
CIS 700 Differential Privacy in Game Theory and Mechanism Design February 14, 2014♥

Lecture 5
Lecturer: Aaron Roth Scribe: Aaron Roth

Private Equilibrium Computation Yields Truthful Mediators (Part 1)

1 Introduction

When we were being read fairy tails growing up, we first learned about games of “Complete information”.
So the story goes, in such games, all n players know one another’s types, and use this information to
somehow select and play one of the (possibly many) Nash equilibria of the game.

To recap, a game G (here we will use costs rather than utilities, but it doesn’t matter) is defined by
a set of n players, a set of actions A, a set of types T , and a cost function c : T × An → [0, 1]. Given
a choice of actions a = (a1, . . . , an) for each player, we will sometimes write ci(a) = c(ti, a) to denote
agent i’s cost.

A game is one of complete information if the types t1, . . . , tn are common knowledge. We can define
a pure strategy Nash equilibrium of a game of complete information:

Definition 1 Fixing a game of complete information defined by types (t1, . . . , tn), a set of actions a =
(a1, . . . , an) is an (η-approximate) pure strategy Nash equilibrium if for every player i and for every
action a′i:

ci(a) ≤ ci(a′i, a−i) + η

Nash equilibria are nice. They are of course stable. Additionally, in various games (e.g. congestion
games with linear cost functions), the Nash equilibria also have nice welfare properties. For example,
it is known that the worst pure strategy Nash equilibrium in linear congestion games has social welfare
that is only a factor of at most 2.5 worse than the optimal social welfare [CK05, AAE05] (i.e. the price
of anarchy is 2.5).

However, the idea that people will always play a pure strategy Nash equilibrium of a complete
information game has a number of problems:

1. Pure strategy Nash equilibria are not guaranteed to exist. When they do exist, they are not
guaranteed to be unique, and different players may prefer different equilibria. Thus, coordinating
on an equilibrium (the equilibrium selection problem) is highly non-trivial.

2. In an n player game, it is often unreasonable to assume that players know each others types!
Without knowing the types in the game, the Nash equilibria (of the complete information) game
are not even defined.

The usual solution is to move to study games of incomplete information. There are two things we
could do. First, we could move to a Bayesian setting, and assume everyone knows a common prior over
types, as well as a function that all other players use to map realized type to action. We will discuss
this later, but needless to say, this still assumes a great deal about the knowledge and rationality of the
players. We could alternately hope that there exists an ex-post equilibrium of the game: a set of actions
that form an equilibrium, no matter what player types turn out to be.

Definition 2 Fix a collection of functions si : T → A mapping types to actions. s = (s1, . . . , sn) defines
an (η-approximate) ex-post equilibrium if for every vector of realized player types t = (t1, . . . , tn) and for
every player i and for every action a′i:

ci(s(t)) ≤ ci(a′i, s−i(t−i)) + η

5-1

This is obviously a quite robust notion, requiring players to know nothing about each other’s types.
Moreover, it results in a Nash equilibrium of the complete information game, even though players don’t
know each others types! The difficulty is that in general, ex-post equilibria will exist only in extremely
rare circumstances.

In this lecture (and subsequent ones), we will lay out and implement the following agenda: We wish
to take a game, and augment it with an extremely weak mediator, which essentially has only the power
to make suggestions. Agents will be able to:

1. Ignore the mediator and play an action directly in the original game, or

2. Report a type to the mediator, and receive a suggested action. They can then play any action in
the original game, which need not be the suggested action.

If agents choose the second option, they are not obligated to report their true type – and the mediator
cannot enforce the action, it can only make suggestions. What we want is to design a mediator such
that the strategy that has everybody:

1. Report their true type to the mediator, and then

2. Follow the suggested action

is an asymptotic ex-post equilibrium in the (modified) game which is augmented by the mediator.
Moreover, we want that the play that results should be a pure strategy Nash equilibrium of the original
game. This solves the equilibrium selection problem, and results in players playing Nash equilibria of
the complete information game (which as we mentioned often have nice welfare properties) even in more
realistic settings of incomplete information.

2 Privately Computing Nash Equilibria Yields a Good Media-
tor

First, let us define formally what we mean by adding a mediator to a game.

Definition 3 A mediator is given by an algorithm M : (T ∪ {⊥})n → (A ∪ {⊥})n mapping reported
types (or ⊥, which denotes declining to report any type) to suggested actions (or ⊥, which denotes not
suggesting any action).

Given a game G and a mediator M , we can define the game G augmented with mediator M , denoted
as GM , as follows. The new game has action space:

A′ = {(t′, f) : t′ ∈ T ∪ {⊥}, f : (A ∪ {⊥})→ A}

i.e. each player chooses both a type ti to report (possibly ⊥ if not participating), and a function f
specifying how to map the advice received by the mediator to an action a to play in the underlying game
G (Note that picking f equal to the identity function corresponds to following the advice of the mediator,
but the player can pick anything else, including a constant function which corresponds to completely
disregarding the advice. Note also that if a player reports t′ = ⊥ to the mediator, then it will return the
advice ⊥, and a player will then play the action f(⊥) ∈ A, which encodes the strategy he would have
used in the original game). The new game has the following cost function:

c′(ti, ((t
′
1, f1), . . . , (t′n, fn))) = Ea∼M(t′)[c(ti, f(a))]

i.e. it is the expected cost in the original game, given the actions players play, as a function of the
suggestions made by the mediator.

5-2

Let id : A→ A denote the identity function on actions. For a player with type ti, write gi = (ti, id)
denote the strategy in GM that corresponds to “good behavior” – i.e. truthfully reporting his type,
and then following the suggested action of the mediator. We want to design a mediator M that makes
g1, . . . , gn an asymptotic ex-post equilibrium for a large class of games GM .

The idea will be to have M privately compute a Nash equilibrium of the complete information game
defined by the reported types t′. This should at first seem problematic: if M satisfies differential privacy,
then in particular, the distribution on suggested actions given to a player i must be almost independent
of his reported type! But such an action can only be a best response to his opponents’ play if his cost
function is (almost) independent of his type, which does not lead to a very interesting class of games.

To remedy this situation, we will rely on a (slight) relaxation of differential privacy known as joint
differential privacy. The idea will be to allow the suggested action given to player i to depend in a
sensitive way on his own reported type, while still maintaining that the joint distribution on actions
given to players j 6= i remain insensitive in the reported type of agent i.

Definition 4 (Joint Differential Privacy [KPRU14]) Let M : An → Bn. M satisfies ε-joint-
differential privacy if for every a ∈ An, for every i, for every a′i ∈ A, and for every S ⊆ Bn−1:

Pr[M(a)−i ∈ S] ≤ exp(ε) Pr[M(a′i, a−i)−i ∈ S]

We can now state the motivating theorem of the next couple of lectures: informally, that mediators
M(t′) which are jointly differentially private and compute approximate Nash equilibria of a complete
information game G defined by types t′ make “good behavior” g = (g1, . . . , gn) an approximate ex-post
equilibrium of GM .

Theorem 5 ([RR13], based on [KPRU14]) Let G be any game with costs bounded in [0, 1], and let
M be a mechanism satisfying ε-joint differential privacy such that on any set of reported types t′, M
outputs an η-approximate pure strategy Nash equilibrium of the complete information game induced by
t′. Then good behavior g = (g1, . . . , gn) is an η′-approximate ex-post equilibrium of GM for:

η′ = 2ε+ η.

Proof Fix any vector of player types t ∈ T n: we will show that g is a pure strategy Nash equilibrium
of GM with realized types t. Consider any potential deviation bi = (t′i, fi): our goal is to show that no
agent can subsantially decrease their cost by unilaterally deviating to bi.

For a vector of actions a−i ∈ An−1, we define the best response of player i:

BRi(a−i) = arg min
a′i∈A

(ci(a
′
i, a−i))

Now, we compute:

c′(ti, g) = Ea∼M(t)[ci(a)]

≤ Ea∼M(t)[ci(BRi(a−i), a−i)] + η

where the inequality follows from the fact that M computes an η-approximate Nash equilibrium of the
game defined by the reported types. Next we invoke the privacy condition:

c′(ti, g) ≤ exp(ε)Ea∼M(t′i,t−i)[ci(BRi(a−i), a−i)] + η

≤ Ea∼M(t′i,t−i)[ci(BRi(a−i), a−i)] + 2ε+ η

≤ Ea∼M(t′i,t−i)[ci(fi(ai), a−i)] + 2ε+ η

= c′(ti, (bi, g−i)) + 2ε+ η

Here the first inequality follows from joint differential privacy, the second from the fact that (for ε ≤ 1)
exp(ε) ≤ 1 + 2ε, and the third from the definition of best response.

Now that we have this theorem, it remains to actually design a jointly-differentially private algorithm
that computes a Nash equilibrium in a large class of games. For this, we will need to learn a bit more
differential privacy...

5-3

3 Some more differential privacy tools

So far, we have been skating by knowing nothing except the exponential mechanism. We will need to
develop some more sophisticated tools now, however. Ok, not that sophisticated – all we will need is the
ability to count (privately). It turns out the ability to count is enough to do all sorts of sophisticated
things.

3.1 Numeric Valued Queries

First, we will give one that is even simpler – the Laplace mechanism! This is really just a special case
of the exponential mechanism.

Definition 6 The `1 norm of a vector v ∈ Rd is:

||v||1 =

d∑
i=1

|vi|.

A function f : T n → Rd has `1 sensitivity k if for every t ∈ T n, t′i ∈ T :

||f(t)− f(t′i, t−i)||1 ≤ k

Let GS(f) denote the minimum k such that f has sensitivity k.

Definition 7 The Laplace Distibution with scale parameter b, denoted Lap(b) is the distribution with
pdf:

p(x) =
1

2b
exp

(
−|x|
b

)
Some useful facts about Z ∼ Lap(b):

E[|Z|] = b Pr[|Z| ≥ t · b] = exp(−t)

Definition 8 ([DMNS06]) The Laplace mechanism ML(t; f) computes f(t) + Z where Z ∈ Rd such

that each Zi ∼ Lap
(

GS(f)
ε

)
.

Theorem 9 ([DMNS06]) For every f , ML(t; f) is ε-differentially private.

Proof Consider any output of the Laplace mechanism x ∈ Rd. Since the Laplace mechanism produces
a continuous random variable, we will understand Pr(ML(D; f) = x) to refer to the probability density
function for the Laplace mechanism. We can compute:

Pr[ML(t; f) = x]

Pr[ML(t′i, t−i; f) = x]
=

d∏
i=1

Pr[ML(t; f)i = xi]

Pr[ML(t′i, t−i; f)i = xi]

=

d∏
i=1

Pr[Zi = xi − f(t)i]

Pr[Zi = xi − f(t′i, t−i)i]

=

d∏
i=1

exp
(
− ε|xi−f(t)i|

GS(f)

)
exp

(
− ε|xi−f(t′i,t−i)i|

GS(f)

)
=

d∏
i=1

exp

(
ε (|xi − f(t′i, t−i)i| − |xi − f(t)i|)

GS(f)

)

5-4

≤
d∏
i=1

exp

(
ε (|f(t)i − f(t′i, t−i)i|)

GS(f)

)

= exp

ε
(∑d

i=1 |f(t)i − f(t′i, t−i)i|
)

GS(f)


≤ exp(ε)

So now we know how to answer numeric valued queries privately.
The following basic facts (which we have encountered before) will also be useful:

Fact 10 Suppose M1 : T n → O is ε1-differentially private. Let f : O → O′ be any randomized
mapping. Then f(M1(t)) : T n → O′ is ε1 differentially private. Moreover, suppose M2 : T n → O′ is ε2-
differentially private. Then M : T n → O×O′ defined by M(t) = (M1(t),M2(t)) is ε1 + ε2 differentially
private. This is true even if M2 can be chosen after observing the realized value of M1(t).

The first property says in English “Applying arbitrary post-processing to a differentially private algo-
rithm does not harm its privacy guarantee”, and the second says “Private algorithms can be combined,
and are still private, where their privacy parameters add up.”

3.2 Counting on a stream

We want to use the Laplace mechanism to allow us maintain a running count of a stream σ ∈ XL where
X ∈ [−1, 1]: i.e. each element σi of the stream is a real number between −1 and 1. You should think
of the stream as really being a function σ(t) of some set of reported agent types. What we want is to
have an algorithm that “sees” the stream one number at a time, and maintains a running count of the
numbers seen so far (i.e. produces an output at every time step), while guaranteeing that the whole
computation is differentially private.

Definition 11 A continual observation mechanism on a stream σ(t) ∈ XL is a randomized mapping
M(σ(t)) : N → R such that M(σ(t))(j) is independent of σ(t)i for all i > j.

Lets give a name to the quantity we want to estimate – each of the prefix sums of the stream:

cσ(j) =

j∑
i=1

σi

We can now define what we mean by a mechanism which estimates the running count on a stream
accurately:

Definition 12 A continual observation mechanism M(σ) is (α(j), β) accurate on a stream σ if except
with probability at most β we have for all j ≤ L:

|cσ(j)−M(σ)(j)| ≤ α(j)

Let us warm up by considering a couple of simple mechanisms that we might try to solve this problem.
Suppose that the stream σ(t) has sensitivity k. To analyze these,use a concentration theorem for sums
of Laplace random variables:

Theorem 13 Suppose Y1, . . . , Yj ∼ Lap(k/ε). Let Y =
∑j
i=1 Yi. Then:

Pr[|Y | ≥ t · k] ≤ exp

(
−t2ε2

6j

)

5-5

In particular:

Pr

|Y | ≥ k ·
√

6j log 1
β

ε

 ≤ β
Algorithm1(ε)

Let ε′ ← ε
k·L

Let c0 ← 0
for j = 1 to L do

Let cj ← cj−1 + σj , νj ← Lap(1/ε′)
Output cj + νj

end for

Ok, this algorithm sucks. We are adding just enough noise to guarantee ε-differential privacy: each
entry σi appears in ≤ L counts c1, . . . , cL. Therefore, each count is at most k sensitive, and the vector
of all L counts is k · L sensitive. W add noise Lap(k · L/ε) to each count, which is enough to guarantee
differential privacy. The count cj is never larger than L, but we are adding noise Lap(k · L/ε) at every
step! We don’t get non-trivial error.

Here is another algorithm that sucks less:

Algorithm2(ε)

Let c0 ← 0
for j = 1 to L do

Let νj ← Lap(k/ε), σ̂j ← σj + νj , cj ← cj−1 + σ̂j ,
Output cj

end for

This algorithm is a little better. Note that it still preserves ε-differential privacy: the algorithm can
be viewed as directly computing σ(t) using the Laplace mechanism (adding noise k/ε) to each coordinate,
and then simply computing the partial sums of the already perturbed stream, which is “postprocessing”
does not harm the privacy guarantee. Moreover, we have for all j:

cj =

j∑
i=1

σi +

j∑
i=1

νi

So the error of this mechanism at each step j is simply Ej = |
∑j
i=1 νi|. By our concentration theorem

above, except with probability β, we have for all j:

|Ej | ≤ O

(
k ·
√
j log j

β

ε

)

This is already non-trivial error! Can we do better? Lets examine the sources of error in the previous
two algorithms. Both of these algorithms work by computing partial sums:

Definition 14 A P -sum is a partial sum of consecutive items. Write:

Σ[i, j] =

j∑
`=i

σ`

5-6

We can think of both of the algorithms that we have seen as simply releasing a collection of p-sums.
Algorithm 1 releases L noisy p-sums Σ̂[1, j] for each j ≤ L. Algorithm 2 releases L noisy p-sums Σ̂[i, i]

for i ≤ L and computes M(σ)(j) =
∑j
i=1 Σ̂[i, i].

Suppose an algorithm releases a collection of p-sums such that a single element in the stream can
appear in at most c of the p-sums. Then the sensitivity of the output is at most c · k, and to preserve
privacy, each p-sum must be perturbed with noise Lap(c·k/ε). Suppose further that each answer M(σ)(j)
is the sum of ` of these noisy p-sums. Then the error term is at most:

|Ej | = |M(σ)(j)− cσ(j)| = |
∑̀
i=1

Lap

(
c · k
ε

)
| ≤ O

(
c · k

√
` log j

β

ε

)

except with probability β.
Indeed, Algorithm 1 had c = L and ` = 1, and Algorithm 2 had c = 1 and ` = j. So, to develop

an algorithm with lower error, we can simply try and develop a way of releasing a count by combining
partial sums that has a better tradeoff between c and `. This is what the binary mechanism does:

BinaryCount(ε, L)

Let ε′ ← ε
k·logL .

for j = 1 to L do
Express j in binary: j =

∑logL
i=1 bi(j) · 2i

Let i← min` : b`(j) 6= 0 be the least non-zero bit of j.
Let ai ←

∑
`<i a` + σj (ai = Σ[j − 2i + 1, j])

For ` < i Let a` ← 0, â` ← 0.
Let âi ← ai + Lap(1/ε′).
Output M(σ)(j) =

∑
i:bi(j)=1 âi

end for

To analyze this algorithm in the p-sum framework, first note that by design, every output is the sum
of at most ` = {i : bi(j) = 1} ≤ logL p-sums. Moreover, each σj is a member of at most a single p-sum
of length 2i for each i, and so is a member of at most c = logL p-sums. Hence, the algorithm preserves
differential privacy, and moveover, except with probability β, we have at each time step the error is at
most:

|Ej | = O

(
k · log(L) ·

√
logL · log(jβ)

ε

)
= O

k · log
(
L
β

)5/2
ε


Ok! So now we know how to count.
Next class, we will see how to use this new-fangled ability to privately compute Nash equilibria in

“large” congestion games. We will then go on and show how to privately compute correlated equilibria
in arbitrary large games, and examine the game-theoretic implications of this.
Bibliographic Information The method of privately maintaining a counter over a stream of numbers
was developed independently by [CSS10] and [DNPR10]. We follow the presentation of Chan et al.
[CSS10]. The goal of implementing a mediator in a game by privately computing an equilibrium is due
to [KPRU14], who show how to privately compute correlated equilibria. The implication that privately
computing a Nash equilibrium gives a mediator that has ex-post truthfulness properties is due to [RR13],
who show how to privately compute Nash equilibria in congestion games.

5-7

References

[AAE05] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of routing unsplittable flow.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
57–66. ACM, 2005.

[CK05] George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
67–73. ACM, 2005.

[CSS10] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. In
Automata, Languages and Programming, pages 405–417. Springer, 2010.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC ’06, pages 265–284, 2006.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy
under continual observation. In Proceedings of the 42nd ACM symposium on Theory of
computing, pages 715–724. ACM, 2010.

[KPRU14] Michael Kearns, Mallesh M Pai, Aaron Roth, and Jonathan Ullman. Mechanism design in
large games: Incentives and privacy. Proceedings of the annual 5th Innovations in Theoretical
Computer Science (ITCS) conference, 2014.

[RR13] Ryan Rogers and Aaron Roth. Asymptotically truthful equilibrium selection in large con-
gestion games. arXiv preprint arXiv:1311.2625, 2013.

5-8

