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Overview

▶ In this class, we’ve frequently used techniques from machine
learning to solve game theory problems: Equilibrium
computation, online auctions, dynamic pricing, . . .

▶ Today: the reverse direction: We can derive ML algorithms
from game theoretic arguments (the minimax theorem)

▶ In fact, in a strong sense, learning algorithms like polynomial
weights are equivalent to the minimax theorem.
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Calibration

▶ You turn on your TV, and the weatherman tells you that there
is a 10% chance of rain.

▶ What does this mean? Today only happens once; not a
repeatable event.

▶ If it doesn’t rain, was he wrong? What if it rains?

▶ Is there any way we can test if the weatherman knows what
he is doing?
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Model

Lets write down a simple model — the weather prediction game.
In rounds t = 1 to T :

1. The prediction player predicts some probability pt of rain, for
pt ∈ {0, 1/m, 2/m, . . . , (m − 1)/m, 1}.

2. The outcome yt ∈ {0, 1} is revealed: it either rains (yt = 1)
or it does not (yt = 0).

▶ Can we devise a test to determine whether the weatherman
knows what he is doing?
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Devising a Test
▶ Suppose every day, a probability p∗t is revealed to the

weatherman, and then it rains with that probability:
Pr[yt = 1] = p∗t .

▶ If the weatherman predicts pt = p∗t he should pass the test.
Call him “the oracular weatherman”

▶ It should also be possible to fail the test.

▶ A first attempt:

Definition (Average Consistency)

A prediction strategy satisfies ϵ average consistency if for every
sequence of outcomes, the sequence of predictions it generates
(p1, y1, . . . , pT , yT ) satisfies

E

[∣∣∣∣∣ 1T
T∑
t=1

pt −
T∑
t=1

yT

∣∣∣∣∣
]
≤ ϵ

We say it satisfies average consistency if ϵ → 0 as T → ∞.
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Devising a Test

▶ The oracular weatherman passes this test (Remember the
Chernoff-Hoeffding bound!)

▶ But the test seems too easy to pass...

▶ Consider the “yesterday weatherman”: “On day 1, predict
p1 = 0, and on day t, predict pt = yt−1”.

▶ (Just predicts that whatever happened yesterday happens
today)

▶
∣∣∣ 1T ∑T

t=1 pt −
∑T

t=1 yT

∣∣∣ = yT/T ≤ 1/T
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Devising a Test

▶ Easy to differentiate the yesterday weatherman from the
oracular weatherman. (How?)

▶ When the oracular weatherman predicts a 100% chance of
rain, it always rains. But the yesterday weatherman frequently
predicts a 100% chance of rain and is wrong.

▶ The yesterday weatherman violates prediction conditioned
average consistency.

▶ Bucket the weatherman’s predictions into 100 buckets. Say pt
is in bucket i (pt ∈ B(i)) if it is closer to i/100 than any
other point j/100.
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Devising a Test

Definition
Given a sequence of predictions and outcomes (p1, y1, . . . , pT , yT ),
let nT (i) = |{t : pt ∈ B(i)}| be the number of rounds on which
the prediction was in bucket i . The sequence satisfies ϵ-prediction
conditioned average consistency for a bucket i if:∣∣∣∣∣

∑
t:pt∈B(i) yt − pt

nT (i)

∣∣∣∣∣ ≤ ϵ

▶ i.e. conditioned pt ≈ i/100 probability of rain, it should rain
roughly a i/100 fraction of the time.

▶ Idea for calibration: Forecaster should be correct on average,
conditioned on her forecast.
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Calibration

▶ Idea: Ask for conditional consistency for all 100 buckets.

▶ Problem: Even the oracular weatherman wouldn’t satisfy this
for buckets that were infrequently used.

▶ But can ask for it on average:

Definition
A prediction strategy satisfies ϵ-average calibration if for all
sequences of outcomes, the sequence of predictions it generates
(p1, y1, . . . , pT , yT ) satisfies:

E

[
100∑
i=1
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T
·
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T
E
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∣∣∣∣∣
T∑
t=1

1[pt ∈ B(i)](yt − pt)
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]
≤ ϵ

We say it satisfies average calibration if ϵ → 0 as T → ∞
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Calibration

▶ More convenient to instead work with a “Euclidean” metric of
calibration error:

LT =
100∑
i=1

(
T∑
t=1

1[pt ∈ B(i)](yt − pt)

)2

▶ Can confirm (“Cauchy-Schwartz inequality”) that the
calibration error is upper bounded by:

1

T
E

[
100∑
i=1

∣∣∣∣∣
T∑
t=1

1[pt ∈ B(i)](yt − pt)

∣∣∣∣∣
]
≤ E

[
10

T

√
LT

]
≤ 10

T

√
E[LT ]

▶ Our goal: Develop an algorithm to allow a fraudulent
weatherman to pass this test no matter what.
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Deriving The Fraudulent Weatherman’s Algorithm
▶ Suppose our weatherman has made predictions up through

day s − 1, and is considering what to predict on day s.

▶ Let V i
s−1 =

∑s−1
t=1 1[pt ∈ B(i)](yt − pt)

▶ If he predicts ps ∈ B(i) and the outcome is ys , then the
increase in the loss function is:

∆s(ps , ys) = Ls − Ls−1

=

(
s∑

t=1

1[pt ∈ B(i)](yt − pt)

)2

−

(
s−1∑
t=1

1[pt ∈ B(i)](yt − pt)

)2

=
(
V i
s−1 + (ys − ps)

)2 − (V i
s−1

)2
≤ 2V i

s−1 · (ys − ps) + 1
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Deriving The Fraudulent Weatherman’s Algorithm

∆s(ps , ys) ≤ 2V i
s−1 · (ys − ps) + 1

▶ Suppose our predictions guaranteed: E[∆s(ps , ys)] ≤ 2T
m + 1

▶ Then we would have:

E[LT ] =
T∑
t=1

E[∆t(pt , yt)] ≤
2T 2

m
+ T = O

(
T 2

m
+ T

)
▶ And our calibration loss would be bounded by:

ϵ ≤ 10

T

√
E[LT ] = O(

1√
m

+
1√
T
)

▶ O(1/
√
T ) if we choose m = T . This is our goal.
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Learning Via Game Theory

▶ At round s, define a zero-sum game to guide the Learner’s
strategy.

▶ The Learner (the minimization player) has action set
A1 = {1/m, 2/m, . . . , 1}.

▶ The Adversary (the maximization player) has action set
A2 = {0, 1}.

▶ The cost function is:

Cs(p, y) = 2V i
s−1 · (ys − ps) + 1

▶ Recall: ∆s(ps , ys) ≤ Cs(ps , ys)
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Learning Via Game Theory

Cs(p, y) = 2V i
s−1 · (ys − ps) + 1

▶ What is the minmax = maxmin value of this game?

▶ Prediction is easier if you know the answer already, so lets
consider the maxmin value: corresponds to Adversary
committing to the probability of rain qs and telling Learner.

▶ Ey∼q[Cs(p, y)] = 2V i
s−1 · (qs − ps) + 1

▶ Learner can best respond choosing ps = argminp∈A1 |qs − p|:
|qs − ps | ≤ 1/m.

▶ So:

max
q∈∆A2

min
p∈A1

Ey∼q[Cs(p, y)] ≤
2maxi V

i
s−1

m
+ 1 ≤ 2T

m
+ 1
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Learning Via Game Theory

▶ So by the minimax theorem:

min
p̂∈∆A1

max
y∈A2

Ep∼p̂[Cs(p, y)] ≤
2maxi V

i
s−1

m
+ 1 ≤ 2T

m
+ 1

▶ Thus: At every round s, Learner has a strategy p̂s
guaranteeing for all weather outcomes ys :

Eps∼p̂s [∆s(ps , ys)] ≤
2maxi V

i
s−1

m
+ 1 ≤ 2T

m
+ 1

▶ And so we have proven:

Theorem
There exists a prediction strategy that against an arbitrary
adversarially chosen sequence of T outcomes satisfies ϵ-average
calibration for ϵ = O(1/

√
T )
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The Algorithm?

▶ We need to compute the minmax strategy for the learner in
the zero sum game.

▶ We know how to do that with efficiently polynomial weights!

▶ But maybe there is a more efficient direct solution...
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The Algorithm?

∆s(ps , ys) ≤ 2V i
s−1 · (ys − ps) + 1

Needed: A strategy guaranteeing E[∆s(ps , ys)] ≤ 2T
m + 1.

▶ Case 1: V i
s−1 ≥ 0 for all i : Predict ps = 1. Then:

∆s(ps , ys) ≤ 2V i
s−1 · (ys − 1) + 1 ≤ 1

▶ Case 2: V i
s−1 ≤ 0 for all i : Predict ps = 0. Then:

∆s(ps , ys) ≤ 2V i
s−1 · (ys − 0) + 1 ≤ 1

▶ Otherwise: There must exist an i such that V i
s−1 ≥ 0 and

V i+1
s−1 ≤ 0 or vice versa.
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Needed: A strategy guaranteeing E[∆s(ps , ys)] ≤ 2T
m + 1.

▶ Case 3: Let q ∈ [0, 1] be a probability such that
qV i

s−1 + (1− q)V i+1
s−1 = 0.

▶ Let p = argmax{p ∈ B(i)}, p′ = argmin{p′ ∈ B(i + 1)}.
Note p′ = p + 1/m.

▶ Play ps = p with probability q and ps = p′ w.p. (1− q)

▶ Then:

E[∆s(ps , ys)] ≤ 2qV i
s−1·(ys−p)+2(1−q)V i+1

s−1(ys−p−1/m)+1

≤
2|V i+1

s−1 |
m

+ 1 ≤ 2T

m
+ 1
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Reflecting

▶ Argument was generic to any linear (i.e. based on bounding
sums or averages) test aimed at distinguishing the oracular
weatherman from a fraud.

▶ Because the minimax theorem literally is allowing us to
analyze the Learner as if she is the oracular weatherman!

▶ What does this mean about what we can learn from empirical
tests of probabilistic models?
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Thanks!

See you next class — stay healthy!


