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Asymptotic Dominant Strategy Truthfulness in Ascending Price Auctions

1 Introduction

At the very beginning of the semester, we saw an incredibly powerful tool in mechanism design: the
VCG mechanism. You remember: the VCG mechanism lets us find the welfare-optimal solution for any
social choice problem, and pair it with payments that makes truthful reporting of one’s preferences a
dominant strategy for every player. Pretty impressive!

Yet, one-shot direct revelation mechanisms are rarely used in practice. There are a couple of reasons
for this that are commonly cited:

1. It can be a non-trivial task for an agent to report their type. In general, they have to pin down a
value for every possible bundle they might receive, and quote this value to the mechanism. Even
when this is a concise set (for example, with unit demand bidders in an auction with m goods,
they only need to report m values), it can be hard for people to decide exactly how much they
value each good when asked.

2. A direct revelation mechanism requires that agents provide (possibly) more information to the
mechanism than it needs to solve the allocation problem. For example, in a single item auction,
the VCG mechanism is just a second price auction. Nevertheless, the winning bidder is forced to
reveal to the mechanism his value for the good, even though all that was necessary to reveal was
that his value was higher than that of the 2nd highest bidders. Hence if the bidder is concerned
about privacy, he might prefer not to reveal more than necessary.

Instead, people often prefer to run iterative ascending price auctions. These are just (generalizations
of) the kind of auctions you see on TV. At any moment in time, each good being sold has a price. When
it is a bidder’s turn to bid, she only need decide which good she wants to bid on (or if she wants to drop
out), which is equivalent to asking her “What is your favorite good at the current prices?” They resolve
some of the difficulties of the VCG mechanism listed above because:

1. “What is your favorite good at the current prices?” is an easier question to answer than to quantify
your entire valuation function, so such auctions can be less demanding on the bidders, and

2. Ascending auctions halt at the final price, and so are more parsimonious in what they require
bidders to report. For example, the high bidder in a single item auction never has to reveal
whether his value is ε more than the 2nd highest bidder, or 1000 times higher.

However, there are two problems that we might hope to resolve. First, the “privacy” guaranteed by
an ascending price auction is qualitative and informal. If we could implement such an auction such that
the prices were differentially private in the actions of the players (and the allocation jointly differentially
private), then we could make the privacy guarantee formal.

The second has to do with the strength of implementation. The VCG mechanism is dominant strategy
truthful, but truth-telling (called sincere bidding in ascending price auctions) is usually not a dominant
strategy in ascending price auctions. The reason is easily captured in the following simple example, and
is informally because in an iterative setting, other bidders can threaten you.
Example: Suppose we have two unit demand bidders 1 and 2, and two goods for sale a and b. We have
v1,a = 1, v1,b = ε and v2,a = 1/2, v2,b = 1/2 − ε. Suppose moreover that bidder 2 takes the following
strategy: “Bid on good a. If bidder 1 bids on good a, then outbid him on whatever he bids on until
the price is ≥ 1.” Against this strategy, bidder 1 cannot obtain non-negative utility if he bids on his
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favorite good (a), and so his best response is to place an insincere bid on good 2. Moreover, bidder 2
has a clear motivation to take this threatening position – he obtains substantially higher payoff than if
players followed sincere bidding, since he gets his most preferred good without any competition.

Because of strategies like in the above example, classical implementations of ascending price auctions
do not implement sincere bidding as a dominant strategy, but instead as a Nash equilibrium. This is
the second improvement we might hope to make: if we can implement an ascending price auction such
that the prices are differentially private, then price-taking behavior will be approximately optimal, or in
other words, sincere bidding will be an asymptotic dominant strategy for every player.

2 An Ascending Price Auction for Unit Demand Bidders

Here we will describe a classical ascending price auction for unit demand bidders due to Crawford and
Knoer [CK81]. (This auction generalizes to bidders with gross substitutes valuations, as shown by Kelso
and Crawford [KJC82]. Our private implementation, and its corresponding incentive properties also
generalize to gross substitute valuations, but for simplicity we’ll stick to unit demand bidders here).
Formally, suppose there are n bidders B and n goods G. A bidder i is unit-demand if for every S ⊆ G,
vi(S) = maxj∈S vi({j}) – i.e. if he only wants one good. Such a bidder’s valuation function can be
expressed as just n numbers vi,1, . . . , vi,n representing his value for each of the m goods: vi,j ≡ vi({j}).
For this lecture, lets assume vi,j ∈ [0, 1] for all i, j.

We describe the Crawford/Knoer Auction which builds a matching µ : B → G between bidders and
goods. (i.e. a function µ such that for every good j, |µ−1(j)| ≤ 1: every bidder is matched to at most
one good, and every good is matched to at most one bidder). We allow bidders to be unmatched, which
we write as µ(i) = ∅. We define vi,∅ = 0 for each bidder i.

Algorithm 1 The Crawford-Knoer Ascending Price Auction for Unit Demand Bidders. It takes as
input a bid-increment α.

Ascend(α):

For each bidder i Let µ(i) = ∅.
For each good j ∈ [m], Let pj ← 0
while There exist unmatched bidders do

for i = 1 to n do
if Bidder i is unmatched and ∃j such that vi,j − pj > 0 then

Ask bidder i for any j∗ ∈ arg maxj∈G(vi,j − pj).
Let µ(µ−1(j∗))← ∅ (high bidder of j∗ is now unmatched) and µ(i)← j∗ (Good j∗ is matched
to i).
Let pj∗ ← pj∗ + α

end if
end for

end while
Allocate each bidder i µ(i) and charge them pµ(i).

Lets note a couple of things about this auction. First, it always halts and outputs a matching:

Lemma 1 Ascend halts after at most n/α bids are made.

Proof No bidder ever bids on an item with price ≥ 1, since this would result in negative utility. Hence
at the end of the auction, we have pj < 1 for all j and

∑n
j=1 pj < n. But each bid increases

∑n
j=1 pj by

α, and so the claim follows.

Next, when it ends, everyone is getting (approximately) their most preferred good given the final
prices. Such an outcome is called an approximate Walrasian equilibrium:
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Definition 2 Given a set of bidder valuations v, a matching µ together with a vector of prices p forms
an α-approximate Walrasian equilibrium if for every agent i:

vi,µ(i) − pµ(i) ≥ max
j

(vi,j − pj)− α

Lemma 3 Assuming sincere bidding, at completion, the output of Ascend is an α-approximate Wal-
rasian equilibrium.

Proof By inspection. At the time that bidder i was last matched to µ(i), it was his most preferred
good. Subsequently, the price pµ(i) was incremented by at most α, and all other prices only increased.

Lets consider whether the fact that the auction ends with approximate Walrasian equilibrium prices
imparts any useful incentive properties to the mechanism. We can observe that if the prices were given
from on-high, and fixed independent of the bidder’s behavior, this Walrasian equilibrium property would
mean that sincere bidding was an approximately dominant strategy – since surely no strategy can do
better than giving a bidder his most preferred good! However, this is not the case, because the prices
are computed as a function of the bidding behavior of the agents. It could be that by misrepresenting
his demand, a bidder can gain some benefit by changing how the prices are computed. However, if
we could maintain the prices while satisfying differential privacy throughout the run of the auction, we
would have that sincere bidding remains an approximately dominant strategy. This will be the goal of
this lecture.

Finally, lets note that any approximate Walrasian equilibrium must be near welfare optimal:

Theorem 4 Let OPT = maxν
∑n
i=1 vi,ν(i) be the welfare of the max-welfare matching. Then for any

matching µ that is part of an α-approximate Walrasian equilibrium we have:

n∑
i=1

vi,µ(i) ≥ OPT− αn

(Note that by Lemma 3 such a µ results when players sincerely bid in Ascend.)

Proof Let ν be the welfare optimal matching. By assumption, for all i:

vi,µ(i) − pµ(i) ≥
(
vi,ν(i) − pνi

)
− α

Summing over all i gives:

n∑
i=1

(vi,µ(i) − pµ(i)) ≥
n∑
i=1

(
vi,ν(i) − pνi

)
− αn

Since µ and ν are matchings, we can rewrite the sums as:

n∑
i=1

vi,µ(i) −
∑

j:µ−1(j) 6=∅

pj ≥
n∑
i=1

vi,ν(i) −
∑

j:ν−1(j) 6=∅

pj − αn

Note however that by inspection of the auction, for every good j such that µ−1(j) = ∅ (i.e. all unmatched
goods), we have pj = 0. Hence, we have:

n∑
i=1

vi,µ(i) ≥
n∑
i=1

vi,ν(i) +
∑

j:ν−1(j)=∅

pj − αn ≥
n∑
i=1

vi,ν(i) − αn

which proves the claim.
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3 Privacy and Sincere Bidding

Let us argue that any ascending price auction that converges to an α-approximate Walrasian equilibrium,
with prices that are differentially private in the bids of the agents makes sincere bidding an approximate
dominant strategy.

We’ll be a little informal here. Lets say that an iterative auction protocol M is an algorithm that in
T rounds, adaptively chooses a bidder to query. When a bidder is queried at round t, she is shown a
set of prices pt ∈ [0, 1]n, and may respond with the name of a good gt ∈ [n]. Based on g1, . . . , gt, the
protocol can update the prices pt+1 and decide who to query next. At the end, the protocol outputs the
final set of prices PT together with a matching µ. Each bidder i receives good µ(i), and pays price pi.

A bidding strategy for a bidder is any function f that maps price histories p1, . . . , pt−1 to goods gt:
formally, a function f : ([0, 1]n)∗ → [n]. We can think of an iterative auction protocol as an algorithm
that takes as input n bidding strategies f1, . . . , fn of the players, runs the auction by querying the
bidding strategies, and then outputs the resulting allocation and payments.

The sincere bidding strategy for a player i is the bidding strategy that always outputs the most
preferred good for player i at the current prices. In other words:

fsi (p1, . . . , pt) ≡ fsi (pt)
def
= arg max

j∈[n]
(vi,j − ptj)

Theorem 5 Let M be an iterative auction protocol such that any player who practices sincere bidding
ends up being matched to a good j∗ such that vi,j∗ − pj∗ ≥ maxj(vi,j − pj) − α, where p are the prices
computed by the mechanism. Suppose also that the computation of the prices p is ε-differentially private
in the bidding strategies of the players. Then sincere bidding is an η-approximate dominant strategy for:

η = ε+ α

Proof Recall that the utility that player i receives under a matching µ and prices p is ui(µ, p) =
vi,µ(i)− pµ(i). We fix any vector of bidding strategies f−i for players j 6= i and consider bidder i’s utility
under sincere bidding fsi compared to his utility if he deviates to any other bidding strategy f ′i .

Eµ,p∼M(fs
i ,f−i)[ui(µ, p)] = Eµ,p∼M(fs

i ,f−i)[vi,µ(i) − pµ(i)]
≥ Ep∼M(fs

i ,f−i)[max
j
vi,j − pj ]− α

≥ exp(−ε)Ep∼M(f ′i ,f−i)[max
j
vi,j − pj ]− α

≥ Eµ,p∼M(f ′i ,f−i)[ui(µ, p)]− ε− α

4 Making the Crawford Knoer Auction Private

It remains to sketch conditions under which Ascend can be implemented such that the final prices are
differentially private in the strategies of the bidders. To do so, we introduce the idea of identical goods.

We want to consider markets in which goods are not unique, but come in at least some small supply.
(For example, if you want to buy a 24 inch Samsung LCD television, there is not only one such good,
but many, and you are indifferent between receiving any one of them at a given price). Two goods g1
and g2 are said to be identical if for every feasible valuation function vi, vi,g1 = vi,g2 . We say that a
set of m goods consists of k types of goods if there exist goods g1, . . . , gk such that for every other good
g ∈ [m], g is identical to one of g1, . . . , gk. We say that the supply corresponding to a good of type gi is
the number of goods that are identical to gi.

10-4



We begin by introducing a change to the Crawford/Knoer auction that has no effect on the bidding
behavior of people who choose to bid sincerely. Consider what happens in the Crawford Knoer auction
to the prices of s copies of an identical good: because everyone values the s copies identically, nobody
ever bids on any copy of a good other than the one that is currently the least expensive. Hence, rather
than reporting the prices of all s copies of the good to each bidder, it suffices to report for each type of
good, the price of the copy of that type of good that is currently the least expensive. This minimum
price increments every time the type of good receives another s bids. More precisely, the (minimum)
price that a good of type j is available at at time gt is exactly pj = bbj(t)/sc, where bj(t) is the number
of bids that have been placed up through time t on goods of type j.

Thus, the Crawford/Knoer auction can equally well be run as follows:

• A price pj ← 0 is initialized for each type of good j ∈ [k].

• In rounds, unmatched bidders bid on their most preferred type of good at the current prices p.

• A count bj(t) is maintained on the number of bids each type of good has received at time t, and
pj = bbj(t)/sc.

• Bidders become matched to the goods that they bid on, and become unmatched after bj(t) has
incremented more than s ticks from its value when they bid on the good. (and so at most s units
of any good are allocated).

Note that this is simply a different description of the same algorithm that we already analyzed (when
bidding is sincere – but note that we have reduced the strategy space for non-sincere bidding a bit),
and so we continue to have that the algorithm halts and outputs a matching after at most m/α steps
(for m = k · s, the total number of goods), that the matching has weight at least OPT− αm, and that
for every bidder i who follows a sincere bidding strategy, they are matched to a good µ(i) such that
vi,µ(i) − pµ(i) ≥ maxj(vi,j − pj)− α.

Note however that with the above description, a sufficient statistic to make available to allow all
bidders to coordinate their bidding behavior is a running count bj(t) on the number of bids each type of
good has received so far. Given that bidders know these counts, they know both:

1. The current price for each type of good, which allows them to decide what to bid on, and

2. Whether they are currently matched or unmatched, which allows them to know whether they
should bid at all. (They become matched on any day that they bid, and unmatched on the day
that the bid-count on their good increments s above where it was when they bid).

But this should seem promising: Recall, we learned about a tool to privately keep track of running
sums:

Theorem 6 ([DNPR10, CSS10]) There is an ε-differentially private algorithm that is simultaneously
(E, β)-accurate on k streams of length T that jointly have sensitivity ∆ for:

E = O

∆ · log
(
T ·k
β

)5/2
ε


Here we need to maintain k separate streams, one to count bids on each of the k types of goods.

And what are the sensitivity ∆ of our streams? Well, at each time step t, a stream for a good of type j
receives a 1 if there was a bid on that type of good, and a 0 otherwise (so that the running sums on the
streams are bid counts). But each agent bids at most 1 time on each type of good at each price point:
So the total number of bids a single person can make is ∆ ≤ k/α.
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Hence, we can run the auction while maintaining bid counters that have error:

E = Õ

(
k · log (n · k)

5/2

αε

)
Lets consider the implication of what happens when we run the auction with noisy bid counters,

rather than exact bid counters. First note that since the price of any good only increments after s bids
have been made, error E in the bid counters only results in error ≤ α in the prices under the condition
that s ≥ E.

But there is another problem: when we run the auction with exact bid counters, then any over-
demanded type of good has its supply constraint exactly satisfied: exactly s people are matched to
that type of good. Here, because of the noisy counters, the number of people who end up matched to
a particular type of good may be any value in s ± E. Therefore, if we don’t want to violate supply
constraints, we must reserve E copies of each good outside of the auction, to satisfy demand that results
from the auction’s possible over-allocation of E units. But if we are reserving E copies of the good, we
must be sure that this does not reduce welfare by more than a (1−α) factor (which we are already losing
do to the approximation guarantee of the auction). However, this will be the case whenever s ≥ E

α .
Putting this all together, we have sketched the argument for the following theorem

Theorem 7 There exists an ascending price auction for unit demand bidders bidding on k types of
items, each with supply at least s such that:

1. Sincere bidding is an α-approximate dominant strategy,

2. Results in differentially private prices and a jointly differentially private allocation, and

3. Results in an outcome that achieves welfare at least OPT− αm

whenever the supply of each good is at least:

s ≥ Õ

(
k · log (n · k)

5/2

α3

)
In particular, if the supply of each type of good grows slightly superlinearly in the number of types of
goods as the market grows large, then we get an auction that is asymptotically dominant strategy truthful
and welfare optimal.

5 Discussion

These results can be generalized to bidders who have gross substitutes valuations, using the generalization
of the Crawford/Knoer auction due to Kelso and Crawford [KJC82].

As with many of the “large market” results that we have seen in this class, the advantage that we have
over many of the large market results from the economics literature is the weakness of the assumptions
that we need to make. Note that we needed to make no assumptions on the valuation functions of the
bidders – i.e. they need not be drawn from a prior, nor generated as part of a replication economy, and
bidders can be completely unique. Our only “large market” assumption is that the supply of each good
is large – moderately larger than the number of distinct types of items.

Bibliographic Information The ascending price auction that we study in this lecture is due to
Crawford and Knoer [CK81], and generalized by Kelso and Crawford [KJC82].

The main result in this lecture is based on ongoing work with Justin Hsu, Zhiyi Huang, Tim Rough-
garden, and Steven Wu, as well as the results in [HHR+14] (Which give a private implementation of
the Kelso/Crawford auction that achieves better bounds than those quoted here, but at the expense of
incentive properties).

10-6



References

[CK81] Vincent P Crawford and Elsie Marie Knoer. Job matching with heterogeneous firms and
workers. Econometrica, 49(2):437–450, 1981.

[CSS10] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. In
Automata, Languages and Programming, pages 405–417. Springer, 2010.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy
under continual observation. In Proceedings of the 42nd ACM symposium on Theory of
computing, pages 715–724. ACM, 2010.

[HHR+14] Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven Wu. Private
matchings and allocations. Proceedings of the 41st annual symposium on the Theory of
Computing (STOC), 2014.

[KJC82] Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

10-7


