
CIS 700 Differential Privacy in Game Theory and Mechanism Design February 28, 2014

Lecture 7
Lecturer: Jamie Morgenstern Scribe: Jamie Morgenstern

Guest Lecture: Privacy-Preserving Public Information for Sequential Games

1 Introduction

Suppose a collection of strategic agents are trying to make some decision. For example, a collection of
investment banks are trying to decide how to invest their money. The payoffs of the players will depend
upon the actions of the other players; as more people choose a particular investment, the value to investers
who are “later to the game” will be smaller than the value for earlier investors. If players make these
decisions in some order, and have perfect information about earlier players’ decisions, one can analyze
the social welfare of various strategies or equilibrium concepts. In particular, if the utility of a player
does not depend on later players, only upon the decisions made by earlier players, the greedy strategy
is a dominant strategy (and the only undominated strategy). On the other hand, banks may not want
their investment decisions to be public knowledge for their competition, which motivates looking into
what happens if players are only provided approximate, private information regarding previous players’
actions. In our work, we ask how well different strategies perform with respect to this approximate
information. In particular, today I’ll talk about how one can show that players playing greedily respect
to approximate information gives social welfare whose ratio with the social wefare of OPT is bounded.

I’ll start by describe a classic result from online optimization, and show how it extends to the
setting where the information provided to distributed optimizers is only approximate. I’ll then show an
improved privacy-preserving counter scheme which gives better approximation guarantees in our settings,
by combining additive and multiplicative approximation guarantees.

2 Max-weight matching: Greedy is a 2-approximation

Suppose n nodes on side U of a bipartite graph arrive online. These nodes arrive with unweighted edges
to some subset of the m weighted vertices on the V side of the bipartite graph. Let the weight of a
perfect matching be the sum of the weighted vertices in V who are matched to a vertex in U .

There is some optimal matching in the offline optimization setting: when all nodes and their respective
edges are visible, there is a well-defined largest weight any perfect matching can achieve.

There is a well-known argument showing that the online greedy matching algorithm 2-approximates
the maximum weight matching.

Theorem 1 ([5]) The online matching algorithm which matches vertices in U greedily with weighted
vertices in V is a 2-approximation to the optimal matching.

Proof Consider any vertex ui ∈ U which greedy matches to some v ∈ V where v ̸= vi, where vi is
the vertex ui is matched to in OPT. ui is matched to v for one of two reasons: either vi was already
matched previously, or w(v) > w(vi).

If vi was matched previously, to some vertex uj , charge w(vi) to the edge (uj , vi) (to the edge which
caused ui to pick a different match). If w(v) > w(vi), then charge w(vi) to the edge (ui, v): charge the
edge “responsible” for the deviation away from the edge (ui, vi) in OPT.

How much weight can be charged to a given edge in the greedy matching? An edge (ui, vj) can be
charged for one of two reasons, either because uj didn’t have vj available, and they were charged w(vj),
or by ui with weight w(vi) < w(vj). Either case can happen at most once for a given edge (the edge
can only take the endpoint vj away from one vertex, and only replaces the edge (ui, vi) for i), and either
case charges at most w(vj). Thus, each edge (ui, vj) in the greedy matching is charged at most twice
w(vj), and so Greedy ≥ 1

2OPT .

7-1

This proof can easily be extended to the approximately greedy algorithm: suppose vertices ui which
arrive online choose to match with a vj such that w(vj) ≥ 1

αw(gj), where gj is the greedy choice for
player j. Call the set of strategies which satisfy this constraint α-approximately greedy. Then, we have
the following theorem.
Remark This result actually extends to players being allowed to pick subsets of their edges, so long
as the set’s they are allowed to pick are downward closed (e.g., if X is an allowed set of neighbors for a
node, then X ′ ⊆ X is also allowed), losing another factor of 2 in the approximation. Roughly speaking,
either half of the utility from a set X was already taken by some other nodes, or half the utility still
remains for X. The union of these facts implies a 4-approximation.

Remark This actually holds for the continuous version of this problem, where nodes can take nondis-
crete pieces of nodes on the other side of the graph.

3 Approximate information: enough for online vertex-weighted
matching?

Notice that, with no information, “greedy behavior” with respect to initial values can do quite poorly
(there can be Ω(n) ratio between OPT and this behavior). We ask what one can do with private
information.

We identify the nodes on the right-hand side of the bipartite graph with the investment opportunities,
or resources, from the introduction. Suppose that a given resource r has kr “copies”, that is, the first kr
people to select r get utility vr, and no other players get utility from choosing r. In this section, we prove
that approximate information about how many people have selected a given resource or investment is
enough for players to approximate OPT with greedy behavior, for arbitrary vr, kr. In fact, all of the
results in this section actually apply in much more general settings, where each resource r has diminishing
value for each subsequent “copy” of the resource chosen by a player (see the full paper for more details).

It is interesting to note that, while the counts are approximate, the value each individual player is
getting isn’t well-approximated. That is, an individual might have an unbounded ratio between her
perceived utility from picking resource r (if no more copies exist but the counters say there are still
copies available). The welfare approximation is only true when summed over all players’ utilities.

Before presenting the theorem for this section, we need a definition of approximate counters in the
continual observation setting. We will say a mechanism s provides an (α, β, γ)-approximate counter
vector with respect to an input stream a = (a1, . . . ,an) where ai = (ai1, . . . , a

i
m) if, with probability

1− γ, for all i, for all r, it is the case that

1

α
xi
r − β ≤ yir ≤ αxi

r + β

where xi
r

∑i−1
j=1 a

i
r is the partial sum for resource r. That is, the guarantee is that all the approximate

partial sums are correct up to an additive factor β and a multiplicative factor α within the true partial
sum values.

The main theorem we will prove for the simpler case of kr identical copies of r each with value vr, is
the following.

Theorem 2 Suppose y is (α, β, γ)-approximate counter vector which only underestimates xi
r for all i, r.

Then, the social welfare resulting from players play greedily with respect to y in the online vertex-weighted
matching setting is at least an X-fraction of the social welfare of OPT , with probability 1− γ.

We make the following claim before proving Theorem 2.

7-2

Claim 1 Suppose k players select r according to greedy behaviour with respect to an (α, β, 0)-approximate
counter vector and expect to get nonzero utility. Then,

k

min(kr, k)
=

Perceived utility from r

Actual welfare from r
≤ α(1 + β)

Now, with Claim 1 in hand, we prove Theorem 2. Proof [Proof of Theorem 2]
The counters are accurate with probability 1 − γ, so with that probability Claim 1 holds. Assume

we are in that case.
Let SW (Greedycounters) denote the social welfare of players playing greedily with respect to the

counter values. Let PSW (Greedycounters) denote the perceived social welfare of players playing greedily
with respec to the counters (e.g, if sir < kr, then player i choosing resource r has perceived utility vr).
Let PSW (OPTcounters) denote the optimal allocation if the counters’ values were accurate, (e.g. there
are actually kr + number of people who see sir < kr when xi

r ≥ kr copies of resource r). Finally, let
SW (OPTReal) denote the social welfare of the optimal solution with kr copies of resource r. Then, we
have

SW (Greedycounters) ≥
PSW (Greedycounters)

α(1 + β)
≥ PSW (OPTcounters)

2α(1 + β)
≥ SW (OPTReal)

2α(1 + β)

The first inequality comes from Claim 1, the second from the fact that greedy is a 2-approx to OPT
on any graph, and the third comes from from the fact that the counters are undercounting (e.g., that
there are weakly more copies of resource r in the perceived graph than in the true graph), so OPTcounters

has more to choose between and thus a weakly larger optimum.

We still need to prove the claim we used in the previous proof. Proof [Proof of Claim 1]
Consider the k people who chose resource r. If kr ≥ k, then

k

min(kr, k)
=

k

k
= 1

Thus, the only interesting case is where kr < k. Now, if kr < k, we have

k

min(kr, k)
=

k

kr

and we need to bound this ratio. In particular, how large can xi
r be if yir < kr? We know that

kr ≥ yir ≥
1

α
xi
r − β

or, equivalently, that α(kr + β) ≥ xi
r. Thus,

k

kr
≤ α(kr + β)

kr
≤ α+ αβ

as desired.

7-3

4 A better Privacy-preserving mechanism

Theorem 2 motivates looking for counter schemes that can get slightly better additive approximations
at the expense of a small multiplicative loss in accuracy; the guarantees of the theorem degrade linearly
with respect to αβ. So, if α = O(1), then β = o(log2(n)) would give a better approximation guarantee
than the best-known counter mechanism (Chan et al or Dwork et al’s binary tree-sum protocol). Here,
we present a mechanism with improved additive guarentees at the expense of an (arbitrarily small)
multiplicative loss in accuracy.

Recall the basic counter problem: given a stream a = (a1, a2, ..., an) of numbers ai ∈ [0, 1], we wish
to release at every time step t the partial sum xt =

∑t
i=1 ai.

We require a generalization, where one maintains a vector of m counters. Each player’s update
contribution is now a vector ai ∈ [0, 1]m, with the constraint that ∥ai∥1 ≤ 1. That is, a player can add
non-negative values to all counters, but the total value of her updates is at most 1. The partial sums xt

then lie in (R+)m (with ℓ1 norm bounded by t).
Given an algorithmA, we define the output stream (s1, s2, ..., sn) = A(a) where si = A(t, a1, ..., ai−1).

The original works on differentially private counters [3, 2] concentrated on minimizing the additive error
of the estimated sums, that is, they sought to minimize ∥xt − st∥∞. Both papers gave a binary tree-
based mechanism, which we dub “TreeSum”, with additive error approximately (log2 n)/ϵ. Some of our
algorithms use TreeSum, and others use a new mechanism (FTSum, described below) which gets a better
additive error guarantee at the price of introducing a small multiplicative error. We capture a mixed
approximation guarantee as follows:

Definition 2 The algorithm A provides an (α, β, γ)-approximation to partial sums if for every (adap-
tively defined) sequence a ∈ ([0, 1]m)n, with probability at least 1 − γ over the coins of A, for all times
i ∈ [n] and counters r ∈ [m], the reported value xt,r satisfies:

1

α
· xi,r − β ≤ si,r ≤ α · xi,r + β .

Proofs of all the results in this section can be found in Appendix 5.

Lemma 3 For every m ∈ N and γ ∈ (0, 1): Running m independent copies of TreeSum [3, 2] is (ϵ, 0)-

differentially private and provides an (1, Ctree · (logn)(log(nm/γ))
ϵ , γ)-approximation to partial vector sums,

where Ctree > 0 is an absolute constant.

Even for m = 1, α = 1, this bound is slightly tighter than those in [2] and [3]; however, it follows
directly from the tail bound in [2].

Our new algorithm, FTSum (for Flag/Tree Sum), is described in Algorithm 1. For small m (m =
o(log(n))), it provides lower additive error at the expense of introducing an arbitrarily small constant
multiplicative error.

Lemma 4 For every m ∈ N, α > 1 and γ ∈ (0, 1), FTSum (Algorithm 1) is (ϵ, 0)-differentially private

and (α, Õα(
m log(n/γ)

ϵ), γ)-approximates partial sums (where Õa(·) hides polylogarithmic factors in its
argument, and treats α as constant).

FTSum proceeds in two phases. In the first phase, it increments the reported output value only
when the underlying counter value has increased significantly. Specifically, the mechanism outputs a
public signal, which we will call a “flag”, roughly when the true counter achieves the values logn,
α log n, α2 log n and so on, where α is the desired multiplicative approximation. The reported estimate
is updated each time a flag is raised (it starts at 0, and then increases to logn, α logn, etc). The privacy
analysis for this phase is based on the “sparse vector” technique of [4], which shows that the cost to
privacy is proportional to the number of times a flag is raised (but not the number of time steps between
flags).

7-4

When the value of the counter becomes large (about α log2 n
(α−1)ϵ), the algorithm switches to the second

phase and simply uses the TreeSum protocol, whose additive error (about log2 n
ϵ) is low enough to provide

an α multiplicative guarantee (without need for the extra space given by the additive approximation).
If the mechanism were to raise a flag exactly when the true counter achieved the values log n, α log n,

α2 log n, etc, then the mechanism would provide a (α, log n, 0) approximation during the first phase, and
a (α, 0, 0) approximation thereafter. The rigorous analysis is more complicated, since flags are raised
only near those thresholds.

Algorithm 1: FTSum — A Private Counter with Low Multiplicative Error

Input: Stream a = (a1, ..., an) ∈ ([0, 1]m)n, parameters m,n ∈ N, α > 1 and γ > 0
Output: Noisy partial sums s1, ..., sn ∈ Rm

k ← ⌈logα(α
α−1 · Ctree · log(nm/γ)

ϵ)⌉;
/* Ctree is the constant from Lemma 3 */

ϵ′ ← ϵ
2m(k+1) ;

for r = 1 to m do
flagr ← 0;
x0,r ← 0;
τr ← (log n) + Lap(2/ϵ′);

for i = 1 to n do
for r = 1 to m do

if flagr ≤ k then (First phase still in progress for counter r)
xi,r ← xi−1,r + ai,r;

˜xi,r ← xi,r + Lap(2
ϵ′);

if ˜xi,r > τr then (Raise a new flag for counter r)
flagr ← flagr + 1;

τr ← (log n) · αflagr + Lap(2/ϵ′);

Release si,r = (log n) · αflagr−1 ;

else (Second phase has been reached for counter r)
Release si,r = r-th counter output from TreeSum(a, ϵ/2));

Proposition 1 If A is (ϵ, δ)-private and (α, β, γ)-accurate, then one can modify A to obtain an algo-
rithm A′ with the same efficiency that is (ϵ, δ + γ)-private and (α, β, 0)-accurate.

Corollary 5 Algorithm 1 is an (ϵ, δ)-differentially private vector counter algorithm providing a

1. (1, O((logn)(log(nm/δ))
ϵ), 0)-approximation (using modified TreeSum); or

2. (α, Õα(
m logn log log(1/δ)

ϵ), 0)-approximation for any constant α > 1 (using FTSum).

Bibliographic Information The results from this lecture are from [1]

References

[1] Avrim Blum, Jamie Morgenstern, Ankit Sharma, and Adam Smith. Privacy-preserving public infor-
mation for sequential games. arXiv preprint arXiv:1402.4488, 2014.

[2] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Trans. Inf. Syst. Secur., 14(3):26, 2011.

7-5

[3] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under
continual observation. STOC ’10, pages 715–724. ACM, 2010.

[4] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In FOCS ’10, 2010.

[5] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In STOC ’90, pages 352–358, 1990.

[6] Aaron Roth. Cis 800/002, fall 2011: The algorithmic foundations of data privacy, 2011.

5 Analysis of Private Counters

Proof [of Lemma 3] We assume the reader is familiar with the TreeSum mechanism. The privacy of this
construction follows the same argument as for the original constructions. One can view m independent
copies of the TreeSum protocol as a single protocol where the Laplace mechanism is used to release the
entire vector of partial sums. Because the ℓ1-sensitivity of each partial sum is 1 (since ∥at∥ ≤ 1), the
amount of Laplace noise (per entry) needed to release the m-dimensional vector partial sums case is the
same as for a dimensional 1-dimensional counter.

To see why the approximation claims holds, we can apply Lemma 2.8 from [2] (a tail bound for sums
of independent Laplace random variables) with b1 = · · · = blogn = log n/ϵ, error probability δ = γ/mn,

ν =
(logn)

√
log(1/δ)

ϵ and λ = (logn)(log(1/δ)
ϵ , we get that each individual counter estimate st(j) has additive

error O((logn)(log(nm/γ))
ϵ) with probability at least 1−γ/(mn). Thus, all n·m estimates satisfy the bound

simultaneously with probability at least 1− γ.

Proof [of Lemma 4] We begin with the proof of privacy. The first phase of the protocol is ϵ/2-
differentially private because it is an instance of the “sparse vector” technique of [4] (see also [6, Lecture
20] for a self-contained exposition). The second phase of the protocol is ϵ/2-differentially private by the
privacy of TreeSum. Since differential privacy composes, the scheme as a whole is ϵ-differentially private.
Note that since we are proving (ϵ, 0)-differential privacy, it suffices to consider nonadaptive streams; the
adaptive privacy definition then follows [3].

We turn to proving the approximation guarantee. Note that the each of the Laplace noise variables
added in phase 1 of the algorithm (to compute ˜xt,r and τj) uses parameter 2/ϵ′. Taking a union bound
over the mn possible times that such noise is added, we see that with probability at least 1 − γ/2,

each of these random variables has absolute value at most O(log(mn/γ)
ϵ′ . Since 2

ϵ′ = O(mk
ϵ) and k =

O(log log(nmγ)+ log 1
ϵ), we get that each of these noise variables has absolute value Õα(

m log(mn/γ)
ϵ) with

probability all but γ/2. We denote this bound E1.
Thus, for each counter, the i-th flag is raised no earlier than when the value of the counter first exceeds

αi(log n)−E1, and no later than when the counter first exceeds αi(log n)+E1. The very first flag might
be raised when counter has value 0. In that case, the additive error of the estimate is logn, which is less
than E1. Hence, he mechanism’s estimates during the first phase provide an (α,E1, γ/2)-approximation
(as desired).

The flag that causes the algorithm to enter the second phase is supposed to be raised when the

counter takes the value A := αk(log n) ≥ α
α−1 · Ctree · log(nm/γ)

ϵ ; in fact, the counter could be as
small as A − E1. After that point, the additive error is due to the TreeSum protocol and is at most
B := Ctree · log(n) · log(nm/γ)/ϵ (with probability at least 1 − γ/2) by Lemma 3. The reported value
si,r thus satisfies

si,r ≥ xi,r −B =
1

α
xi,r + (1− 1

α
)xi,r −B︸ ︷︷ ︸

residual error

.

7-6

Since xi,r ≥ A − E1, the “residual error” in the equation above is at least (1 − 1
α)(A − E1) − B =

−(1− 1
α)E1 ≥ −E1. Thus, the second phase of the algorithm also provides (α,E1, γ/2)-approximation.

With probability 1− γ, both phases jointly provide a (α,E1, γ)-approximation, as desired.

.

7-7

