
Dynamic Pricing: Profit Maximization From
“Bandit” Feedback

Aaron Roth

University of Pennsylvania

April 16 2024

Overview

▶ Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

▶ But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

▶ More practical/realistic if we just post prices and let buyers
make purchase decisions.

▶ But also more complex, because we don’t get the feedback
needed to run the polynomial weights algorithm.

▶ This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

▶ Its also possible to solve the problem without the
distributional assumption... Just more complicated.

Overview

▶ Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

▶ But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

▶ More practical/realistic if we just post prices and let buyers
make purchase decisions.

▶ But also more complex, because we don’t get the feedback
needed to run the polynomial weights algorithm.

▶ This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

▶ Its also possible to solve the problem without the
distributional assumption... Just more complicated.

Overview

▶ Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

▶ But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

▶ More practical/realistic if we just post prices and let buyers
make purchase decisions.

▶ But also more complex, because we don’t get the feedback
needed to run the polynomial weights algorithm.

▶ This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

▶ Its also possible to solve the problem without the
distributional assumption... Just more complicated.

Overview

▶ Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

▶ But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

▶ More practical/realistic if we just post prices and let buyers
make purchase decisions.

▶ But also more complex, because we don’t get the feedback
needed to run the polynomial weights algorithm.

▶ This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

▶ Its also possible to solve the problem without the
distributional assumption... Just more complicated.

Overview

▶ Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

▶ But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

▶ More practical/realistic if we just post prices and let buyers
make purchase decisions.

▶ But also more complex, because we don’t get the feedback
needed to run the polynomial weights algorithm.

▶ This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

▶ Its also possible to solve the problem without the
distributional assumption... Just more complicated.

Overview

▶ Last lecture, we gave an online auction for maximizing
revenue in digital goods settings.

▶ But it was an “auction” rather than a “pricing scheme”
because bidders had to report their valuations.

▶ More practical/realistic if we just post prices and let buyers
make purchase decisions.

▶ But also more complex, because we don’t get the feedback
needed to run the polynomial weights algorithm.

▶ This lecture: solve this kind of “censored” learning problem
when bidders are drawn from a distribution.

▶ Its also possible to solve the problem without the
distributional assumption... Just more complicated.

Dynamic Pricing

▶ We can offer fixed prices, and just observe whether buyers
take or leave them. (Not their values).

▶ We know nothing about the instance at the start, but learn as
we go (and can change prices as we learn).

Definition
In a dynamic pricing setting, there are n buyers, each with
valuation vi ∈ [0, 1] drawn independently from some unknown
distribution D.
1. At time t, the seller sets some price pt ∈ [0, 1].

2. Buyer t arrives with vt ∼ D. If vt ≥ pt , the buyer purchases
the good, and the seller gets revenue pt . Otherwise, the buyer
declines to purchase the good, and the seller gets revenue 0.

Dynamic Pricing

▶ We can offer fixed prices, and just observe whether buyers
take or leave them. (Not their values).

▶ We know nothing about the instance at the start, but learn as
we go (and can change prices as we learn).

Definition
In a dynamic pricing setting, there are n buyers, each with
valuation vi ∈ [0, 1] drawn independently from some unknown
distribution D.
1. At time t, the seller sets some price pt ∈ [0, 1].

2. Buyer t arrives with vt ∼ D. If vt ≥ pt , the buyer purchases
the good, and the seller gets revenue pt . Otherwise, the buyer
declines to purchase the good, and the seller gets revenue 0.

Dynamic Pricing

▶ We can offer fixed prices, and just observe whether buyers
take or leave them. (Not their values).

▶ We know nothing about the instance at the start, but learn as
we go (and can change prices as we learn).

Definition
In a dynamic pricing setting, there are n buyers, each with
valuation vi ∈ [0, 1] drawn independently from some unknown
distribution D.
1. At time t, the seller sets some price pt ∈ [0, 1].

2. Buyer t arrives with vt ∼ D. If vt ≥ pt , the buyer purchases
the good, and the seller gets revenue pt . Otherwise, the buyer
declines to purchase the good, and the seller gets revenue 0.

A Learning Approach

▶ We continue to want to compete with the bext fixed price
benchmark:

OPT = max
p

p · Pr[v ≥ p] · n

▶ Our approach last lecture was to reduce the problem to an
online learning problem, and solve it using the PW algorithm.

▶ We’ll try and do the same thing this lecture. We need to
define a learning problem with more restricted feedback.

A Learning Approach

▶ We continue to want to compete with the bext fixed price
benchmark:

OPT = max
p

p · Pr[v ≥ p] · n

▶ Our approach last lecture was to reduce the problem to an
online learning problem, and solve it using the PW algorithm.

▶ We’ll try and do the same thing this lecture. We need to
define a learning problem with more restricted feedback.

A Learning Approach

▶ We continue to want to compete with the bext fixed price
benchmark:

OPT = max
p

p · Pr[v ≥ p] · n

▶ Our approach last lecture was to reduce the problem to an
online learning problem, and solve it using the PW algorithm.

▶ We’ll try and do the same thing this lecture. We need to
define a learning problem with more restricted feedback.

Bandit Problems

Definition
In the multi-armed bandit problem, there are k “arms” i , each of
which is associated with a payoff distribution Di over [0, 1] with
mean µi . In rounds t, the algorithm chooses arm it and receives
reward r tit ∼ Di .

The expected reward of the algorithm after T days is
∑T

t=1 µit .
The regret of the algorithm is:

Regret(T) = T · µi∗ −
T∑
t=1

µit

where i∗ = argmaxi µi is the arm with highest expected reward.

Bandit Problems

Definition
In the multi-armed bandit problem, there are k “arms” i , each of
which is associated with a payoff distribution Di over [0, 1] with
mean µi . In rounds t, the algorithm chooses arm it and receives
reward r tit ∼ Di .

The expected reward of the algorithm after T days is
∑T

t=1 µit .
The regret of the algorithm is:

Regret(T) = T · µi∗ −
T∑
t=1

µit

where i∗ = argmaxi µi is the arm with highest expected reward.

The idea

▶ Idea: “optimism in the face of uncertainty”.

▶ We will quantify uncertainty about the mean payoff of each
arm i by maintaining a confidence interval around its
empirical estimate.

▶ We will then behave greedily – but not by playing the arm
with the highest empirical mean so far, but rather by playing
the arm with the highest upper confidence bound.

▶ This is being optimistic – imagining that each arm is as good
as it could possibly be, consistent with the evidence.

The idea

▶ Idea: “optimism in the face of uncertainty”.

▶ We will quantify uncertainty about the mean payoff of each
arm i by maintaining a confidence interval around its
empirical estimate.

▶ We will then behave greedily – but not by playing the arm
with the highest empirical mean so far, but rather by playing
the arm with the highest upper confidence bound.

▶ This is being optimistic – imagining that each arm is as good
as it could possibly be, consistent with the evidence.

The idea

▶ Idea: “optimism in the face of uncertainty”.

▶ We will quantify uncertainty about the mean payoff of each
arm i by maintaining a confidence interval around its
empirical estimate.

▶ We will then behave greedily – but not by playing the arm
with the highest empirical mean so far, but rather by playing
the arm with the highest upper confidence bound.

▶ This is being optimistic – imagining that each arm is as good
as it could possibly be, consistent with the evidence.

The idea

▶ Idea: “optimism in the face of uncertainty”.

▶ We will quantify uncertainty about the mean payoff of each
arm i by maintaining a confidence interval around its
empirical estimate.

▶ We will then behave greedily – but not by playing the arm
with the highest empirical mean so far, but rather by playing
the arm with the highest upper confidence bound.

▶ This is being optimistic – imagining that each arm is as good
as it could possibly be, consistent with the evidence.

Confidence Intervals

Theorem (Chernoff-Hoeffding Bound)

Let D be any distribution over [0, 1] with mean µ, and let
X1, . . . ,Xn ∼ D be independent draws. Then for any 0 ≤ δ ≤ 1:

Pr

∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≤
√

ln
(
2
δ

)
2n

 ≥ 1− δ

The Algorithm

UCB(δ,T):

Define w(n) =

√
ln(2T

δ)
2n . Initialize empirical means µ̂0

i ← 1/2
and upper and lower confidence bounds u0i ← 1, ℓ0i ← 0 for each
arm i . Initialize play counts nti ← 0 for each arm i .
for t = 1 to T do
Pick an arm it ∈ argmax ut−1

i . Observe reward r tit .
Update: For each i ̸= it , set
(µ̂t

i , u
t
i , ℓ

t
i , n

t
i)← (µ̂t−1

i , ut−1
i , ℓt−1

i , nt−1
i)

For i = it , n
t
i ← nt−1

i + 1,

µ̂t
i ←

nti −1

nti
µ̂t−1
i + 1

nti
r ti , u

t
i ← µ̂t

i + w(nti), ℓ
t
i ← µ̂t

i − w(nti)

end for

Regret

Theorem
For any set of k arms, with probability 1− δ, the UCB algorithm
obtains regret:

Regret(T) ≤ O

(√
k · T · ln

(
T

δ

))

Proof

▶ Observe that the widths of the confidence intervals w
maintained by the UCB algorithm are defined such that (by
the Chernoff-Hoeffding bound): for each t and i , with
probability 1− δ/T :

µi ∈ [uti , ℓ
t
i].

▶ Since there are T confidence intervals constructed over the
run of the algorithm, with probability 1− δ, simultaneously for
all i and t:

µi ∈ [uti , ℓ
t
i].

▶ For the rest of the argument, we will assume that this is the
case.

Proof

▶ Observe that the widths of the confidence intervals w
maintained by the UCB algorithm are defined such that (by
the Chernoff-Hoeffding bound): for each t and i , with
probability 1− δ/T :

µi ∈ [uti , ℓ
t
i].

▶ Since there are T confidence intervals constructed over the
run of the algorithm, with probability 1− δ, simultaneously for
all i and t:

µi ∈ [uti , ℓ
t
i].

▶ For the rest of the argument, we will assume that this is the
case.

Proof

▶ Observe that the widths of the confidence intervals w
maintained by the UCB algorithm are defined such that (by
the Chernoff-Hoeffding bound): for each t and i , with
probability 1− δ/T :

µi ∈ [uti , ℓ
t
i].

▶ Since there are T confidence intervals constructed over the
run of the algorithm, with probability 1− δ, simultaneously for
all i and t:

µi ∈ [uti , ℓ
t
i].

▶ For the rest of the argument, we will assume that this is the
case.

Proof

▶ Suppose at day t we play action it , obtaining expected payoff
µit .

▶ How much worse is this than µi∗ , the expected payoff of the
optimal arm? Since by definition it = argmaxi u

t−1
i , and

because all of the confidence intervals are valid, we have:

µit ≥ ℓt−1
it

= ut−1
it
−2w(nt−1

it
) ≥ ut−1

i∗ −2w(nt−1
it

) ≥ µi∗−2w(nt−1
it

)

▶ So the regret incurred at round t is:

µi∗ − µit ≤ 2w(nt−1
it

)

▶ Or see picture...

Proof

▶ Suppose at day t we play action it , obtaining expected payoff
µit .

▶ How much worse is this than µi∗ , the expected payoff of the
optimal arm? Since by definition it = argmaxi u

t−1
i , and

because all of the confidence intervals are valid, we have:

µit ≥ ℓt−1
it

= ut−1
it
−2w(nt−1

it
) ≥ ut−1

i∗ −2w(nt−1
it

) ≥ µi∗−2w(nt−1
it

)

▶ So the regret incurred at round t is:

µi∗ − µit ≤ 2w(nt−1
it

)

▶ Or see picture...

Proof

▶ Suppose at day t we play action it , obtaining expected payoff
µit .

▶ How much worse is this than µi∗ , the expected payoff of the
optimal arm? Since by definition it = argmaxi u

t−1
i , and

because all of the confidence intervals are valid, we have:

µit ≥ ℓt−1
it

= ut−1
it
−2w(nt−1

it
) ≥ ut−1

i∗ −2w(nt−1
it

) ≥ µi∗−2w(nt−1
it

)

▶ So the regret incurred at round t is:

µi∗ − µit ≤ 2w(nt−1
it

)

▶ Or see picture...

Proof

▶ Suppose at day t we play action it , obtaining expected payoff
µit .

▶ How much worse is this than µi∗ , the expected payoff of the
optimal arm? Since by definition it = argmaxi u

t−1
i , and

because all of the confidence intervals are valid, we have:

µit ≥ ℓt−1
it

= ut−1
it
−2w(nt−1

it
) ≥ ut−1

i∗ −2w(nt−1
it

) ≥ µi∗−2w(nt−1
it

)

▶ So the regret incurred at round t is:

µi∗ − µit ≤ 2w(nt−1
it

)

▶ Or see picture...

Proof
So we can bound overall regret as:

Regret(T) ≤ 2
T∑
t=1

w(nt−1
it

)

= 2
k∑

i=1

nTi∑
n=1

w(n)

≤ 2
k∑

i=1

T/k∑
n=1

w(n)

= 2
k∑

i=1

T/k∑
n=1

√
ln
(
2T
δ

)
2n

= 2
k∑

i=1

√
ln
(
2T
δ

)
2

T/k∑
n=1

1√
n

≤ O

(√
k · T · ln

(
T

δ

))

Proof
So we can bound overall regret as:

Regret(T) ≤ 2
T∑
t=1

w(nt−1
it

)

= 2
k∑

i=1

nTi∑
n=1

w(n)

≤ 2
k∑

i=1

T/k∑
n=1

w(n)

= 2
k∑

i=1

T/k∑
n=1

√
ln
(
2T
δ

)
2n

= 2
k∑

i=1

√
ln
(
2T
δ

)
2

T/k∑
n=1

1√
n

≤ O

(√
k · T · ln

(
T

δ

))

Proof
So we can bound overall regret as:

Regret(T) ≤ 2
T∑
t=1

w(nt−1
it

)

= 2
k∑

i=1

nTi∑
n=1

w(n)

≤ 2
k∑

i=1

T/k∑
n=1

w(n)

= 2
k∑

i=1

T/k∑
n=1

√
ln
(
2T
δ

)
2n

= 2
k∑

i=1

√
ln
(
2T
δ

)
2

T/k∑
n=1

1√
n

≤ O

(√
k · T · ln

(
T

δ

))

Proof
So we can bound overall regret as:

Regret(T) ≤ 2
T∑
t=1

w(nt−1
it

)

= 2
k∑

i=1

nTi∑
n=1

w(n)

≤ 2
k∑

i=1

T/k∑
n=1

w(n)

= 2
k∑

i=1

T/k∑
n=1

√
ln
(
2T
δ

)
2n

= 2
k∑

i=1

√
ln
(
2T
δ

)
2

T/k∑
n=1

1√
n

≤ O

(√
k · T · ln

(
T

δ

))

Proof
So we can bound overall regret as:

Regret(T) ≤ 2
T∑
t=1

w(nt−1
it

)

= 2
k∑

i=1

nTi∑
n=1

w(n)

≤ 2
k∑

i=1

T/k∑
n=1

w(n)

= 2
k∑

i=1

T/k∑
n=1

√
ln
(
2T
δ

)
2n

= 2
k∑

i=1

√
ln
(
2T
δ

)
2

T/k∑
n=1

1√
n

≤ O

(√
k · T · ln

(
T

δ

))

Proof
So we can bound overall regret as:

Regret(T) ≤ 2
T∑
t=1

w(nt−1
it

)

= 2
k∑

i=1

nTi∑
n=1

w(n)

≤ 2
k∑

i=1

T/k∑
n=1

w(n)

= 2
k∑

i=1

T/k∑
n=1

√
ln
(
2T
δ

)
2n

= 2
k∑

i=1

√
ln
(
2T
δ

)
2

T/k∑
n=1

1√
n

≤ O

(√
k · T · ln

(
T

δ

))

Dynamic Pricing

▶ We will pick a set k “arms”, associating each one with a price
from K = {α, 2α, 3α, . . . , 1}.

▶ Note that k = |K | = 1/α. The distribution on rewards for
each arm p is simply the distribution on revenue when
deploying a price p – realizing reward rp = p with probability
Pr[v ≥ p] and reward rp = 0 otherwise.

▶ For every price p ∈ [0, 1], there is another price p′ ∈ K such
that p − α ≤ p′ ≤ p.

▶ So in a setting with n buyers, we have:

max
p∈K

p · Pr[v ≥ p] · n ≥ max
p∈[0,1]

p · Pr[v ≥ p] · n − αn

Dynamic Pricing

▶ We will pick a set k “arms”, associating each one with a price
from K = {α, 2α, 3α, . . . , 1}.

▶ Note that k = |K | = 1/α. The distribution on rewards for
each arm p is simply the distribution on revenue when
deploying a price p – realizing reward rp = p with probability
Pr[v ≥ p] and reward rp = 0 otherwise.

▶ For every price p ∈ [0, 1], there is another price p′ ∈ K such
that p − α ≤ p′ ≤ p.

▶ So in a setting with n buyers, we have:

max
p∈K

p · Pr[v ≥ p] · n ≥ max
p∈[0,1]

p · Pr[v ≥ p] · n − αn

Dynamic Pricing

▶ We will pick a set k “arms”, associating each one with a price
from K = {α, 2α, 3α, . . . , 1}.

▶ Note that k = |K | = 1/α. The distribution on rewards for
each arm p is simply the distribution on revenue when
deploying a price p – realizing reward rp = p with probability
Pr[v ≥ p] and reward rp = 0 otherwise.

▶ For every price p ∈ [0, 1], there is another price p′ ∈ K such
that p − α ≤ p′ ≤ p.

▶ So in a setting with n buyers, we have:

max
p∈K

p · Pr[v ≥ p] · n ≥ max
p∈[0,1]

p · Pr[v ≥ p] · n − αn

Dynamic Pricing

▶ We will pick a set k “arms”, associating each one with a price
from K = {α, 2α, 3α, . . . , 1}.

▶ Note that k = |K | = 1/α. The distribution on rewards for
each arm p is simply the distribution on revenue when
deploying a price p – realizing reward rp = p with probability
Pr[v ≥ p] and reward rp = 0 otherwise.

▶ For every price p ∈ [0, 1], there is another price p′ ∈ K such
that p − α ≤ p′ ≤ p.

▶ So in a setting with n buyers, we have:

max
p∈K

p · Pr[v ≥ p] · n ≥ max
p∈[0,1]

p · Pr[v ≥ p] · n − αn

Dynamic Pricing
▶ Using the guarantees of the UCB algorithm we have that

except with probability δ:

Revenue(UCB) ≥ max
p∈K

p ·Pr[v ≥ p] · n−O

(√
k · n · ln

(n
δ

))
≥ OPT− αn − O

(√
n

α
· ln
(n
δ

))

▶ Choosing

α =

(
log(n/δ)

n

)1/3

yields:

Revenue(UCB) ≥ OPT− O
(
n2/3 log(n/δ)1/3

)
▶ So if OPT(n) = ω

(
n2/3 log(n/δ)1/3

)
, then

Revenue(UCB) ≥ (1− o(1))OPT.
▶ For any non-trivial distribution, this is the case (since OPT(n)

grows linearly with n).

Dynamic Pricing
▶ Using the guarantees of the UCB algorithm we have that

except with probability δ:

Revenue(UCB) ≥ max
p∈K

p ·Pr[v ≥ p] · n−O

(√
k · n · ln

(n
δ

))
≥ OPT− αn − O

(√
n

α
· ln
(n
δ

))
▶ Choosing

α =

(
log(n/δ)

n

)1/3

yields:

Revenue(UCB) ≥ OPT− O
(
n2/3 log(n/δ)1/3

)

▶ So if OPT(n) = ω
(
n2/3 log(n/δ)1/3

)
, then

Revenue(UCB) ≥ (1− o(1))OPT.
▶ For any non-trivial distribution, this is the case (since OPT(n)

grows linearly with n).

Dynamic Pricing
▶ Using the guarantees of the UCB algorithm we have that

except with probability δ:

Revenue(UCB) ≥ max
p∈K

p ·Pr[v ≥ p] · n−O

(√
k · n · ln

(n
δ

))
≥ OPT− αn − O

(√
n

α
· ln
(n
δ

))
▶ Choosing

α =

(
log(n/δ)

n

)1/3

yields:

Revenue(UCB) ≥ OPT− O
(
n2/3 log(n/δ)1/3

)
▶ So if OPT(n) = ω

(
n2/3 log(n/δ)1/3

)
, then

Revenue(UCB) ≥ (1− o(1))OPT.

▶ For any non-trivial distribution, this is the case (since OPT(n)
grows linearly with n).

Dynamic Pricing
▶ Using the guarantees of the UCB algorithm we have that

except with probability δ:

Revenue(UCB) ≥ max
p∈K

p ·Pr[v ≥ p] · n−O

(√
k · n · ln

(n
δ

))
≥ OPT− αn − O

(√
n

α
· ln
(n
δ

))
▶ Choosing

α =

(
log(n/δ)

n

)1/3

yields:

Revenue(UCB) ≥ OPT− O
(
n2/3 log(n/δ)1/3

)
▶ So if OPT(n) = ω

(
n2/3 log(n/δ)1/3

)
, then

Revenue(UCB) ≥ (1− o(1))OPT.
▶ For any non-trivial distribution, this is the case (since OPT(n)

grows linearly with n).

Thanks!

See you next class — stay healthy!

