
CIS 700 Differential Privacy in Game Theory and Mechanism Design February 21, 2014

Lecture 6
Lecturer: Aaron Roth Scribe: Aaron Roth

Private Equilibrium Computation Yields Truthful Mediators (Part 2)

1 Introduction

Recall our goal from last class: we wanted to take a game that has nice properties when described as a
game of complete information, and then augment it with an extremely weak “mediator”, such that in
the new game, we can implement the equilibria of the original (complete information) game as simple
ex-post equilibria, which do not require players to know anything about each other’s types. Some brief
recapping is in order.

Suppose G is a game with action set A, type set T , and cost function ci(a) ≡ c(ti, a).

Definition 1 A mediator is given by an algorithm M : (T ∪ {⊥})n → (A ∪ {⊥})n mapping reported
types (or ⊥, which denotes declining to report any type) to suggested actions (or ⊥, which denotes not
suggesting any action).

Given a game G and a mediator M , we can define the game G augmented with mediator M , denoted
as GM , as follows. The new game has action space:

A′ = {(t′, f) : t′ ∈ T ∪ {⊥}, f : (A ∪ {⊥})→ A}

i.e. each player chooses both a type ti to report (possibly ⊥ if not participating), and a function f
specifying how to map the advice received by the mediator to an action a to play in the underlying game
G (Note that picking f equal to the identity function corresponds to following the advice of the mediator,
but the player can pick anything else, including a constant function which corresponds to completely
disregarding the advice. Note also that if a player reports t′ = ⊥ to the mediator, then it will return the
advice ⊥, and a player will then play the action f(⊥) ∈ A, which encodes the strategy he would have
used in the original game). The new game has the following cost function:

c′(ti, ((t
′
1, f1), . . . , (t′n, fn))) = Ea∼M(t′)[c(ti, f(a))]

which simply corresponds to their cost in the original game when they pick actions using the mediator
and their function f .

We wanted to implement “good behavior” as an ex-post equilibrium of GM . Recall that we defined
the “good behavior” strategy gi = (ti, id) where id is the identity function, which simply corresponds to
truthfully reporting one’s type, and then faithfully following the suggested action of the mediator.

We defined a variant of differential privacy:

Definition 2 (Joint Differential Privacy [KPRU14]) Let M : An → Bn. M satisfies ε-joint-
differential privacy if for every a ∈ An, for every i, for every a′i ∈ A, and for every S ⊆ Bn−1:

Pr[M(a)−i ∈ S] ≤ exp(ε) Pr[M(a′i, a−i)−i ∈ S]

and then proved our motivating theorem (here stated with the modification that the game has costs
bounded in [0, L]):

Theorem 3 ([RR13], based on [KPRU14]) Let G be any game with costs bounded in [0, L], and let
M be a mechanism satisfying ε-joint differential privacy such that on any set of reported types t′, M
outputs an η-approximate pure strategy Nash equilibrium of the complete information game induced by
t′. Then good behavior g = (g1, . . . , gn) is an η′-approximate ex-post equilibrium of GM for:

η′ = 2ε · L+ η.

6-1

In this class, we will fix an interesting class of games (congestion games), and show that for “large
congestion games”, we can compute approximate Nash equilibria under the constraint of joint-differential
privacy. This will instantiate Theorem 3 and hence give a setting in which we can implement Nash
equilibria of the complete information game ex-post using a weak mediator.

Informally, a large game is one in which the unilateral deviation of some player j 6= i can have only
a small effect on the cost of agent i. Note that if agent i changes his own action, his cost is allowed to
change drastically – his cost is merely insensitive to the actions of single other players.

Definition 4 Fix a game G with action set A and cost functions ci : An → R. Say that G is large with
sensitivity ∆G if for every pair of players i 6= j, every vector of actions a ∈ An and every deviation a′j
for player j:

|ci(a)− ci(a′j , a−j)| ≤ ∆G

We will be interested in large games in which ∆G is a diminishing quantity with the number of players
n.

2 Congestion Games

Consider the following natural example of a “large” game: every day, each of you wakes up at your home
in Philadelphia, and must choose a route to drive to work. In aggregate, everybody’s choices result in
traffic, which cause delays on each road as a function of how much they are used. Suppose that for each
road j, there is a delay function `j(x) = cj · xj + bj which maps the fraction of the population xj using
road j to a delay which is some linear function of its usage parameterized by constants cj and bj . Your
loss is your total delay on your way to work, which is simply the sum of the delays on the roads that
you drive on, given traffic.

This is a nice example of the kind of game we are going to be talking about for a couple of reasons.
First, it is large: although changing your own route can substantially change your delay, if some other
player makes a unilateral change in route, it can have only a small effect on your commute time. This
is because a single player can only change the fraction of players xj using a road j by 1/n, and so if
c = maxj cj represents an upper bound on the coefficients in the cost functions over all roads, and L
represents an upper bound on your longest route to work, then a single player can effect your delay by
at most c·L

n = O(1/n) for a fixed road network.
Second, it is an example of a congestion game, which we will define shortly. In particular, it is a

linear congestion game (because the cost functions are linear), for which Nash equilibrium in complete
information settings are known to be particularly nice. For one, pure strategy Nash equilibria exist in all
congestion games. For another, the worst pure strategy Nash equilibrium in linear congestion games has
social welfare that is only a factor of at most 2.5 worse than the optimal social welfare [CK05, AAE05]
(i.e. the price of anarchy is 2.5) – and so we have a good reason to want to implement them.

Definition 5 A congestion game is defined by:

1. A set of n players P and a typespace T .

2. A set of m facilities F .

3. A set of actions Ai for each type ti. Each action s ∈ Ai is a subset of facilities: s ⊆ F .

4. For each facility j ∈ F , a cost function `j : {0, 1 . . . , n} → R+ mapping the number of players
“using” facility j to a non-negative cost. For an action profile s = (s1, . . . , sn) write nj(s) = |{i :
j ∈ si}| to denote the number of players using facility j. The cost of an agent i is defined to be
the sum of the costs of facilities he is playing on:

ci =
∑
j∈si

`j(nj(s))

6-2

000

In the network routing example, F would be the set of edges in a graph representing a road network,
types ti would correspond to source/destination pairs si and di, and Ai would correspond to the set of
all paths between si and di in the graph.

An appealing property of congestion games is that they posses pure strategy Nash equilibria, which
are the inevitable result of a natural game dynamic (best response dynamics). Here, we will describe an
efficient algorithm for computing α-approximate pure strategy Nash equilibria in congestion games for
any α (which of course proves the existence of pure strategy Nash equilibria in congestion games).

Given an action profile s, write BRi(s) = arg mins′i∈Ai
ci(s

′
i, s−i) to denote player i’s best response.

BR(t = (t1, . . . , tn), α):

Let s ∈ A1 × . . . , An be an arbitrary game state.
while there exists a player i such that ci(s) ≥ ci(BRi(s), s−i) + α do

Let si ← BRi(s)
end while
Output s

This algorithm is extremely intuitive: it picks an arbitrary game state, and then repeatedly, if any
player is able to decrease her cost by at least α by making a best response, the algorithm allows her to
do so. It is immediate, therefore, that if the algorithm ever halts and outputs a game state s that s must
be an α-approximate Nash equilibrium: by definition, no player can decrease her cost by more than α
via a unilateral deviation, or else the algorithm would not have halted!

Theorem 6 If BR(t, α) halts and outputs s, then s is an α-approximate pure strategy Nash equilibrium
of the complete information game defined by t.

It remains to show that indeed, the algorithm always halts, and does so after a bounded number of
steps.

Theorem 7 Let c = maxj,k `j(k) be an upper bound on the cost on any facility. Then for any t,
BR(t, α) halts after at most T steps for:

T =
n ·m · c

α
= O

(n
α

)
Proof Define a potential function defined at every game state:

φ(s) =

m∑
j=1

nj(s)∑
k=1

`j(k)

Note that this potential function is not social welfare – it doesn’t have a clear semantic meaning. But
it has the following useful property: every time an agent unilaterally changes her action, she reduces
her cost by exactly the amount that she reduces the potential function. Consider agent i, who makes a
unilateral deviation from playing si to s′i. We have:

ci(si, s−i)− ci(s′i, s−i) =
∑

j∈si\s′i

`j(nj(s))−
∑

j∈s′i\si

`j(nj(s) + 1)

= φ(si, s−i)− φ(s′i, s−i)

Note that by definition of φ, we have that for all s, φ(s) ≥ 0, and also:

max
s∈A1×...×An

φ(s) ≤
m∑
j=1

nj(s) max
k

`j(k) ≤ n ·m · c

6-3

Finally, since every round that we do not halt, a single player decreases her cost by at least α (and hence
decreases φ by at least α), the algorithm can run for at most

T =
n ·m · c

α
= O

(n
α

)
many rounds.

Note that the algorithm is a bit underspecified (in terms of the order in which players make moves),
so for concreteness let us think about this variant:

BR(t = (t1, . . . , tn), α):

Let s ∈ A1 × . . . , An be an arbitrary game state.
while there exists a player i∗ such that ci∗(s) ≥ ci∗(BRi∗(s), s−i∗) + α do

for i from 1 to n do
if ci(s) ≥ ci(BRi(s), s−i) + α then

Let si ← BRi(s)
end if

end for
end while
Output s

With this variant, there is no ambiguity: players take turns in round robin order considering whether
they should make a best response move; they do if they have one that decreases their cost by at least α.

2.1 Making BR(t, α) Private

Ok – we have an algorithm that quickly computes approximate Nash equilibria in congestion games –
if we can modify it so that it is jointly differentially private, we are done. The following lemma, which
gives a simple way to prove joint differential privacy, will be instructive:

Lemma 8 (Billboard Lemma [HHR+14, RR13]) Let M : T n → O be an ε-differentially private
algorithm, and let f : T × O → A be an arbitrary function. Then the algorithm M ′ : T n → An which
computes o = M(t) and then outputs (f(t1, o), . . . , f(tn, o)) is ε-jointly differentially private.

Proof Fix any input t, player i, deviation t′i and S−i ∈ An−1. We have:

Pr
a−i∼M ′(t)

[a−i ∈ S−i] = Pr
o∼M(t)

[(f(tj), o)j 6=i ∈ S−i]

Define fj(o) = f(tj , o) and φ(j) = (fj(o))j 6=i. Note that φ is defined independently of i. Hence by the
fact (from last class) that post-processing preserves differential privacy, we know:

Pr
a−i∼M ′(t)

[a−i ∈ S−i] = Pr
a−i∼φ(M(t))

[a−i ∈ S−i]

≤ exp(ε) Pr
a−i∼φ(M(t′i,t−i))

[a−i ∈ S−i]

which is what we wanted.

Lets consider what this lemma means. What it says is if we can compute some piece of information
with a differentially private algorithm and post it on a “billboard”, so that every player, looking at the
billboard, and knowing their own type, can figure out what action to play, then we in fact will have a
jointly differentially private algorithm mapping types to actions.

So lets consider what information we need to release to run BR(t, α) in a way such that at the end,
players know what action they should be playing in s. We note that:

6-4

1. In rounds, players take turns making best responses. In the output equilibrium s, each player is
simply playing the most recent move he made during the run of the algorithm.

2. Each round, for a player to determine what move she will make, she needs to be able to evaluate
the costs of each of her actions. Since we are interested in congestion games, it is sufficient for her
to be able to see the count of the number of players using each facility.

3. Finally, since players move in a well defined order, if we simulate this algorithm and release a
transcript of the sequence of player-counts on each facility over the course of the algorithm, every
player can (just by looking at the counts) figure out what action they should be playing at the
end. This is because the counts each day specify their costs, which in turn specifies whether or not
they will move, and which move they will make.

So, to implement our algorithm so that every agent knows her own specified action at the end, it
would be sufficient to output a transcript of facility counts over the run of the algorithm. But wait! We
know from last lecture how to privately maintain a counter over a stream of numbers! Can we phrase
our algorithm so that the counts that we need to release of the number of agents playing on each facility
are simply the running counts of a stream of numbers?

Its not hard to see that we can: for each of the m facilities j, we instantiate a separate stream
σj ∈ {−1, 0, 1}T . Whenever it is player i’s turn to move, we send a “1” to the stream of any facility that
he moves onto, a “-1” to the stream of any facility that he moves off of, and a “0” to the stream of any
facility that he neither moves onto nor off of.

Let us now recall the theorem we derived last lecture, generalized slightly to the case of running m
simultaneous counters on m distinct streams.

Theorem 9 ([DNPR10, CSS10]) There is an ε-differentially private algorithm that is simultaneously
(α, β)-accurate on m streams of length T that jointly have sensitivity k for:

α = O

k · log
(
T ·m
β

)5/2

ε

There is a little bit of book-keeping we have to do to use this bound. We will be a bit imprecise for

convenience – see [RR13] for the precise calculations.
First of all, we will now have two sources of error. If we run BR(t, α1) using noisy counters that have

error in their counts α2, we can account for the error as follows. Since the counts may be off by α2, player
cost estimates for any action may be off by as much as α2 · ∆G . This means that whey players think
they are playing an α1 best response, they may in fact only be playing an α1 + 2α2 ·∆G best response.
Hence, when the algorithm terminates, it is only guaranteed to output an α = α1 +2α2 ·∆G-approximate
equilibrium.

Second, how many rounds does the algorithm run for? Again, because of the error in the counts,
when players think they are decreasing their costs by α1, they may in fact only be decreasing their costs
by α1 − 2α2 ·∆G . In order for us to still make progress at every round, let us set α1 = 3α2 ·∆G . That
way, we are converging to an α = 4α2 ·∆G-approximate equilibrium, and players indeed decrease their
costs by at least α2 ·∆G at every round. Reasoning as before, this means that it will take us at most T
rounds to converge to an α-approximate equilibrium, for

T = O

(
n

α2 ·∆G

)
It remains to bound the sensitivity of the m facility counters: how many non-zero bits can a single

user contribute to all m counters in aggregate? Let L = maxi,si∈Ai
|si|. Then a single best-response

move can contribute at most 2L nonzero entries to the m streams: at most L 1’s to the streams of the

6-5

facilities s′i that player i is deviating to, and at most L −1’s to the streams of the facilities si that player
i is deviating from.

But how many best response moves can a single player make? Here we use the largeness condition
on the game. Recall that players do not move until they perceive that they can reduce their cost by
α1. Once some player i makes a best response move, how many other players will have to move until i
can again decrease her cost by α1? Each move by the other players can increase the difference in cost
between player i’s current action and her best response action by at most 2∆G . Hence, there must be at

least γ = O
(
α1

∆G

)
best response moves by other players before player i can move again. Since we know

there are at most T best response moves in total, this means that player i can best respond no more
than:

T

γ
= O

(
n ·∆G

α1α2 ·∆G

)
= O

(
n

α2
2∆G

)
times. Therefore, the total sensitivity of the m counters is at most

k = 4L · T
γ

= O

(
n

α2
2∆G

)
Using Theorem 9, we find that we can achieve error:

α2 = Õ

(
k

ε

)
= Õ

(
n

α2
2∆Gε

)
Solving for α2, this is consistent when we set:

α2 = Õ

((
n

∆Gε

)1/3
)

We recall that this has all allowed us to compute an α-approximate Nash equilibrium for

α = 4∆G · α2 = Õ

(
n1/3∆

2/3
G

ε1/3

)
which means we have sketched the proof of the following theorem:

Theorem 10 ([RR13]) There is an ε-jointly differentially private algorithm that in any large conges-
tion game with sensitivity ∆G computes an η-approximate pure strategy Nash equilibrium for:

η = Õ

(
n1/3∆

2/3
G

ε1/3

)
If (for example), ∆G = O(1/n), then this gives:

η = Õ

(
1

n1/3ε

)
which is diminishing with n.

Ok. But recall, proving this theorem was not our main goal – we designed a private algorithm
for computing Nash equilibria so that we could instantiate Theorem 3, which states that if we have
an ε-jointly differentially private algorithm that computes η-approximate Nash equilibria, then we can
use it as a mediator which implements “good behavior” as an η′-approximate ex-post equilibrium for
η′ = O(η + ε). So lets instantiate Theorem 3, and recall that we get to pick ε.

Picking ε = n1/4∆
1/2
G to balance the two sources of error, we have that η + ε = Õ(n1/4∆

1/2
G). Thus

we have sketched the proof of the following theorem:

6-6

Theorem 11 For any large congestion game G with sensitivity ∆G, there is a mediator M such that
in the mediated game GM , good behavior g = (g1, . . . , gm) is an η-approximate ex-post Nash equilibrium
for:

η = Õ(n1/4∆
1/2
G)

Moreover, when agents play according to this ex-post equilibrium, the resulting play forms an η-approximate
pure strategy Nash equilibrium in the original game G defined by the realized type vector.

If ∆G = O(1/n) (for example), then:

η = Õ

(
1

n1/4

)
which is diminishing in n.

Bibliographic Information The method of privately maintaining a counter over a stream of numbers
was developed independently by [CSS10] and [DNPR10]. Congestion games (equivalently, potential
games) were introduced and studied by Rosenthal [Ros73] and Monderer and Shapley [MS96]. The
algorithm for privately computing equilibria in large congestion games, and the resulting theorem about
mediated congestion games is from [RR13].

References

[AAE05] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of routing unsplittable flow.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
57–66. ACM, 2005.

[CK05] George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
67–73. ACM, 2005.

[CSS10] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. In
Automata, Languages and Programming, pages 405–417. Springer, 2010.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy
under continual observation. In Proceedings of the 42nd ACM symposium on Theory of
computing, pages 715–724. ACM, 2010.

[HHR+14] Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven Wu. Private
matchings and allocations. In STOC, 2014.

[KPRU14] Michael Kearns, Mallesh M Pai, Aaron Roth, and Jonathan Ullman. Mechanism design in
large games: Incentives and privacy. Proceedings of the annual 5th Innovations in Theoretical
Computer Science (ITCS) conference, 2014.

[MS96] Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior,
14(1):124–143, 1996.

[Ros73] Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. International
Journal of Game Theory, 2(1):65–67, 1973.

[RR13] Ryan Rogers and Aaron Roth. Asymptotically truthful equilibrium selection in large conges-
tion games. arXiv preprint arXiv:1311.2625, 2013.

6-7

