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> Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

> But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

» More practical/realistic if we just post prices and let buyers
make purchase decisions.

» But also more complex, because we don't get the feedback
needed to run the polynomial weights algorithm.

» This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

P Its also possible to solve the problem without the
distributional assumption... Just more complicated.
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» We know nothing about the instance at the start, but learn as
we go (and can change prices as we learn).

Definition

In a dynamic pricing setting, there are n buyers, each with
valuation v; € [0, 1] drawn independently from some unknown
distribution D.

1. At time t, the seller sets some price p; € [0, 1].

2. Buyer t arrives with v ~ D. If v; > p;, the buyer purchases
the good, and the seller gets revenue p;. Otherwise, the buyer
declines to purchase the good, and the seller gets revenue 0.
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A Learning Approach

» We continue to want to compete with the bext fixed price
benchmark:
OPT = maxp-Pr[v>p|-n
P

» Our approach last lecture was to reduce the problem to an
online learning problem, and solve it using the PW algorithm.

> We'll try and do the same thing this lecture. We need to
define a learning problem with more restricted feedback.
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Bandit Problems

Definition

In the multi-armed bandit problem, there are k “arms” i, each of
which is associated with a payoff distribution D; over [0, 1] with
mean ;. In rounds t, the algorithm chooses arm i; and receives
reward r,-f ~ D;.

The expected reward of the algorithm after T days is Z;l i, -
The regret of the algorithm is:

T
Regret( T) =T pup=— Z'uit
t=1

where i* = arg max; p; is the arm with highest expected reward.
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The idea

» Idea: “optimism in the face of uncertainty”.

> We will quantify uncertainty about the mean payoff of each
arm i by maintaining a confidence interval around its
empirical estimate.

> We will then behave greedily — but not by playing the arm
with the highest empirical mean so far, but rather by playing
the arm with the highest upper confidence bound.

» This is being optimistic — imagining that each arm is as good
as it could possibly be, consistent with the evidence.



Confidence Intervals

Theorem (Chernoff-Hoeffding Bound)

Let D be any distribution over [0, 1] with mean p, and let
X1,..., Xy ~ D be independent draws. Then for any 0 < § < 1:
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The Algorithm

UCB(5, T):

Define w(n) = @ Initialize empirical means 2 < 1/2
and upper and lower confidence bounds u? — 1,5? + 0 for each
arm i. Initialize play counts n! <— 0 for each arm /.
fort=1to T do

Pick an arm i; € arg max u,.tfl. Observe reward r,-i.

Update: For each i # iy, set

(Af, uf, €, nf) < (A, uf 7Y nft)

For i = iy, n} + nf_l +1,

At SRR ot ot 4 w(nd), 0 it — w(nt)

end for



Regret

Theorem
For any set of k arms, with probability 1 — §, the UCB algorithm

obtains regret:
T
Regret(T) < O < k-T-In (5>>
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Proof

Observe that the widths of the confidence intervals w
maintained by the UCB algorithm are defined such that (by
the Chernoff-Hoeffding bound): for each t and /, with
probability 1 — 6/ T

pi € [uf, £7].

Since there are T confidence intervals constructed over the
run of the algorithm, with probability 1 — 4, simultaneously for
all i and t:

Hi € [UIF> ff]

For the rest of the argument, we will assume that this is the
case.
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Proof

Suppose at day t we play action i, obtaining expected payoff

Mg -

How much worse is this than u;«, the expected payoff of the
optimal arm? Since by definition iy = arg max; uitfl, and

because all of the confidence intervals are valid, we have:

pie 2 G0 = i =2w(nf ) 2 it 2w (niTh) 2 i —2w(nf )

It it — It
So the regret incurred at round t is:

t—l)

it

Hix — Wiy < 2W(n

Or see picture...
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So we can bound overall regret as:

Regret(T)
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> We will pick a set k “arms”, associating each one with a price
from K = {a, 20, 3ar, ..., 1}.

» Note that k = |K| = 1/a. The distribution on rewards for
each arm p is simply the distribution on revenue when
deploying a price p — realizing reward r, = p with probability
Pr[v > p] and reward r, = 0 otherwise.

» For every price p € [0, 1], there is another price p’ € K such
that p—a<p <p.

» So in a setting with n buyers, we have:

maxp-Pr[v>p]-n> max p-Prl[v>p]-n—an
peEK 0,1]

)
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Dynamic Pricing
» Using the guarantees of the UCB algorithm we have that
except with probability §:

n
> . >pl-n— -n- _
Revenue(UCB) > ?Ga%p Prlv>p]-n—0 ( k-n-In <5>>

ZOPT—an—O< ;-In(:;))

» Choosing

n
yields:

Revenue(UCB) > OPT — O <n2/3 Iog(n/5)1/3>

> So if OPT(n) = w (n*3log(n/&)*/3), then
Revenue(UCB) > (1 — o(1))OPT.

» For any non-trivial distribution, this is the case (since OPT(n)
grows linearly with n).



Thanks!

See you next class — stay healthy!



