
ing their adoption in practice. This involves writing for other researchers, who can join and enrich
the technical community working on these problems, but also writing for the general public, and
working with industry partners on technology transfer. I’ve had the opportunity to do all of these
things. I’ve written two books so far. The first (The Algorithmic Foundations of Differential Privacy
[DR14]) has become the authoritative technical reference for differential privacy. The second (The
Ethical Algorithm [KR19]) is a general audience book that covers work in algorithmic fairness, pri-
vacy, game theory, and statistics, and advocates for a scientific approach towards embedding social
norms as constraints directly into algorithms. I have also helped to bring differential privacy from
theory to practice by collaborating with industry. I have advised Apple as they incorporated dif-
ferential privacy into iOS10, and Facebook’s Election Research Commission in collaboration with
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Social Science One to share election-relevant data with researchers with the protections of differen-
tial privacy. I serve as the scientific advisor to several startups working to deploy differential privacy
broadly. In the remainder of this research statement, I will summarize some of the highlights of
my contributions to each of my four main areas of study.

Private Data Analysis: It has been difficult for medical research to reap the fruits of large-
scale data science because the relevant “data” is often highly sensitive individual patient records
which are restricted by law from being shared freely. Similar difficulties plague many other domains
to which data science could be productively applied: for example, the US Census Bureau collects
information about every American household, which is both tremendously useful for social science,
as well as for informing the best distribution of resources — but is legally obligated to release only
privacy preserving statistics about this valuable data. Facebook has an enormous social network
dataset that could be leveraged to study some of the most important questions of the day — including
the spread of “fake news” and the dynamics of election interference — but cannot make this data
publicly available because of legitimate privacy concerns. What do we do? To leverage data science,
do we need to give up on privacy?

The answer is no: Over the past 15 years, a statistical notion of privacy called “differential
privacy” [DMNS06] has emerged and been developed, offering a mathematically precise, meaningful
notion of privacy that is consistent with performing useful computations on data. I have been and
continue to be a central contributor to this literature (I wrote the first PhD thesis on the topic
[Rot10b], and continue to regularly publish and advise students in the area) — and more recently,
in addition to continuing to push forward the basic theory, I have been actively involved in putting
the techniques I helped develop into practice.

Informally, data analyses that are conducted subject to differential privacy promise individuals
a strong form of plausible deniability. The promise of differential privacy is that no one observing
the outcome of a computation—no matter their background knowledge—can determine substan-
tially more accurately than random guessing whether a particular individual’s data was included
in the data analysis or not. It represents a promise of privacy by taking the position that compu-
tations that are performed independently of a particular individual’s data cannot be said to violate
their privacy; by extension, if there is no statistically significant difference between this hypothet-
ical world in which a computation is perfectly private for that individual and the actual world in
which the computation is performed on all user data, then it should not be thought of as substan-
tially violating the privacy of any particular individual. Differential privacy provides a quantitative
measure of how similar the ideal world — in which an individual’s data is not used at all — and the
real world are, statistically.

Remarkably, essentially any statistical data analysis task (informally, any task whose optimal
solution depends only on the data distribution, and not on the particular individuals present in the
data set) can be carried out subject to the protections of differential privacy, albeit at a cost. That
cost usually manifests itself as a need for more data (given the same accuracy goal), and sometimes
also as a need for more computational power. My research in the area focuses on foundational
questions, with a particular focus on the following:

1. Which problems can be solved subject to differential privacy, and how severe are
the inevitable tradeoffs? The initial reaction of many researchers to differential privacy
was that it provided a strong guarantee of privacy, but that it was too strong to perform useful
statistical calculations. My early work in the field aimed at showing that this was not the
case, by giving surprisingly powerful algorithms for a broad set of basic private data anal-
ysis tasks. This has included the problems of synthetic data generation [BLR13, GHRU13,
Rot10a] and interactive query answering [RR10, BR13, GRU12, HRU13, HR14], combina-
torial [GLM+10] and convex optimization [HHR+16, HHRW16, HRRU14], low rank matrix
approximation [HR12, HR13], and basic questions about how different differentially private
sub-routines can be adaptively composed [RRUV16] and evaluated as a function of their output
[LNR+17].

2. To what extent can computations be distributed and the basic trust model relaxed?
Most of the initial academic work on differential privacy studied the setting in which there
was a central curator who was trusted to have direct access to the data. But the first large
deployments of differential privacy — at both Google and Apple — did not conform to this
setting. Instead they operated in the distributed (“local”) model of differential privacy, in
which there is no trusted curator, and randomization is applied on device. Another thrust of
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my research has investigated the power of this model — first by doing some of the initial work
on the query answering problem [GHRU13] and the “heavy hitters” problem in the local model
[HKR12], which has become the canonical algorithmic task subsequently studied and deployed
in the local model. More recently we have studied both practically motivated questions in
this model, like the extent to which statistics can be persistently updated without expending
additional privacy budget [JRUW18] and foundational questions on the power and necessity
of interaction [JMNR19, JMR20] in the local model.

3. Can we leverage the powerful suite of (non-private) optimization heuristics? Many
basic problems in private data analysis that are information theoretically feasible are compu-
tationally hard in the worst-case, including private synthetic data generation. This mirrors
the state of the field in a number of other areas, including machine learning and operations re-
search: fundamental problems are hard in the worst case. But in the case of machine learning
and operations research, this has not impeded practical progress, because despite worst-case
hardness, we have developed an extraordinarily powerful suite of optimization heuristics for
problems like empirical risk minimization, SAT solving, and integer program solving. Can we
leverage these powerful heuristics for hard problems in private data analysis? The challenge
is that differential privacy is not something that can be established empirically, and must be
proven in the worst case — even though the heuristics that we wish to leverage have no worst-
case guarantees. We call algorithms that are computationally efficient granting access to a
heuristic optimization oracle, but which are differentially private even in the worst case oracle
efficient. In [GGH+16], we developed the first oracle-efficient algorithm for the problem of syn-
thetic data generation consistent with 3-way marginals. More recently, we substantially gener-
alized this paradigm [NRW19], giving oracle efficient algorithms for generating synthetic data
for every family of queries that has a combinatorial structure called a “universal identifica-
tion set”, which includes full d-way marginals, and a generic method for converting algorithms
that are only private assuming the success of the heuristic to algorithms that are private in
the worst case. We also extended a classical technique called “objective perturbation” to be
able to solve non-convex ERM problems in an oracle efficient manner [NRVW19].

4. How and when can the definition of differential privacy be relaxed in a princi-
pled manner? Despite the remarkable success of differential privacy, there are settings in
which the definition is either too strong to be compatible with certain kinds of tasks, or mis-
parameterized to tightly express the desired privacy guarantees. For example, consider the
problem of using private preference data to match people to the items they desire: this plainly
cannot be solved (non-trivially) subject to differential privacy because the item desired by an
individual is both the secret they wish to keep private, and the thing that must be included in
a high quality matching. But problems like this exhibit special structure, in that not only the
inputs, but also the outputs to the problem are distributed amongst the interested parties. In
this setting, we defined joint differential privacy [KPRU14], which informally guarantees for
each individual i, that they have differential privacy against the coalition of all other individu-
als j 6= i, so long as the message sent to individual i (e.g. the good they are matched to) remains
secret. We have shown that matching and allocation problems [HHR+16], separable convex
programs [HHRW16], stable matching problems [KMRW15], equilibrium computation prob-
lems [KPRU14, RR14, CKRW15], and optimal flow and pricing problems [RRUW15] can all be
solved subject to joint differential privacy, although they cannot be solved with the traditional
notion of differential privacy. We have also shown that there are other natural problems (ex-
change problems) that cannot be solved subject to joint differential privacy, but can be solved
under what we call marginal differential privacy — which requires only privacy from each
individual j 6= i in isolation, not coalitions of such individuals [KMRR18]. Beyond this family
of relaxations, we have considered problems motivated by national security use-cases in which
guarantees of privacy are only to be granted to most citizens (not, e.g. the people who might
be the explicit target of an intelligence investigation) [KRWY16], in contrast to the standard
guarantee which must be applied to all individuals equally. We have also considered a re-
parameterized family of differential-privacy like definitions, using the language of hypothesis
testing, which (unlike differential privacy) is able to tightly track the guarantees of differential
privacy under composition, and which has a number of other nice analytic properties [DRS19].

We have also developed a number of applications of differential privacy to other areas, includ-
ing game theory and mechanism design, and robust data analysis, which we discuss in subse-
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quent sections. Finally, I have had an ongoing and fruitful collaboration with Benjamin Pierce,
Justin Hsu, Andreas Haeberlen, and colleagues developing programming languages able to certify
the differential privacy (and related) properties of programs that can be expressed within them
[BGA+15, BGA+16, WCHRP17, ZRH+19].

Algorithmic Fairness: In the last decade, machine learning has made the transition from
a tool generally used for making low stakes decisions (like spam filtering and targeted advertis-
ing) whose accuracy only matters in aggregate, to a tool used to make high stakes decisions about
peoples lives, including in lending, hiring, and criminal sentencing. And anecdotes about deployed
algorithms systematically exacerbating inequality are now commonplace: Julia Angwin’s team at
Propublica discovered that the COMPAS recidivism prediction tool used as part of inmate parole
decisions in Broward County Florida had a substantially higher false positive rate on African Amer-
icans compared to the general population. An automated resume screening tool developed at Ama-
zon was found to downweight resume’s containing the word “women”, as in e.g. “Women’s chess
team”. The algorithms used to automatically assign credit limits used by the Apple Card are sus-
pected of systematic gender bias. The examples are so abundant that we now expect unconstrained
error minimization to result in models that systematically make a disproportionate number of their
errors on some structured population of people.

Figure 1: “Fair”?

So what should we do about it? Despite the volume and velocity of
recent research on this topic, there is little agreement. The state of the
art is roughly where the study of data privacy was 20 years ago, and
in my view we have yet to find the “right” definitions. Because of this,
my work in the area has been very much focused on definitions, and my
main research thrust has been to try and find definitions that simultan-
iously offer semantic guarantees to individuals, while being actionable
— i.e. algorithmically and statistically satisfiable without the need to
make heroic and unjustified assumptions about the data.

The most popular family of fairness definitions are what I call “statis-
tical” definitions of fairness. At a high level, the statistical approach to
fairness follows this template: partition the world into a small number of
protected groups (often broken down by race or gender), pick some statis-
tic of a classifier (false positive and negative rates have become popular),
and then ask that this statistic be approximately equalized across the protected groups. This is an
attractive approach in large part because it is immediately actionable: verifying statistical fairness
requires only estimating a small number of averages, and although their are interesting compu-
tational challenges involved in optimizing subject to these constraints, there are no fundamental
obstacles. But this approach to fairness promises essentially nothing to individuals, because the
constraints bind only over coarse averages. Consider the simple goal of (say) selecting individuals to
approve for a loan, with the idea that to be “fair” by both gender (Male and Female) and color (Blue
and Green) we should equalize the loan approval rate across both axes. A solution accomplishing
this is pictured in Figure 1: but this is cold comfort to a green man, who will be denied a loan
with certainty. This is a cartoon, but similar effects emerge in real data — what we call “Fairness
Gerrymandering” [KNRW18].

A major thrust of my research in this area has been to come up with actionable individual notions
of fairness. Individual fairness constraints — first proposed by [DHP+12] — are constraints that
bind on individuals, and hence provide semantic guarantees to particular people. But the initial
proposal — informally that “similar individuals be treated similarly” has been difficult to realize in
part because it pre-supposes the existence of a “task-specific similarity metric” that seems difficult
to define.

In our first fairness paper [JKMR16] and our subsequent elaborations [KRW17, JJK+17, JKM+18]
we propose that in many problems, there is already a notion of “merit” built into the model: namely,
the unknown labels that the algorithm is trying to predict. This suggests a variant of the original
constraint proposed by [DHP+12], that informally translates into “no individual should be prefer-
entially favored over any other except on the basis of true qualification”. We called this constraint
“weakly meritocratic fairness”, and showed that it could be non-trivially achieved in bandit learning
problems (both simple and contextual) [JKMR16, JKM+18] and selection problems [KRW17], and
that it could be extended to take into account long-term effects in the framework of reinforcement
learning [JJK+17]. A weakness of this approach, however, is that it takes the labels very seriously
as a measure of “merit”, which is not appropriate in many situations, and often requires strong
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assumptions on the relationship between features and labels.
We then turned our attention to fairness constraints that could be achieved without any as-

sumptions at all. A natural reaction to the example of the failure of statistical notions of fairness in
Figure 1 is to suggest that we should simply have specified more groups to be protected. But which
ones? If we specify all possible groups, no learning is possible without overfitting. It turns out that
this statistical problem can be overcome by asking for statistical fairness over an infinite collection
of groups, so long as that collection of groups is “simple” (has bounded VC-dimension). Optimizing
subject to this constraint becomes non-trivial (indeed, it is not even clear how to efficiently check
whether a fixed classifier satisfies this notion), but we were able to show that it is efficiently re-
ducible to the problem of unconstrained learning by giving an oracle efficient algorithm [KNRW18]
and conducting a series of experiments on real data [KNRW19].

The above proposal is practical and was well received, but in the end only mitigates, but does not
eliminate, the “fairness gerrymandering” problem. This is because it does not ultimately abandon
the statistical approach to fairness. More recently, we identified a way to offer truly individual-level
guarantees without making assumptions about the data, in the special case in which individuals
are subject not just to one, but to many classification tasks of similar stakes (think of targeted
advertising as a key example). The constraint that we call “average individual fairness” informally
asks that false positive rates (or any other popular measure of statistical fairness) be equalized —
not across groups, but across individuals [KRSM19]. This is possible because in this setting we
can redefine rate to refer to an expectation over a distribution of classification tasks, for a fixed
individual. In this setting, we are also able to give oracle efficient algorithms, as well as novel
generalization guarantees that hold not just over the distribution over individuals (as is standard),
but also over the distribution of problems [KRSM19].

Another ongoing line of work attempts to satisfy the original notion of individual fairness due to
[DHP+12] in the absence of an explicitly specified “fairness metric”. In [GJKR18], we assume that
there is a human being who cannot explicitly enunciate a metric, but who can make judgements of
similarity that are implicitly consistent with some metric. We show that under the assumption that
the metric has a simple form, there is an efficient algorithm that obtains optimal regret in contextual
bandit problems while satisfying the implicit fairness constraint. In [JKN+19] we remove all of the
assumptions from [GJKR18] about the form of the human beings’ judgements (which no longer need
to be consistent with any metric, let alone a simple one, and no longer even need to be consistent
with one another, which allows for multiple human judges) and give an oracle efficient algorithm
for optimally trading off classification accuracy with the frequency with which the algorithm makes
decisions that violate the human beings’ subjective notion of fairness.

I also have worked on (and have an ongoing interest in) different notions of fairness in settings
that go beyond classification, which have been understudied in the literature. This includes ap-
plying statistical notions of fairness to online learning settings with censored feedback [BLR+19],
in allocation problems with finite supply [EJJ+19], in the presence of additional constraints (like
differential privacy) [JKM+19], and “unfairness” that can arise because of the need to explore in
bandit learning settings, and situations in which this tension can be avoided [KMR+18]. Finally,
in addition to some expository work [CR18, BHJ+18, KR19], I have a line of work employing tools
from game theory to understand fairness related problems — I discuss this in a subsequent section.

Robust Data Analysis: Large swaths of the social science literature are now in upheaval
due to a replicability crises: a distressingly large number of published papers purporting to find
statistically significant findings fail to replicate when data analyses are repeated on new data sets.
This has in large part been blamed on “p-hacking” and “researcher degrees of freedom”, which
broadly refers to the freedom that researchers have in choosing which analyses to perform on what
variables, often after examining the data itself. This kind of “adaptive” data analysis invalidates
classical means of correcting for multiple hypothesis testing and guaranteeing statistical validity,
informally because one must in principle correct for all analyses that might have been performed
had the results come out differently — which is essentially impossible when human researchers are
making decisions on the fly.

My collaborators and I discovered a remarkable connection between statistical validity in adap-
tive data analysis and differential privacy several years ago, in a paper that we published in Science
[DFH+15c]. In a nutshell, the theory we developed over a series of papers [DFH+15c, DFH+15b,
DFH+15a, DFH+17] guarantees that analyses that were conducted with the protections of differ-
ential privacy, and that are accurate with respect to the data sample on hand, are guaranteed also
to be accurate on the data distribution from which the dataset was drawn. In other words, differen-
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tially private analyses cannot overfit, and are immune from p-hacking. This was surprising at the
time, but is natural in retrospect: the goal of private data analysis is to derive generalizable insights
about the underlying data distribution, while explicitly avoiding being sensitive to the particulars
of the dataset on hand: a goal perfectly aligned with generalizable data analysis. The power of this
approach lies in the fact that differential privacy allows for a broad range of data analyses, which
can be composed adaptively, allowing researchers to interactively explore data while avoiding the
dangers of p-hacking.

Our initial paper and subsequent follow-up work provided an “in-principle” possibility result, in
that it gave a theorem which was remarkable in its asymptotic performance — but one that was lim-
ited in the analyses it applied to, and didn’t beat even naive baselines on realistic dataset sizes. My
work since then has focused on developing the theory further to bring it closer to practice. This has
included broadening the assumptions on the data analyses to which transfer theorems apply (be-
yond differential privacy) [CLN+16], broadening the class of analyses for which differential privacy
guarantees adaptive generalization (all the way to arbitrary hypothesis testing) [RRST16], general-
izing the kinds of adaptivity that differential privacy provably protects against (from adaptive query
selection to adaptive data gathering) [NR18], and giving empirical procedures that can guarantee
provable data-dependent bounds on generalization performance that can be substantially tighter
then the best possible worst-case bounds [RRS+19].

Most recently, we came up with a new proof of the basic “transfer theorem” connecting differen-
tial privacy to generalization, which underlies what has come to be a small research area, which
improves by several orders of magnitude on the concrete worst-case bounds, making them plausibly
useful on reasonable dataset sizes [JLN+20]. The new proof provides a fresh perspective through
which to study the effects of differential privacy on data analysis, which I am optimistic will be
useful for future work. Briefly, it observes that the dataset can always be viewed as being freshly
sampled from the conditional data distribution, conditioned on the transcript of the analyses that
have been performed so far, after analysis has concluded — and then shows that differential privacy
guarantees that this conditional distribution is close to the original data distribution. This reverses
the order of events (in actuality, first the data is sampled, and then analyses are conducted), putting
them back into the standard regime of non-adaptive data analysis.

Game Theoretic Reasoning: The most basic assumption in traditional machine learning is
that the environment in which an algorithm is trained is identical to the environment in which it
will act — and in particular, that both the distribution on individual features, and the relationship
between features and labels can be relied on to be the same in both training and deployment. This is
the basis of the generalization guarantees that rationalize the entire endeavor — but is also plainly
false in settings in which the data provided to the algorithm originates from human decision mak-
ing. Human beings are rational and self interested agents, and change their behavior when doing
so is beneficial to their own interests. These effects could often be safely ignored when deployed al-
gorithms were making mostly obscure or inconsequential decisions that didn’t merit much human
attention — but they come to the fore as we start using algorithms to make decisions that are highly
consequential to people. It is therefore important to be able to 1) predict the outcomes that will re-
sult from the interaction of large numbers of self interested agents in the presence of particular
incentives, and 2) design algorithms that encode incentives that will result in the outcomes that we
want.

My early work in game theory focused on question 1: what kinds of outcomes can we reliably pre-
dict when self interested agents interact, given that we expect them to be computationally bounded,
and traditional notions of game theoretic equilibrium (like Nash equilibrium) can be hard to com-
pute? Early on, we showed that even under the mild assumption that individuals acted according to
learning dynamics that have “low regret”, it is possible to make strong predictions about the welfare
of the resulting outcome [BHLR08, Rot08], which could sometimes be refined under small devia-
tions from rationality [CLPR08]. And although I have continued to have an interest in problems in
equilibrium prediction and computation [RBKM10, GR16] and other basic problems in game the-
ory and auction design [CLPR10, GRST10, DIR14, BBR15], the main thrust of my research in game
theory has been at the interface of privacy, learning theory, and fairness.

Game Theory and Machine Learning: The standard assumption in learning theory is that
feature/label pairs are drawn from a static distribution that is the same during training and de-
ployment, and that is invariant to the classifier that the learner chooses. But the data that we
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train on is often generated by rational decision-makers in direct response to incentives. Consider,
for example, the problem of predicting a customer’s purchasing decisions given prices. If the prices
are themselves drawn from a distribution, then this is not in principle different in kind from stan-
dard machine learning problems with a high dimensional label space. Yet it already introduces new
complexities, because even when the customers have simple (e.g. linear) utility functions, the labels
(i.e. bundles of purchased goods) we are trying to predict are complicated: they are the result of
solving a constrained optimization problem. Beigman and Vohra [BV06] defined this problem and
called it “learning from revealed preferences”, and gave several information theoretic results. In
[ZR12] we began the study of efficiently learning from revealed preferences, and gave the first com-
putationally efficient learning algorithms for customers with linear utility functions. In [JRRW16],
we gave algorithms for the substantially more general problem of learning solutions to arbitrary
data-parameterized linear programs with unknown objective functions. Then, in [ACD+15], we ex-
tended this work to the problem of dynamically setting prices in an online manner so as to maximize
profit, when the only feedback to the algorithm remains the “revealed preferences” of the customers
— i.e. the bundles that they purchase in response to prices. This now becomes a learning problem
in which the data distribution changes in response to the choices of the algorithm. In [RUW16]
and [RSUW17], we substantially generalized the class of utility functions (beyond linear) for which
we could efficiently solve this high dimensional dynamic pricing problem, by giving a two-stage
procedure that was able to employ tools from convex optimization and convex analysis, despite the
non-convex nature of the problem. In [DRS+18], we extended this “revealed preferences” approach
to learning to the “strategic classification” problem that had been earlier introduced by [HMPW16].
The strategic classification problem studies a more standard binary classification problem, in which
the individuals to be classified have preferences over the label they receive, and some ability to ma-
nipulate their features (think of spam filters as the canonical example). The goal is to deploy the
classifier that maximizes accuracy after individuals adapt their behavior to the deployed classifier,
or in other words, to compute an optimal stackelberg equilibrium. Prior work had studied this prob-
lem in the complete information setting — i.e. when the incentives and abilities of the agents to
be classified were entirely known during the machine learning training process. We studied the
problem in the revealed preferences setting, in which individuals with unknown incentives drawn
from a fixed but unknown distribution must be classified in an online manner, and the only feedback
received is their revealed preferences — i.e. their behavior in response to the deployed classifiers.

Game Theory and Privacy There are two ways in which the study of privacy interacts with
game theory. The first is more obvious: the deployment of a privacy technology changes peoples
incentives and costs for sharing data, and game theoretic reasoning is the right tool with which to
capture these endogenous effects. That is, we can use game theory as a tool to study privacy. But
it turns out that we can also use differential privacy as an algorithmic tool to solve game theoretic
problems! Differential privacy is a measure of algorithmic robustness to unilateral changes in indi-
vidual reports, which makes it cleanly map onto game theoretic notions of stability and equilibrium.
I have worked extensively on both aspects of this connection, which Mallesh Pai and I surveyed in
[PR13].

Game Theory for Privacy The differential privacy literature traditionally treats the dataset
as a static object, already collected. But where does it come from, and how should the privacy
parameter be chosen? A key property of differential privacy is that it lessens the individual costs
for participation in a study, and therefore should make it easier to collect data. We can therefore
view the process of collecting data — compensating people for their participation — and setting
the privacy parameter together, as an economic problem. We originally formulated this problem as
follows [GR13]: individuals own their own data points, and have unknown costs (parameterized by
the privacy parameter ε) for allowing their data to be used in a differentially private computation. A
data analyst wishes to purchase access to data so as to estimate some statistic of the population: she
either wants to minimize the error of the statistic given a budget constraint, or wants to minimize
cost given a fixed accuracy constraint. Note that here the data analyst has no explicit utility for
privacy except insofar as it makes it cheaper to gather data. We gave optimal, truthful auctions
solving both problems when the unknown individual costs for data usage did not themselves need to
be kept private, and broad impossibility results when they did. Subsequently we extended this work
in a number of ways [RS12, LR12, GLRS14, CLR+15], and also considered more centralized methods
to use economic reasoning (attempting to maximize social welfare) to select a privacy parameter
[HGH+14].
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One weakness of the proceeding line of work is that we did not model why people had costs
associated with the use of their data, we simply assumed in the model that they did. In [CLPR16]
we studied a two-stage game in which individuals had no intrinsic value for privacy of their actions
in the first round, except insofar as it effected their equilibrium utility in the second round. In this
model, we were able to study the equilibrium effects of introducing a differentially private channel
to information flow between the first and second round, and modifying the privacy parameter. We
found counterintuitively that sometimes increasing the level of differential privacy could actually
result in more information being revealed about players, and lower utility — because of the ways in
which the stronger privacy protections influence individual behavior.

Privacy for Game Theory More surprisingly, as was first observed by McSherry and Talwar
[MT07], differential privacy can be used as a tool to solve purely game theoretic problems, in which
privacy is not an explicit goal. This is because differential privacy offers stability in the face of uni-
lateral deviations by individual agents, which is the same kind of stability that equilibrium concepts
like dominant strategy and Nash equilibria are based on. The original observation by [MT07] was
used to design approximately dominant strategy truthful auctions, using the fact that differentially
private selection rules automatically imply approximate dominant strategy truthfulness, because
misreporting ones true valuation function can only result in a small change in the distribution over
the selected outcome, and therefore at most a small increase in expected utility. But a substantial
drawback of this kind of application of differential privacy is that it makes everything (not just truth-
ful reporting) an approximate dominant strategy equilibrium, because it just de-couples the selected
outcome from each individual’s report. Our introduction of joint differential privacy in [KPRU14]
addresses this problem: under joint differential privacy, the outcome relevant to agent i can depend
arbitrarily on agent i’s own report, but must be differentially private in the reports of others. We
showed how to use jointly differentially private mechanisms in combination with traditional tech-
niques from mechanism design to yield algorithms which make truthful reporting an approximately
dominant strategy, while not making everything else an approximately dominant strategy as a side
effect. We have shown how to solve a number of interesting game theoretic problems using the
tools of joint differential privacy including equilibrium selection [KPRU14, RR14, CKRW15], truth-
ful and optimal congestion pricing [RRUW15], school-optimal and approximately student truthful
stable matchings [KMRW15] (this is provably impossible if one does not allow any relaxation to
truthfulness), and truthful item pricings in combinatorial auctions [HHR+16, HHRW16]. We also
showed how imposing differential privacy on the signal structure of a repeated game causes the set
of equilibria of the repeated game to collapse to the set of approximate equilibria of the one-shot
game, which can dramatically improve the price of anarchy [PRU16].

Game Theory and Fairness: The majority of work in “algorithmic fairness” has studied algo-
rithms as closed systems, under the assumptions that:

1. The party that desires “fairness” either is the algorithm designer herself, or else has complete
control over the algorithm designer, and so can impose fairness constraints by fiat, and

2. That a change in the algorithm has no downstream or upstream effects on the decision-making
pipeline within which the algorithm is embedded.

But these are idealized assumptions that are rarely true in practice. Figuring out how to robustly
reason about realistic situations without these simplifying assumptions is difficult, and likely a
decades-long research agenda. However, we have begun to make some early inroads. In [KKM+17],
we consider the case in which “fairness” is desired by a government agency who does not have the
power to compel action by a third party (say, a lender), but does have the power to provide subsidies.
In a model in which the government agency has only limited knowledge of the data available to the
third party, we show how to provide minimum cost subsidies to a purely profit-minded agent so as
to guarantee “weakly meritocratic fairness” at all but a bounded number of rounds.

In [KRZ19], we study how one might encourage various fairness desiderata while taking into
account the “downstream” effects of the deployed algorithm. In our model, we imagine that we
are in control of the admissions and grading policies of a school. However, there is a downstream
employer who makes purely (Bayesian) rational decisions, taking into account the policies we fix.
We show both positive and negative results in this model about the extent to which it is possible
to enforce fairness constraints on the entire employment pipeline, informally representing either
the constraint that “similarly talented students before the school admissions decision should have
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the same probability of making it all the way through the pipeline and obtaining a job at the end,
regardless of which group they come from”, and “the employer should have no incentive to make
decisions as a function of group membership”.

Finally, in [JKL+20], we study the “upstream” effects of deployed algorithms — i.e. how they
can result in changes in human behavior that in turn effects the data that the algorithm is acting
on. We take criminal justice as a motivating application, because this is a domain in which there
has been much debate about the “right” notion of fairness we might want algorithms to satisfy. We
study the question in a game-theoretic model, in which individual decisions about whether or not
to commit crimes (and hence overall crime rates in different groups) are the rational response to
the incentives set up by the criminal justice system and the outside opportunities available to the
individual. We model different populations as differing only in their access to outside opportunities
— which is enough to result in the differing base crime rates in different populations that are known
to make various debated notions of fairness incomparable with one another [KMR17]. We then
consider what the optimal policy would be (absent any explicit fairness desiderata) if the goal of
the policy designer was to minimize the overall crime rate, across all groups. What we find is
that (in contrast to policies optimized for predictive accuracy in static models), the optimal policy
intentionally avoids taking group information into account, and ends up satisfying the popular
notion of fairness that asks for equalized false positive and negative rates across groups — and
pointedly does not equalize positive predictive value across groups, which is an alternative fairness
notion that cannot be simultaneously guaranteed.

Going Forward: In the near term, I am excited to continue to pursue basic research in dif-
ferential privacy, algorithmic fairness, game theory, and learning theory, and am excited about the
prospects of expanding the applications of differential privacy to other areas. Many of the funda-
mental questions in data privacy (especially the extent to which it interacts with computational
efficiency) remain unanswered, and we still only have a preliminary understanding of how markets
for private data should function – and little understanding of how privacy behaves in equilibrium,
when users change their behavior as a function of the mechanism proposed. Similarly, algorithmic
work in “fairness” is still in a nescient stage — having yet to find the right definitions. Moreover,
studying the upstream and downstream effects of fairness-motivated interventions has hardly be-
gun, and I view this as an important research direction for the next several years. In the longer
term, I am interested in exploring connections between differential privacy and other fields: al-
gorithmic stability is an important phenomenon in many areas, and I believe it will continue to
have important applications to statistics and machine learning. Much more work needs to be done
to apply the connection we have discovered to core statistical questions. In the past decade, the
differential privacy literature has developed a sophisticated toolkit for reasoning about a strong
algorithmic stability constraint, and I expect that this toolkit will continue find much broader use.
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