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Intro to Differential Privacy for Game Theorists, and Digital Goods
Auctions.

1 Introduction

This course will be concerned with a recently discovered set of connections between differential privacy
and game theory and mechanism design. Differential Privacy is a privacy “solution concept” that has
been studied over the past decade in the computer science literature: it is a constraint that one can
impose on the design space for some algorithmic problem, that has meaningful guarantees limiting the
harm that individuals face as a result of their data being used as part of a computation. For the most
part, the study of differential privacy has been focused firmly in the realm of algorithm design, in which
the data is assumed to have been faithfully gathered, and free of the incentive problems that must be
dealt with in mechanism design.

Nevertheless, as we shall see, differential privacy has a natural game theoretic semantics that makes
it interesting for a couple of reasons. Most basically, it gives us a meaningful way to bound how
much an individual might be harmed through loss of “privacy”, and so understanding how to control
it allows us to attempt to study mechanism design in settings in which agents have preferences not
just for outcomes, but also over mechanisms which might affect their privacy in different ways. More
surprisingly, however, the tools developed to design differentially private algorithms turn out to be useful
for designing mechanisms with desirable incentive properties in large markets, even in the absence of
privacy concerns. In this class, we will explore both of these connections.

2 Differential Privacy

We will begin with the original definition of differential privacy, although we will quickly derive a modified
but equivalent form that will be easier for us to think about. Differential privacy is a property of an
algorithm, which may be randomized:

Definition 1 (Randomized Algorithm) A randomized algorithm M with domain A and discrete
range B is associated with a mapping M : A → ∆(B). On input a ∈ A, the algorithm M outputs
M(a) = b with probability (M(a))b for each b ∈ B. The probability space is over the coin flips of the
algorithm M.

We will be interested in algorithms that take input consisting of n-tuples of elements x from some
domain X: x ∈ Xn. Think of there being n people, each of whom can have as input any element in X,
and a vector x ∈ Xn is the collected inputs of all n people. We will be particularly interested in pairs of
inputs that result from the unilateral deviation of a single person i. Here we will borrow notation from
the game theory literature:

Definition 2 Given a vector x ∈ Xn, we write x−i ∈ Xn−1 to denote x−i = (x1, . . . , xi−1, xi+1, . . . , xn).
Given x′i ∈ X, we write (x−i, x

′
i) ∈ Xn to denote the vector (x−i, x

′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

We are now ready to define differential privacy.

Definition 3 (Differential Privacy [DMNS06]) A randomized algorithm M : Xn → O is ε-differentially
private if for all i, for all x ∈ Xn for all x′i ∈ X, and for all outcome events S ⊆ O:

Pr[M(x) ∈ S] ≤ exp(ε) Pr[M(x−i, x
′
i) ∈ S]
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A couple of remarks are in order:

1. You should think about the differential privacy condition as really being the more intuitive Pr[M(x) ∈
S] ≤ (1 + ε) Pr[M(x−i, x

′
i) ∈ S]: that no event can increase in probability by more than a (1 + ε)

multiplicative factor when a single individual changes their data. For ε ≤ 1, the conditions are
approximately the same, because we have (1 + 2ε) ≥ exp(ε) ≥ (1 + ε). We use exp(ε) because it
will be mathematically more convenient.

2. The neighboring relation is symmetric, so we also have the condition: Pr[M(x) ∈ S] ≥ exp(−ε) Pr[M(x−i, x
′
i) ∈

S]. Differential privacy promises that a single individual cannot through his choice of report make
any event more or less likely by a factor of more than ≈ 1 + ε.

There are lots of reasons why this is an excellent formalization of “privacy”, but we will focus on one in
this class: if a rational agent gets to choose whether a mechanism M is run on input x or on neighboring
input x′, then no matter what his utility function is, he will be roughly indifferent between the two
choices if the mechanism is ε-differentially private.

Claim 4 An algorithm M : Xn → O is ε-differentially private if and only if for every utility function
ui : O → R≥0 and for every x ∈ Xn and x′i ∈ X:

Eo∼M(x)[ui(o)] ≤ exp(ε)Eo∼M(x−i,x′i)
[ui(o)]

Proof First, suppose M is ε-differentially private. Then we have:

Eo∼M(x)[ui(o)] =
∑
o∈O

ui(o) · Pr[M(x) = o]

≤
∑
o∈O

ui(o) · exp(ε) Pr[M(x−i, x
′
i) = o]

= exp(ε)Eo∼M(x−i,x′i)
[ui(o)]

In the reverse direction, fix an event S ⊆ O, and define ui to be ui(o) =

{
1, If o ∈ S;
0, otherwise.

We have for

this utility function:
Eo∼M(x)[ui(o)] ≤ exp(ε)Eo∼M(x−i,x′i)

[ui(o)]

But this is equivalent to:
Pr[M(x) ∈ S] ≤ exp(ε) Pr[M(x−i, x

′
i) ∈ S]

which is the differential privacy condition.

So differential privacy promises, simultaneously for all n people i, no matter what their utility func-
tions are, that they cannot substantially hurt their expected future utility1 by changing their reported
input to the algorithm xi. This focus on unilateral deviation should seem familiar to you if you have
studied game theory, and will form the core of the connection between the two fields.

3 Mechanism Design

Lets go through the basic definitions of mechanism design and then jump right into a problem we might
want to solve. We will think of n rational (utility maximizing) agents i who have privately known types

1Caution: Note that in the utility theoretic definition, we do make the assumption that the utility function u : O → R≥0

takes on only non-negative values. If the utility function can take on negative values, then this interpretation of the
guarantee is no longer true: in this case, the expected utility of a player can in principle jump from 0 to a nonzero value,
which isn’t bounded by any multiplicative factor.
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ti ∈ T . A mechanism M : T n → O is a mapping between (reported) types of the n agents, and some
outcome space O. Agents have preferences over outcomes, which are encoded by their types: the utility
that agent i gets from outcome o ∈ O is defined to be:

ui(o) ≡ u(ti, o)

where u : T × O → [0, 1] is some utility function.
We want to design mechanisms that both choose a desirable social outcome (according to some

objective function we might have) and also incentivize agents to report their true types (so that we
know we are evaluating our objective function on the right data).

Definition 5 A mechanism M : T n → O is (ε-approximately) dominant strategy truthful if for all
t ∈ T n and for all i and t′i ∈ T :

ui(M(t)) ≥ ui(M(t−i, t
′
i))− ε

That is, no player can gain more than ε utility by mis-representing their type. If M is randomized, then
we take ui(M(t)) to mean Eo∼M(t)[ui(o)] (i.e. we assume players are risk neutral.)

Approximate truthfulness will be most interesting in settings in which we can take the approximation
parameter ε tending to 0 as the number of people n grows large. We will call this asymptotic truthfulness.

Note the striking similarity between the definitions of (approximate) dominant strategy truthfulness
and differential privacy. We have the immediate observation:

Claim 6 ([MT07]) If M is ε-differentially private for ε ≤ 1, then it is also ε-approximately dominant
strategy truthful.

Proof This follows immediately from the definition, and the observation that:

Eo∼M(t)[ui(o)] ≥ exp(−ε)Eo∼M(t−i,t′i)
[ui(o)] ≥ (1− ε)Eo∼M(t−i,t′i)

[ui(o)] ≥ Eo∼M(t−i,t′i)
[ui(o)]− ε

where the first inequality is the differential privacy condition, the second follows from exp(−ε) ≥ 1− ε,
and the third follows from the fact that utilities are bounded in [0, 1].

It is worth noting a couple of things about this connection between privacy and approximate truth-
fulness.

1. A reasonable objection is that this straightforward application of privacy makes not just truthful
reporting an approximate dominant strategy – it makes everything an approximate dominant
strategy. Why should people tell the truth in such cases? As we will see, however, a typical
application of this approach will give a more nuanced guarantee, in which truthful reporting remains
an approximate dominant strategy, but not everything does.

2. The differential privacy definition composes across player deviations: if 4 players change their
reports, then the probability of any event can change by at most exp(4ε). Hence, differential
privacy automatically promises approximate group strategyproofness as well. No coalition of k
players can improve their expected utility by more than a factor of exp(kε) by deviating from
truthtelling behavior.

Regarding the first point above, we make the following observation. Suppose the utility-relevant event
for each player i in fact comes from some other outcome space O′i, and players have utility functions
ui : O′i → [0, 1]. Suppose moreover, that there is some function f : O × T → O′i mapping both the
outcome o ∈ O selected byM and agent i’s reported type t′i to an outcome f(o, t′i) ∈ O′i. If we have that
for every fixed o, f(o, ·) makes truthful reporting a dominant strategy, then truthful reporting remains
an 2ε-approximate dominant strategy to M, but non-truthful reports may no longer be approximate
dominant strategies.
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Claim 7 If M : T n → O is ε-differentially private and f(o, ·) : T → O′i is dominant strategy truthful
for every o ∈ O, then truthful reporting is a ε-approximate dominant strategy for the mechanism M′ :
T n → O′ that produces outcome f(M(t), ti) for agent i.

Proof

Eo∼M(t)[ui(f(o, ti))] ≥ exp(−ε)Eo∼M(t−i,t′i)
ui(f(o, ti))] ≥ exp(−ε)Eo∼M(t−i,t′i)

[ui(f(o, t′i))]

≥ (1− ε)Eo∼M(t−i,t′i)
[ui(f(o, t′i))] ≥ Eo∼M(t−i,t′i)

[ui(f(o, t′i))]− ε

4 Digital Goods Auctions

A digital goods auction is one in which the auctioneer is selling copies of an identical good, with zero
marginal cost of production, to n bidders. Think about Microsoft trying to auction off copies of Windows:
there is no finite supply, since copying software is free. As such, its not interesting to consider welfare
maximizing auctions in this setting, because in this case, you could just give the item to all bidders, and
charge them nothing. Instead, we will be interested in revenue.

Formally, each bidder has a type vi ∈ [0, 1] which represents his value for receiving a copy of the good.
(We let the type space T = [0, 1], and values vi ∈ T are identified with bidder types). The outcome
space O = 2[n]× [0, 1]n is the set of all subsets of bidders who might be selected to win an item, together
with the set of all prices they might be charged: an outcome is a pair (S, p), where bidders i ∈ S receive
an item and must pay pi. Bidders who i receive an item get utility vi − pi; bidders who do not receive
an item get utility 0:

ui(S, p) =

{
vi − pi, i ∈ S;
0, otherwise.

As the mechanism designer, we are interested in the revenue obtained by the auction. For each
outcome (S, p), the revenue is simply the sum of the prices collected: Rev(S, p) =

∑
i∈S pi.

To calibrate our goals, we need to fix a price benchmark. Since we are not in a Bayesian setting
(in which bidders valuations are drawn from a known prior distribution), there is no notion of a single,
revenue-optimal truthful mechanism. A natural benchmark is that of the revenue of the best fixed price,
given the realized bidder valuations2. Consider the revenue we can obtain if we offer every (rational)
bidder a fixed price p ∈ R≥0. If the price that we offer is below their value, they will buy the item,
contributing p to our total revenue. Otherwise, they will not buy the item, and they contribute 0 to
our revenue. Hence, given bidder valuations v ∈ [0, 1]n, the revenue we can obtain with a fixed price
p ∈ R≥0 is:

Fixed(v, p) = p · |{i : vi ≥ p}|

The revenue of the best fixed price is therefore:

OPT(v) = max
p∈[0,1]

Fixed(v, p)

We would like to design an auction that in the worst case over bidder valuations v obtains revenue
that is close to OPT(v).

2There are various ways to justify this benchmark, but one is the following: for any fixed prior distribution from which
bidders valuations are assumed to be drawn i.i.d., the Myerson revenue-optimal auction will end up charging each winning
bidder some fixed price. What price this is depends on the distribution. If we can do almost as well as the revenue of
the best fixed price in hindsight, even in the worst case over bidder valuations, then we are competitive with the Myerson
optimal auction simultaniously for all priors, and we did it in a prior independent way!
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4.1 A (Really) Simple Power Tool

Lets take a moment to introduce a really simple but powerful tool in differential privacy that we will
have opportunity to meet again: the exponential mechanism.

The exponential mechanism ME : Xn → O is instantiated with an arbitrary range O together with
a quality score q : Xn ×O → R, which maps input/output pairs to a number, which intuitively should
be thought of as measuring how “good” an output o is, for input x. The mechanism outputs an element
of O at random, giving exponentially weighted preference to those outputs with higher quality score.

A key parameter of the quality score is its sensitivity :

Definition 8 The sensitivity of the quality score q : Xn ×O → R is defined to be:

GS(q) = max
i∈[n],x∈Xn,x′i∈X,o∈O

|q(x, o)− q((x−i, x′i), o)|

It is the maximum absolute value change a single individual can affect on the quality score, in the worst
case over outputs o.

Algorithm 1 The Exponential Mechanism

ME(x; q,O, ε):
Output o ∈ O with probability:

exp
(
ε·q(x,o)
2·GS(q)

)
Z(x)

where Z(x) =
∑
o∈O exp

(
ε·q(x,o)
2·GS(q)

)
The exponential mechanism will be a useful tool for us because of two basic theorems. First, the

exponential mechanism is ε-differentially private:

Theorem 9 ([MT07]) For every range O and quality score q, ME(·; q,O, ε) is ε-differentially private.

Proof We’ll prove privacy using the first form of the differential privacy definition we saw. Fix an
arbitrary x ∈ Xn, x′i ∈ X and consider any output o ∈ O. We have:

Pr[ME(x; q,O, ε) = o]

Pr[ME((x−i, x′i); q,O, ε) = o]
=

Z((x−i, x
′
i))

Z(x)
·

exp
(
ε·q(x,o)
2·GS(q)

)
exp

(
ε·q((x−i,x′i),o)

2·GS(q)

)
=

Z((x−i, x
′
i))

Z(x)
· exp

(
ε · (q(x, o)− q((x−i, x′i), o))

2 ·GS(q)

)
≤ Z((x−i, x

′
i))

Z(x)
· exp

(
ε ·GS(q)

2 ·GS(q)

)
=

Z((x−i, x
′
i))

Z(x)
· exp

( ε
2

)
≤ exp(ε)

Next, we show that the exponential mechanism actually outputs an element with pretty high quality
score (most of the time).
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Theorem 10 ([MT07]) Define OPTq,O(x) = maxo∗∈O q(x, o
∗) Let o =ME(x; q,O, ε). Then:

Pr[q(x, o) ≤ OPTq,O(x)− 2 ·GS(q)

ε
(log |O|+ t)] ≤ exp(−t)

Proof For any quantity t:

Pr[q(x, o) ≤ t] ≤ Pr[q(x, o) ≤ t]
Pr[q(x, o) = OPTq,O(x)]

≤
|O| exp

(
εt

2·GS(q)

)
exp

(
εOPTq,O(x)

2·GS(q)

)
= |O| · exp

(
ε(t−OPTq,O(x))

2 ·GS(q)

)
Plugging in t = OPTq,O(x)− 2·GS(q)

ε (log |O|+ t) we get:

Pr[q(x, o) ≤ t] ≤ |O| exp (−(log |O|+ t))

= exp(−t)

4.2 Using the exponential mechanism to pick a price

We now turn our attention back to digital goods auctions. Recall that we want to compete with a “best
fixed price” benchmark, and we will do so in a relatively straightforward way:

1. We will pick a price p̂ ∈ [0, 1] from the exponential mechanism to maximize Fixed(v, p).

2. We will then sell to each bidder i at this price p̂ if their reported value vi ≥ p. That is, for each
bidder i: i ∈ S and pi = p̂ iff f(p̂, vi) ≡ 1vi≥p̂ = 1.

3. Since for every fixed price p̂, reporting ones true value is a dominant strategy, and p̂ is chosen in
an ε-differentially private way, the whole mechanism will be ε-approximately dominant strategy
truthful.

A couple of details to work out: first, if we are going to use Fixed(v, p) as the quality score in
our exponential mechanism, we need to understand its sensitivity. But this is straightforward: Recall
Fixed(v, p) = p · |{i : vi ≥ p}|. For every fixed price p, changing a single valuation vi can change the size
of the set {i : vi ≥ p} by at most 1. Since p ∈ [0, 1], that means GS(Fixed) = 1.

Second, we have to decide what set O to pick prices from. As defined, O must be a finite set3. Let us
consider a discretized range O = {α, 2α, . . . , 1}, so that |O| = 1/α. We have a tradeoff to consider. On
the one hand, taking a finer discretization (i.e. a smaller value of α) will allow the revenue of the best
fixed price in our discrete set O to more closely approach OPT(v). On the other hand, the exponential
mechanism does not guarantee us that it will find the best fixed price in O – but merely one that achieves

revenue that is an additive O
(

log |O|
ε

)
of the best – so we pay a penalty for taking a discretization that

is too fine.
Observe that for all v:

max
p∈O

Fixed(v, p) ≥ OPT(v)− αn.

3It is possible to define and analyze the exponential mechanism when it has a continuous range, but I prefer finite things
and I am writing these lecture notes, so there.
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To see why this is, consider the optimal price p∗ ∈ [0, 1] that achieves revenue OPT(v). There is some
price p̂ ∈ O such that p∗ − α ≤ p̂ ≤ p∗. If we instead use price p̂, the number of people who purchase
the good |{i : vi ≥ p̂}| can only increase, and from each such person, we lose at most α in revenue.

Putting this all together, for any vector of valuations v, our mechanism will with high probability
achieve revenue:

Rev ≥ OPT(v)− αn−O
(

log 1/α

ε

)
If we choose α = 1/n, then this becomes:

Rev ≥ OPT(v)−O
(

log n

ε

)
Putting it all together, we have proven:

Theorem 11 ([MT07]) There is an ε-approximately dominant strategy truthful auction that in the

worst case over bidder valuations, guarantees revenue at least OPT(v) − O
(

logn
ε

)
with probability at

least 99%.

Remark Note that in a “large economy” we should expect OPT(v) to grow with n. If OPT(v) grows
even mildly with n (at a rate faster than log n), then this theorem is guaranteeing that we get all but a
diminishing fraction of the optimal revenue. More realistically, we might expect OPT(v) to grow linearly
with n. In this case, we could take (say) ε = 1/

√
n, and not only would the approximation to the optimal

revenue become exact as n grows large, but the truthfulness guarantee would become exact as n grows
large. This is an asymptotically truthful mechanism that achieves asymptotically optimal revenue in
large economies, all without requiring access to a prior on bidder valuations. Whats more, because of
the differential privacy guarantee, the incentive properties are robust to collusion.

What I want to emphasize most, however, is the simplicity of the mechanism. Once we developed
the necessary machinery, designing this mechanism was trivial. Whats more, it naturally generalizes to
multi-parameter domains, in which designing exactly truthful mechanisms can be difficult.

Finally, its worth noting the best exactly truthful mechanism known for this setting. [BBHM05] give
an exactly dominant strategy truthful mechanism that achieves revenue OPT(v) − O (

√
n). What we

have done in this lecture is traded exact truthfulness for asymptotic truthfulness, but we have gained
an exponential factor in the additive loss we incur on top of our revenue benchmark!

Bibliographic Information The definition of Differential Privacy is from Dwork, McSherry, Nissim,
and Smith 2006 [DMNS06]. I first heard it defined in its utility-theoretic form in a talk by Kobbi
Nissim. Its application to digital goods auctions is from ”Mechanism Design via Differential Privacy”
by McSherry and Talwar, 2007 [MT07]. This was the first paper that suggested that differential privacy
might be a useful tool in game theory. [MT07] also introduced the exponential mechanism, which quickly
became one of the foundational building blocks in the differential privacy toolkit.
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