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Overview

▶ We’ve spent a lot of time thinking about auctions: how to
allocate goods and extract money.

▶ But what about information?

▶ This class: How to contract with an expert to incentivize
them to report their belief to us about the likelihood of an
event we will only observe once.
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Example: Betting on the Election

▶ Suppose we want to know the likelihood that candidate A
wins the next presidential election between A and B.

▶ But we don’t follow politics and don’t have informed beliefs.

▶ Our friend the professional gambler is also a politics wonk.
He’s got well informed beliefs, but he won’t just tell you, he’ll
only gamble.

▶ How can we set up a gamble so that if he wants to maximize
his payoff he’ll tell us his true beliefs?
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Example: Betting on the Election

▶ Attempt 1: “Who do you think will win the election? I’ll give
you $1 if you get it right.”

▶ What will he say to maximize his profits?
▶ If he thinks Pr[A] ≥ 1/2 he’ll guess A, otherwise he’ll guess B.
▶ But this doesn’t tell you his specific belief about Pr[A] — i.e.

can’t distinguish Pr[A] = 0.51 from Pr[A] = 0.99.

▶ But we didn’t ask the right question...
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Example: Betting on the Election

▶ Attempt 2: “What do you think is the probability p that A
will win the election? I’ll pay you...

▶ p if A wins and 1− p if B wins.”

▶ What will he say to maximize his profits?
▶ If he believes that A will win with probability q, then if he

reports p his expected profit is:

S(p, q) = q · p + (1− q) · (1− p)

▶ If q ≥ 0.5 this is maximized at p = 1. Otherwise it is
maximized at p = 0...

▶ So we didn’t learn any more than in Attempt 1...
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Proper Scoring Rules

1. There is some future event Y that can take value in some
finite set Y: for example, Y = {A,B}.

2. An Agent has a belief q ∈ ∆Y about how the outcome is
distributed.

3. The Agent will report (a possibly different) distribution
p ∈ ∆Y.

4. Once the outcome Y = y is realized, the Agent is paid
S(p, y), according to a known function (or scoring rule)
S : ∆Y × Y → R.

5. The Agent will report the distribution p that maximizes their
expected payment under their beliefs:

p ∈ arg max
p∈∆Y

Ey∼q[S(p, y)]
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Proper Scoring Rules

1. For shorthand, we’ll write:

S(p; q) = Ey∼q[S(p, y)] =
∑
y∈Y

q(y)S(p, y)

for the Agent’s expected payoff of reporting p under belief q.

Definition (Proper Scoring Rule)

A scoring rule S : ∆Y × Y is proper if for every belief q, truthful
reporting is a dominant strategy: for every q, p ∈ ∆Y:

S(q; q) ≥ S(p; q)

If the inequality is strict for every p ̸= q, we say that S is a strictly
proper scoring rule.
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An Aside: Convexity

Definition (Convex Set)

A set C ⊆ Rd is convex if it contains the line segment connecting
any two points x , y ∈ C . In other words, if for any x , y ∈ C and
any α ∈ [0, 1]:

αx + (1− α)y ∈ C

Definition
A function f : Rd → R is convex if C = {x : x ≥ f (x)} is a convex
set. Equivalently, for all x , y ∈ Rd , and for all α ∈ [0, 1]:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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An Aside: Convexity

An equivalent characterization: a function is convex if and only if
every line tangent to the function lies below the function.

Fact
A differentiable function f : Rd → R is convex if and only if for
every x , y ∈ Rd :

f (x) ≥ f (y) +∇f (y) · (x − y)

(See pictures)



An Aside: Convexity

An equivalent characterization: a function is convex if and only if
every line tangent to the function lies below the function.

Fact
A differentiable function f : Rd → R is convex if and only if for
every x , y ∈ Rd :

f (x) ≥ f (y) +∇f (y) · (x − y)

(See pictures)



Proper Scoring Rules: Building Intuition

1. Lets consider the binary prediction case: Y = {A,B}. We can
think of beliefs p ∈ R, where p = Pr[A].

2. So S(p; q) = q · S(p,A) + (1− q)S(p,B).

3. Let f (q) = S(q; q).

3.1 Observation 1: S(p; q) is linear in q for all p.
3.2 If S is proper, then for all q ̸= p, f (q) ≥ S(p; q).
3.3 So f (q) = maxp∈[0,1] S(p; q), the maximum of a bunch of

linear functions (convex).
3.4 And for all p ∈ [0, 1], S(p; q) is the tangent line (gradient) of

f (q) at p = q, and lies entirely below f (q).

4. (See pictures).
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Proper Scoring Rules: A Characterization

Theorem
Fix a finite domain Y with |Y| = d . A scoring rule
S : ∆Y × Y → R is proper if and only if there exists a convex
function f : Rd → R such that:

S(p; q) = f (p) +∇f (p)(q − p)

(In particular S(p, y) = f (p) +∇f (p)(ey − p) where ey is the unit
vector that has a 1 in the y ’th component). The function f also
satisfies

f (q) = S(q; q)



Proof

We have two directions to prove. First, if f : Rd → [0, 1] is convex,
then S(p, y) = f (p) +∇f (p)(ey − p) is proper.

1. We can compute for any p, q:

S(p; q) = Ey∼q[f (p)+∇f (p)(ey − p)] = f (p)+∇f (p)(q− p)

2. If q = p then we have:

S(q; q) = f (q)

3. So for p ̸= q, we have S(q; q) ≥ S(p; q) exactly when:

f (q) ≥ f (p) +∇f (q)(q − p)

4. Since f is convex, this is always the case! (Tada!)
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Proof

In the reverse direction, we need to show that if S is proper, then
there is a convex function f such that
S(p, y) = f (p) +∇f (p)(ey − p)

1. We’ll let f (q) = S(q; q)

2. Recall that for any p:

S(p; q) =
∑
y∈Y

q(y)S(p, y)

which is linear in q, always lies below f (q), and is tangent to
f at q = p.

3. So for all p, q we can write:

S(p; q) = f (p) +∇f (p)(q − p)

4. (Since all of f ’s tangent lines lie below it, it is convex)
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which is linear in q, always lies below f (q), and is tangent to
f at q = p.

3. So for all p, q we can write:

S(p; q) = f (p) +∇f (p)(q − p)

4. (Since all of f ’s tangent lines lie below it, it is convex)



Example

1. Let S(p, y) = log(p(y)).

2. So S(p; q) =
∑

y∈Y q(y) log(p(y)) (Cross entropy)

3. Lets check our characterization...

3.1 f (q) = S(q; q) =
∑

y∈Y q(y) log(q(y)): Negative Shannon
Entropy (Convex)

3.2 We can recover S(p, y) from our expression:

S(p, y) = f (p) +∇f (p)(ey − p)

= f (p) +∇f (p)ey −∇f (p)p

=
∑
y∈Y

p(y) log(p(y)) + (1 + log p(y))− 1−
∑
y∈Y

p(y) log(p(y))

= log p(y)



Example

1. Let S(p, y) = log(p(y)).

2. So S(p; q) =
∑

y∈Y q(y) log(p(y)) (Cross entropy)

3. Lets check our characterization...

3.1 f (q) = S(q; q) =
∑

y∈Y q(y) log(q(y)): Negative Shannon
Entropy (Convex)

3.2 We can recover S(p, y) from our expression:

S(p, y) = f (p) +∇f (p)(ey − p)

= f (p) +∇f (p)ey −∇f (p)p

=
∑
y∈Y

p(y) log(p(y)) + (1 + log p(y))− 1−
∑
y∈Y

p(y) log(p(y))

= log p(y)



Example

1. Let S(p, y) = log(p(y)).

2. So S(p; q) =
∑

y∈Y q(y) log(p(y)) (Cross entropy)

3. Lets check our characterization...

3.1 f (q) = S(q; q) =
∑

y∈Y q(y) log(q(y)): Negative Shannon
Entropy (Convex)

3.2 We can recover S(p, y) from our expression:

S(p, y) = f (p) +∇f (p)(ey − p)

= f (p) +∇f (p)ey −∇f (p)p

=
∑
y∈Y

p(y) log(p(y)) + (1 + log p(y))− 1−
∑
y∈Y

p(y) log(p(y))

= log p(y)



Example

1. Let S(p, y) = log(p(y)).

2. So S(p; q) =
∑

y∈Y q(y) log(p(y)) (Cross entropy)

3. Lets check our characterization...

3.1 f (q) = S(q; q) =
∑

y∈Y q(y) log(q(y)): Negative Shannon
Entropy (Convex)

3.2 We can recover S(p, y) from our expression:

S(p, y) = f (p) +∇f (p)(ey − p)

= f (p) +∇f (p)ey −∇f (p)p

=
∑
y∈Y

p(y) log(p(y)) + (1 + log p(y))− 1−
∑
y∈Y

p(y) log(p(y))

= log p(y)



Example

1. Let S(p, y) = log(p(y)).

2. So S(p; q) =
∑

y∈Y q(y) log(p(y)) (Cross entropy)

3. Lets check our characterization...

3.1 f (q) = S(q; q) =
∑

y∈Y q(y) log(q(y)): Negative Shannon
Entropy (Convex)

3.2 We can recover S(p, y) from our expression:

S(p, y) = f (p) +∇f (p)(ey − p)

= f (p) +∇f (p)ey −∇f (p)p

=
∑
y∈Y

p(y) log(p(y)) + (1 + log p(y))− 1−
∑
y∈Y

p(y) log(p(y))

= log p(y)



Closing Remarks: Proper Losses in Machine Learning

1. So cross entropy (a common objective in machine learning) is
a proper scoring rule.

2. So is squared loss...

3. Not a coincidence! If you are solving a regression problem to
try and learn the probability of a label conditional on some
features, the unconstrained optimum will be the true
distribution exactly when the loss is proper!

4. An important reason why regression models minimize squared
error rather than e.g. absolute error.
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Thanks!

See you next class — stay healthy!


