Dynamic Pricing: Profit Maximization From "Bandit" Feedback

Aaron Roth
University of Pennsylvania

April 162024

Overview

- Last lecture, we gave an online auction for maximizing revenue in digital goods settings.

Overview

- Last lecture, we gave an online auction for maximizing revenue in digital goods settings.
- But it was an "auction" rather than a "pricing scheme" because bidders had to report their valuations.

Overview

- Last lecture, we gave an online auction for maximizing revenue in digital goods settings.
- But it was an "auction" rather than a "pricing scheme" because bidders had to report their valuations.
- More practical/realistic if we just post prices and let buyers make purchase decisions.

Overview

- Last lecture, we gave an online auction for maximizing revenue in digital goods settings.
- But it was an "auction" rather than a "pricing scheme" because bidders had to report their valuations.
- More practical/realistic if we just post prices and let buyers make purchase decisions.
- But also more complex, because we don't get the feedback needed to run the polynomial weights algorithm.

Overview

- Last lecture, we gave an online auction for maximizing revenue in digital goods settings.
- But it was an "auction" rather than a "pricing scheme" because bidders had to report their valuations.
- More practical/realistic if we just post prices and let buyers make purchase decisions.
- But also more complex, because we don't get the feedback needed to run the polynomial weights algorithm.
- This lecture: solve this kind of "censored" learning problem when bidders are drawn from a distribution.

Overview

- Last lecture, we gave an online auction for maximizing revenue in digital goods settings.
- But it was an "auction" rather than a "pricing scheme" because bidders had to report their valuations.
- More practical/realistic if we just post prices and let buyers make purchase decisions.
- But also more complex, because we don't get the feedback needed to run the polynomial weights algorithm.
- This lecture: solve this kind of "censored" learning problem when bidders are drawn from a distribution.
- Its also possible to solve the problem without the distributional assumption... Just more complicated.

Dynamic Pricing

- We can offer fixed prices, and just observe whether buyers take or leave them. (Not their values).

Dynamic Pricing

- We can offer fixed prices, and just observe whether buyers take or leave them. (Not their values).
- We know nothing about the instance at the start, but learn as we go (and can change prices as we learn).

Dynamic Pricing

- We can offer fixed prices, and just observe whether buyers take or leave them. (Not their values).
- We know nothing about the instance at the start, but learn as we go (and can change prices as we learn).

Definition

In a dynamic pricing setting, there are n buyers, each with valuation $v_{i} \in[0,1]$ drawn independently from some unknown distribution \mathcal{D}.

1. At time t, the seller sets some price $p_{t} \in[0,1]$.
2. Buyer t arrives with $v_{t} \sim \mathcal{D}$. If $v_{t} \geq p_{t}$, the buyer purchases the good, and the seller gets revenue p_{t}. Otherwise, the buyer declines to purchase the good, and the seller gets revenue 0 .

A Learning Approach

- We continue to want to compete with the bext fixed price benchmark:

$$
\mathrm{OPT}=\max _{p} p \cdot \operatorname{Pr}[v \geq p] \cdot n
$$

A Learning Approach

- We continue to want to compete with the bext fixed price benchmark:

$$
\mathrm{OPT}=\max _{p} p \cdot \operatorname{Pr}[v \geq p] \cdot n
$$

- Our approach last lecture was to reduce the problem to an online learning problem, and solve it using the PW algorithm.

A Learning Approach

- We continue to want to compete with the bext fixed price benchmark:

$$
\mathrm{OPT}=\max _{p} p \cdot \operatorname{Pr}[v \geq p] \cdot n
$$

- Our approach last lecture was to reduce the problem to an online learning problem, and solve it using the PW algorithm.
- We'll try and do the same thing this lecture. We need to define a learning problem with more restricted feedback.

Bandit Problems

Definition

In the multi-armed bandit problem, there are k "arms" i, each of which is associated with a payoff distribution \mathcal{D}_{i} over $[0,1]$ with mean μ_{i}. In rounds t, the algorithm chooses arm i_{t} and receives reward $r_{i_{t}}^{t} \sim \mathcal{D}_{i}$.

Bandit Problems

Definition

In the multi-armed bandit problem, there are k "arms" i, each of which is associated with a payoff distribution \mathcal{D}_{i} over $[0,1]$ with mean μ_{i}. In rounds t, the algorithm chooses arm i_{t} and receives reward $r_{i_{t}}^{t} \sim \mathcal{D}_{i}$.
The expected reward of the algorithm after T days is $\sum_{t=1}^{T} \mu_{i_{t}}$. The regret of the algorithm is:

$$
\operatorname{Regret}(T)=T \cdot \mu_{i^{*}}-\sum_{t=1}^{T} \mu_{i_{t}}
$$

where $i^{*}=\arg \max _{i} \mu_{i}$ is the arm with highest expected reward.

The idea

- Idea: "optimism in the face of uncertainty".

The idea

- Idea: "optimism in the face of uncertainty".
- We will quantify uncertainty about the mean payoff of each arm i by maintaining a confidence interval around its empirical estimate.

The idea

- Idea: "optimism in the face of uncertainty".
- We will quantify uncertainty about the mean payoff of each arm i by maintaining a confidence interval around its empirical estimate.
- We will then behave greedily - but not by playing the arm with the highest empirical mean so far, but rather by playing the arm with the highest upper confidence bound

The idea

- Idea: "optimism in the face of uncertainty".
- We will quantify uncertainty about the mean payoff of each arm i by maintaining a confidence interval around its empirical estimate.
- We will then behave greedily - but not by playing the arm with the highest empirical mean so far, but rather by playing the arm with the highest upper confidence bound.
- This is being optimistic - imagining that each arm is as good as it could possibly be, consistent with the evidence.

Confidence Intervals

Theorem (Chernoff-Hoeffding Bound)
Let \mathcal{D} be any distribution over $[0,1]$ with mean μ, and let $X_{1}, \ldots, X_{n} \sim \mathcal{D}$ be independent draws. Then for any $0 \leq \delta \leq 1$:

$$
\operatorname{Pr}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \leq \sqrt{\frac{\ln \left(\frac{2}{\delta}\right)}{2 n}}\right] \geq 1-\delta
$$

The Algorithm

$\operatorname{UCB}(\delta, T)$:
Define $w(n)=\sqrt{\frac{\ln \left(\frac{2 T}{\delta}\right)}{2 n}}$. Initialize empirical means $\hat{\mu}_{i}^{0} \leftarrow 1 / 2$ and upper and lower confidence bounds $u_{i}^{0} \leftarrow 1$, $\ell_{i}^{0} \leftarrow 0$ for each arm i. Initialize play counts $n_{i}^{t} \leftarrow 0$ for each arm i. for $t=1$ to T do

Pick an arm $i_{t} \in \arg \max u_{i}^{t-1}$. Observe reward $r_{i_{t}}^{t}$.
Update: For each $i \neq i_{t}$, set
$\left(\hat{\mu}_{i}^{t}, u_{i}^{t}, \ell_{i}^{t}, n_{i}^{t}\right) \leftarrow\left(\hat{\mu}_{i}^{t-1}, u_{i}^{t-1}, \ell_{i}^{t-1}, n_{i}^{t-1}\right)$
For $i=i_{t}, n_{i}^{t} \leftarrow n_{i}^{t-1}+1$,
$\hat{\mu}_{i}^{t} \leftarrow \frac{n_{i}^{t}-1}{n_{i}^{t}} \hat{\mu}_{i}^{t-1}+\frac{1}{n_{i}^{t}} r_{i}^{t}, u_{i}^{t} \leftarrow \hat{\mu}_{i}^{t}+w\left(n_{i}^{t}\right), \ell_{i}^{t} \leftarrow \hat{\mu}_{i}^{t}-w\left(n_{i}^{t}\right)$
end for

Regret

Theorem
For any set of k arms, with probability $1-\delta$, the UCB algorithm obtains regret:

$$
\operatorname{Regret}(T) \leq O\left(\sqrt{k \cdot T \cdot \ln \left(\frac{T}{\delta}\right)}\right)
$$

Proof

- Observe that the widths of the confidence intervals w maintained by the UCB algorithm are defined such that (by the Chernoff-Hoeffding bound): for each t and i, with probability $1-\delta / T$:

$$
\mu_{i} \in\left[u_{i}^{t}, \ell_{i}^{t}\right]
$$

Proof

- Observe that the widths of the confidence intervals w maintained by the UCB algorithm are defined such that (by the Chernoff-Hoeffding bound): for each t and i, with probability $1-\delta / T$:

$$
\mu_{i} \in\left[u_{i}^{t}, \ell_{i}^{t}\right]
$$

- Since there are T confidence intervals constructed over the run of the algorithm, with probability $1-\delta$, simultaneously for all i and t :

$$
\mu_{i} \in\left[u_{i}^{t}, \ell_{i}^{t}\right]
$$

Proof

- Observe that the widths of the confidence intervals w maintained by the UCB algorithm are defined such that (by the Chernoff-Hoeffding bound): for each t and i, with probability $1-\delta / T$:

$$
\mu_{i} \in\left[u_{i}^{t}, \ell_{i}^{t}\right]
$$

- Since there are T confidence intervals constructed over the run of the algorithm, with probability $1-\delta$, simultaneously for all i and t :

$$
\mu_{i} \in\left[u_{i}^{t}, \ell_{i}^{t}\right]
$$

- For the rest of the argument, we will assume that this is the case.

Proof

- Suppose at day t we play action i_{t}, obtaining expected payoff $\mu_{i_{t}}$.

Proof

- Suppose at day t we play action i_{t}, obtaining expected payoff $\mu_{i_{t}}$.
- How much worse is this than $\mu_{i^{*}}$, the expected payoff of the optimal arm? Since by definition $i_{t}=\arg \max _{i} u_{i}^{t-1}$, and because all of the confidence intervals are valid, we have:

$$
\mu_{i_{t}} \geq \ell_{i_{t}}^{t-1}=u_{i_{t}}^{t-1}-2 w\left(n_{i_{t}}^{t-1}\right) \geq u_{i^{*}}^{t-1}-2 w\left(n_{i_{t}}^{t-1}\right) \geq \mu_{i^{*}}-2 w\left(n_{i_{t}}^{t-1}\right)
$$

Proof

- Suppose at day t we play action i_{t}, obtaining expected payoff $\mu_{i_{t}}$.
- How much worse is this than $\mu_{i^{*}}$, the expected payoff of the optimal arm? Since by definition $i_{t}=\arg \max _{i} u_{i}^{t-1}$, and because all of the confidence intervals are valid, we have:

$$
\mu_{i_{t}} \geq \ell_{i_{t}}^{t-1}=u_{i_{t}}^{t-1}-2 w\left(n_{i_{t}}^{t-1}\right) \geq u_{i^{*}}^{t-1}-2 w\left(n_{i_{t}}^{t-1}\right) \geq \mu_{i^{*}}-2 w\left(n_{i_{t}}^{t-1}\right)
$$

- So the regret incurred at round t is:

$$
\mu_{i^{*}}-\mu_{i_{t}} \leq 2 w\left(n_{i_{t}}^{t-1}\right)
$$

Proof

- Suppose at day t we play action i_{t}, obtaining expected payoff $\mu_{i_{t}}$.
- How much worse is this than $\mu_{i^{*}}$, the expected payoff of the optimal arm? Since by definition $i_{t}=\arg \max _{i} u_{i}^{t-1}$, and because all of the confidence intervals are valid, we have:

$$
\mu_{i_{t}} \geq \ell_{i_{t}}^{t-1}=u_{i_{t}}^{t-1}-2 w\left(n_{i_{t}}^{t-1}\right) \geq u_{i^{*}}^{t-1}-2 w\left(n_{i_{t}}^{t-1}\right) \geq \mu_{i^{*}}-2 w\left(n_{i_{t}}^{t-1}\right)
$$

- So the regret incurred at round t is:

$$
\mu_{i^{*}}-\mu_{i_{t}} \leq 2 w\left(n_{i_{t}}^{t-1}\right)
$$

- Or see picture...

Proof

So we can bound overall regret as:

$$
\operatorname{Regret}(T) \leq 2 \sum_{t=1}^{T} w\left(n_{i_{t}}^{t-1}\right)
$$

Proof

So we can bound overall regret as:

$$
\begin{aligned}
\operatorname{Regret}(T) & \leq 2 \sum_{t=1}^{T} w\left(n_{i_{t}}^{t-1}\right) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{n_{i}^{T}} w(n)
\end{aligned}
$$

Proof

So we can bound overall regret as:

$$
\begin{aligned}
\operatorname{Regret}(T) & \leq 2 \sum_{t=1}^{T} w\left(n_{i_{t}}^{t-1}\right) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{n_{i}^{T}} w(n) \\
& \leq 2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} w(n)
\end{aligned}
$$

Proof

So we can bound overall regret as:

$$
\begin{aligned}
\operatorname{Regret}(T) & \leq 2 \sum_{t=1}^{T} w\left(n_{i_{t}}^{t-1}\right) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{n_{i}^{T}} w(n) \\
& \leq 2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} w(n) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} \sqrt{\frac{\ln \left(\frac{2 T}{\delta}\right)}{2 n}}
\end{aligned}
$$

Proof

So we can bound overall regret as:

$$
\begin{aligned}
\operatorname{Regret}(T) & \leq 2 \sum_{t=1}^{T} w\left(n_{i_{t}}^{t-1}\right) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{n_{i}^{T}} w(n) \\
& \leq 2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} w(n) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} \sqrt{\frac{\ln \left(\frac{2 T}{\delta}\right)}{2 n}} \\
& =2 \sum_{i=1}^{k} \sqrt{\frac{\ln \left(\frac{2 T}{\delta}\right)}{2}} \sum_{n=1}^{T / k} \frac{1}{\sqrt{n}}
\end{aligned}
$$

Proof

So we can bound overall regret as:

$$
\begin{aligned}
\operatorname{Regret}(T) & \leq 2 \sum_{t=1}^{T} w\left(n_{i_{t}}^{t-1}\right) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{n_{i}^{T}} w(n) \\
& \leq 2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} w(n) \\
& =2 \sum_{i=1}^{k} \sum_{n=1}^{T / k} \sqrt{\frac{\ln \left(\frac{2 T}{\delta}\right)}{2 n}} \\
& =2 \sum_{i=1}^{k} \sqrt{\frac{\ln \left(\frac{2 T}{\delta}\right)}{2} \sum_{n=1}^{T / k} \frac{1}{\sqrt{n}}} \\
& \leq O\left(\sqrt{k \cdot T \cdot \ln \left(\frac{T}{\delta}\right)}\right)
\end{aligned}
$$

Dynamic Pricing

- We will pick a set k "arms", associating each one with a price from $K=\{\alpha, 2 \alpha, 3 \alpha, \ldots, 1\}$.

Dynamic Pricing

- We will pick a set k "arms", associating each one with a price from $K=\{\alpha, 2 \alpha, 3 \alpha, \ldots, 1\}$.
- Note that $k=|K|=1 / \alpha$. The distribution on rewards for each arm p is simply the distribution on revenue when deploying a price p-realizing reward $r_{p}=p$ with probability $\operatorname{Pr}[v \geq p]$ and reward $r_{p}=0$ otherwise.

Dynamic Pricing

- We will pick a set k "arms", associating each one with a price from $K=\{\alpha, 2 \alpha, 3 \alpha, \ldots, 1\}$.
- Note that $k=|K|=1 / \alpha$. The distribution on rewards for each arm p is simply the distribution on revenue when deploying a price p-realizing reward $r_{p}=p$ with probability $\operatorname{Pr}[v \geq p]$ and reward $r_{p}=0$ otherwise.
- For every price $p \in[0,1]$, there is another price $p^{\prime} \in K$ such that $p-\alpha \leq p^{\prime} \leq p$.

Dynamic Pricing

- We will pick a set k "arms", associating each one with a price from $K=\{\alpha, 2 \alpha, 3 \alpha, \ldots, 1\}$.
- Note that $k=|K|=1 / \alpha$. The distribution on rewards for each arm p is simply the distribution on revenue when deploying a price p-realizing reward $r_{p}=p$ with probability $\operatorname{Pr}[v \geq p]$ and reward $r_{p}=0$ otherwise.
- For every price $p \in[0,1]$, there is another price $p^{\prime} \in K$ such that $p-\alpha \leq p^{\prime} \leq p$.
- So in a setting with n buyers, we have:

$$
\max _{p \in K} p \cdot \operatorname{Pr}[v \geq p] \cdot n \geq \max _{p \in[0,1]} p \cdot \operatorname{Pr}[v \geq p] \cdot n-\alpha n
$$

Dynamic Pricing

- Using the guarantees of the UCB algorithm we have that except with probability δ :

$$
\begin{aligned}
\operatorname{Revenue}(U C B) & \geq \max _{p \in K} p \cdot \operatorname{Pr}[v \geq p] \cdot n-O\left(\sqrt{k \cdot n \cdot \ln \left(\frac{n}{\delta}\right)}\right) \\
& \geq \text { OPT }-\alpha n-O\left(\sqrt{\frac{n}{\alpha} \cdot \ln \left(\frac{n}{\delta}\right)}\right)
\end{aligned}
$$

Dynamic Pricing

- Using the guarantees of the UCB algorithm we have that except with probability δ :
$\operatorname{Revenue}(U C B) \geq \max _{p \in K} p \cdot \operatorname{Pr}[v \geq p] \cdot n-O\left(\sqrt{k \cdot n \cdot \ln \left(\frac{n}{\delta}\right)}\right)$

$$
\geq \mathrm{OPT}-\alpha n-O\left(\sqrt{\frac{n}{\alpha} \cdot \ln \left(\frac{n}{\delta}\right)}\right)
$$

- Choosing

$$
\alpha=\left(\frac{\log (n / \delta)}{n}\right)^{1 / 3}
$$

yields:

$$
\text { Revenue }(U C B) \geq \mathrm{OPT}-O\left(n^{2 / 3} \log (n / \delta)^{1 / 3}\right)
$$

Dynamic Pricing

- Using the guarantees of the UCB algorithm we have that except with probability δ :

$$
\begin{aligned}
\operatorname{Revenue}(U C B) & \geq \max _{p \in K} p \cdot \operatorname{Pr}[v \geq p] \cdot n-O\left(\sqrt{k \cdot n \cdot \ln \left(\frac{n}{\delta}\right)}\right) \\
& \geq \mathrm{OPT}-\alpha n-O\left(\sqrt{\frac{n}{\alpha} \cdot \ln \left(\frac{n}{\delta}\right)}\right)
\end{aligned}
$$

- Choosing

$$
\alpha=\left(\frac{\log (n / \delta)}{n}\right)^{1 / 3}
$$

yields:

$$
\operatorname{Revenue}(U C B) \geq \mathrm{OPT}-O\left(n^{2 / 3} \log (n / \delta)^{1 / 3}\right)
$$

- So if $\operatorname{OPT}(n)=\omega\left(n^{2 / 3} \log (n / \delta)^{1 / 3}\right)$, then Revenue $(U C B) \geq(1-o(1))$ OPT.

Dynamic Pricing

- Using the guarantees of the UCB algorithm we have that except with probability δ :

$$
\begin{aligned}
\operatorname{Revenue}(U C B) & \geq \max _{p \in K} p \cdot \operatorname{Pr}[v \geq p] \cdot n-O\left(\sqrt{k \cdot n \cdot \ln \left(\frac{n}{\delta}\right)}\right) \\
& \geq O P T-\alpha n-O\left(\sqrt{\frac{n}{\alpha} \cdot \ln \left(\frac{n}{\delta}\right)}\right)
\end{aligned}
$$

- Choosing

$$
\alpha=\left(\frac{\log (n / \delta)}{n}\right)^{1 / 3}
$$

yields:

$$
\operatorname{Revenue}(U C B) \geq \mathrm{OPT}-O\left(n^{2 / 3} \log (n / \delta)^{1 / 3}\right)
$$

- So if $\operatorname{OPT}(n)=\omega\left(n^{2 / 3} \log (n / \delta)^{1 / 3}\right)$, then Revenue $(U C B) \geq(1-o(1))$ OPT.
- For any non-trivial distribution, this is the case (since OPT(n) grows linearly with n).

Thanks!

See you next class - stay healthy!

