The Scope of Multicalibration: Characterizing Multicalibration via Property Elicitation

Georgy Noarov, Aaron Roth

We make a connection between multicalibration and property elicitation and show that (under mild technical conditions) it is possible to produce a multicalibrated predictor for a continuous scalar distributional property G if and only if G is elicitable. On the negative side, we show that for non-elicitable continuous properties there exist simple data distributions on which even the true distributional predictor is not calibrated. On the positive side, for elicitable G, we give simple canonical algorithms for the batch and the online adversarial setting, that learn a G-multicalibrated predictor. This generalizes past work on multicalibrated means and quantiles, and in fact strengthens existing online quantile multicalibration results. To further counter-weigh our negative result, we show that if a property G1 is not elicitable by itself, but is elicitable conditionally on another elicitable property G0, then there is a canonical algorithm that jointly multicalibrates G1 and G0; this generalizes past work on mean-moment multicalibration. Finally, as applications of our theory, we provide novel algorithmic and impossibility results for fair (multicalibrated) risk assessment.