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Overview

▶ We studied Myerson’s optimal auctions for revenue
maximization.

▶ And revenue-competitive pricings...

▶ But to use them, we needed to know the distribution D from
which valuations are drawn.

▶ To run the VCG mechanism, we didn’t need to know anything
at all.

▶ Can we think about revenue in a distribution independent
way?

▶ This lecture: A case study “digital goods auctions”
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Digital Goods Auctions

▶ Digital goods auctions (unlimited supply auctions) models the
sale of goods with zero marginal cost of production (e.g.
software).

▶ Hence, there is no constraint on how many individuals can
“win” the auction.

Definition
A digital goods auction is a single parameter domain with a set of
alternatives A = {S ⊆ [n]} – i.e. any set of bidders is a feasible

outcome. For a ∈ A we write ai =

{
1, if i ∈ S ;
0, otherwise.

. Each

bidder’s valuation function is parameterized by vi ∈ R≥0, and
vi (a) := vi · ai .
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Digital Goods Auctions

▶ Observe: Welfare and profit maximization are in conflict here.

▶ The VCG mechanism would allocate to everybody and charge
nothing.

▶ To maximize revenue, we’ll need to artificially limit supply.

▶ But first, what should our benchmark be?
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Revenue Benchmark

▶ When we had a prior distribution D, we could define the
optimal revenue.

▶ But what is a reasonable benchmark?

▶ If we knew D, the revenue optimal auction would correspond
to a fixed price p = ϕ−1(0).

▶ So if we could compete with the revenue of the best fixed
price we’d be competing with the (unknown) Bayesian optimal
benchmark.
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Fixed Price Benchmarks

▶ At price p, everyone with value vi ≥ p buys. We obtain
revenue p · |{i : vi ≥ p}|.

▶ The best fixed price in hindsight is always p ∈ {v1, . . . , vn}.
(why?)

▶ The revenue of the best fixed price is therefore:

OPT(v) = max
i

vi · |{j : vj ≥ vi}| = max
i
(i · v(i))

where v(i) is the i ’th highest valuation in sorted order.

▶ ... But this isn’t attainable by any truthful mechanism when
i = 1. Consider the case of n = 1.
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Fixed Price Benchmarks

▶ A slightly weaker benchmark: the revenue of the best fixed
price that sells to at least 2 people.

OPT≥2(v) = max
i≥2

(
i · v(i)

)

▶ We shouldn’t think of this as a serious restriction in a large
market...

▶ How should we obtain it?

▶ Attempt 1: Just compute the best fixed price vj from the bids
and use that. (Not truthful).
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Fixed Price Benchmarks

▶ Attempt 2: Offer each i price pi corresponding to
OPT≥2(v−i ) – i.e. the best fixed price excluding agent i .

▶ This yields a truthful mechanism. How does it do with respect
to the benchmark?

Example

Suppose we have 90 “low value” agents with vi = 1, and 10 “high
value” agents with vi = 10. OPT≥2(v) = 100, achieved by
charging either p = 10 or p = 1. But for vi = 1,
OPT≥2(v−i )↔ pi = 10, and for vi = 10, OPT≥2(v−i )↔ pi = 1.
So this auction gets profit only 10... (And the ratio to OPT≥2(v)
can be made arbitrarily bad.)
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Profit Extractors

▶ Lets start with an intermediate goal.

▶ Given a target profit R, want a mechanism that will obtain
profit R if OPT≥2(v) ≥ R.

▶ Otherwise we won’t require any revenue guarantee for the
mechanism.

Definition
The digital goods profit extractor with target profit R
(Extract(R, v)) does the following: it finds the largest value k such
that v(k) ≥ R/k, and then sells to the top k bidders at price R/k.
If there is no such k , it sells to nobody.

Lemma
Extract(R, v) is dominant strategy truthful.
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Profit Extractors are Dominant Strategy IC

▶ View the profit extractor as running the following process:

1. Start with k = n, and offer a price of p = R/k to the bidders.
2. If any bidder rejects the offer (i.e. v(k) < Ri ), remove her from

the auction, set k ← k − 1 and repeat the offer of p = R/k
(now a higher offer, to 1 fewer bidders).

3. If all k bidders accept the offer, then they (the top k) bidders
receive the good and pay the last offer price.

▶ Note that if any bidder rejects the offer, she can never win in
any future round.

▶ So rejecting any offer of p < vi is a dominated strategy.

▶ Similarly, accepting an offer of p > vi is a dominated strategy
since prices only rise.

▶ Hence the dominant strategy for every bidder i is to report
their true value.
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Profit Extractors

Lemma
Extract(R, v) obtains revenue R if OPT≥2(v) ≥ R, and otherwise
obtains revenue 0.

Proof.

▶ Recall: OPT≥2(v) = k · v(k) for some k ∈ {2, . . . , n}.
▶ If OPT≥2(v) ≥ R then v(k) ≥ R

k .

▶ Hence, the profit extractor finds some k ′ ≥ k such that
v(k ′) ≥ R/k ′, and obtains profit k ′ · R/k ′ = R.

▶ If R > OPT(2)(v) = maxk k · v(k), then there is no k such
that v(k) ≥ R/k. So the mechanism halts without selling to
anybody.
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Using Profit Extractors

▶ We now have a useful tool.

▶ We can obtain revenue R if we know that it is possible to
obtain revenue R with a fixed price.

▶ But we’re not done, since we don’t know R.

▶ We’ve reduced our problem to finding a good estimate of the
true optimal revenue R∗.

▶ For truthfulness, it is important that R is defined
independently of the bidders we run the profit extractor on.
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The Random Sampling Auction

Idea: Try and estimate R∗ from a random sample of the bidders,
and then run the profit extractor on the remaining bidders.

RS(v):

Randomly partition the agents by assigning each agent
uniformly at random to one of two sets: S ′ or S ′′.
Calculate R ′ = OPT≥2(vS ′) and R ′′ = OPT≥2(vS ′′).
Run Extract(R ′, vS ′′) on S ′′ and Extract(R ′′, vS ′) on S ′.
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Theorem
The random sampling auction is dominant strategy truthful.

Proof.
Extract(R, v) is truthful whenever it is run with a value R
computed independently of the bidders it is run on.
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The Random Sampling Auction

Lemma
The revenue of the random sampling auction is at least
min(R ′,R ′′).

Proof.
Either R ′ ≥ R ′′ or R ′′ ≥ R ′ (or possibly both). So at least one
copy of Extract succeeds.

So it remains to understand min(R ′,R ′′) as a function of
R := OPT≥2(v).
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Some Simple Math

Theorem
If we flip k ≥ 2 coins, then E[min(#heads,#tails)] ≥ k/4.

Proof.

▶ Let Mi be E[min(#heads,#tails)] after i coin flips.

▶ Some direct calculations show: M1 = 0 and M2 = 1/2.

▶ Now define Xi := Mi −Mi−1, the expected change to
min(#heads,#tails) after we flip the i ’th coin.

▶ By linearity of expectation:

Mk =
k∑

i=1

Xi

so we are done if we can compute Xi for all i .
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Some Simple Math

There are two cases:

▶ Case 1: i is even. i − 1 is odd, and so we have
#heads ̸= #tails after i − 1 coin flips.

▶ Hence Xi = 1/2, since with probability 1/2, the coin flip
contributes to the smaller of the two quantities.

▶ Case 2: i is odd. Xi ≥ 0.

So:

Mk =
k∑

i=1

Xk ≥
k

2
· 1
2
=

k

4

(Actually, we were a little sloppy... we only showed that
Mk ≥ ⌊k2 ⌋ ·

1
2 , which might be a little less than k/4. To be fully

rigorous, we have to directly verify that X3 = 1/4 which makes up
the difference).
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The Random Sampling Auction

Theorem
Let Rev be the expected revenue of the random sampling auction.
Then:

Rev ≥ OPT≥2(v)

4
.



The Random Sampling Auction
▶ Recall:

Rev ≥ E[min(R ′,R ′′)]

▶ We know that OPT≥2(v) = k · p for some k ≥ 2 and some
price p.

▶ Of the k winners when using price p, let k ′ be the number in
S ′ and k ′′ be the number in S ′′. Observe that R ′ ≥ k ′ · p and
R ′′ ≥ k ′′ · p

▶ Hence:

Rev

OPT≥2(v)
≥ E[min(R ′,R ′′)]

k · p

≥ E[min(k ′ · p, k ′′ · p)]
k · p

≥ E[min(k ′, k ′′)]

k
≥ 1

4
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Summary

▶ So we can approximate the revenue of the optimal auction
without knowing D.

▶ We got a 4 approximation, but...

▶ This was only because we needed to handle the case in which
the optimal auction sold to only 2 people.

▶ Similar ideas lead to a (1 + ϵ) approximation of OPT≥k(v) as
k becomes large.
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Thanks!

See you next class — stay healthy!


