Prior Free Profit Maximization: Random Sampling Auctions

Aaron Roth

University of Pennsylvania
April 92024

Overview

- We studied Myerson's optimal auctions for revenue maximization.

Overview

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...

Overview

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- But to use them, we needed to know the distribution D from which valuations are drawn.

Overview

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- But to use them, we needed to know the distribution D from which valuations are drawn.
- To run the VCG mechanism, we didn't need to know anything at all.

Overview

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- But to use them, we needed to know the distribution D from which valuations are drawn.
- To run the VCG mechanism, we didn't need to know anything at all.
- Can we think about revenue in a distribution independent way?

Overview

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- But to use them, we needed to know the distribution D from which valuations are drawn.
- To run the VCG mechanism, we didn't need to know anything at all.
- Can we think about revenue in a distribution independent way?
- This lecture: A case study "digital goods auctions"

Digital Goods Auctions

- Digital goods auctions (unlimited supply auctions) models the sale of goods with zero marginal cost of production (e.g. software).

Digital Goods Auctions

- Digital goods auctions (unlimited supply auctions) models the sale of goods with zero marginal cost of production (e.g. software).
- Hence, there is no constraint on how many individuals can "win" the auction.

Digital Goods Auctions

- Digital goods auctions (unlimited supply auctions) models the sale of goods with zero marginal cost of production (e.g. software).
- Hence, there is no constraint on how many individuals can "win" the auction.

Definition

A digital goods auction is a single parameter domain with a set of alternatives $A=\{S \subseteq[n]\}$ - i.e. any set of bidders is a feasible outcome. For $a \in A$ we write $a_{i}=\left\{\begin{array}{ll}1, & \text { if } i \in S ; \\ 0, & \text { otherwise. }\end{array}\right.$. Each bidder's valuation function is parameterized by $v_{i} \in \mathbb{R}_{\geq 0}$, and $v_{i}(a):=v_{i} \cdot a_{i}$.

Digital Goods Auctions

- Observe: Welfare and profit maximization are in conflict here.

Digital Goods Auctions

- Observe: Welfare and profit maximization are in conflict here.
- The VCG mechanism would allocate to everybody and charge nothing.

Digital Goods Auctions

- Observe: Welfare and profit maximization are in conflict here.
- The VCG mechanism would allocate to everybody and charge nothing.
- To maximize revenue, we'll need to artificially limit supply.

Digital Goods Auctions

- Observe: Welfare and profit maximization are in conflict here.
- The VCG mechanism would allocate to everybody and charge nothing.
- To maximize revenue, we'll need to artificially limit supply.
- But first, what should our benchmark be?

Revenue Benchmark

- When we had a prior distribution D, we could define the optimal revenue.

Revenue Benchmark

- When we had a prior distribution D, we could define the optimal revenue.
- But what is a reasonable benchmark?

Revenue Benchmark

- When we had a prior distribution D, we could define the optimal revenue.
- But what is a reasonable benchmark?
- If we knew D, the revenue optimal auction would correspond to a fixed price $p=\phi^{-1}(0)$.

Revenue Benchmark

- When we had a prior distribution D, we could define the optimal revenue.
- But what is a reasonable benchmark?
- If we knew D, the revenue optimal auction would correspond to a fixed price $p=\phi^{-1}(0)$.
- So if we could compete with the revenue of the best fixed price we'd be competing with the (unknown) Bayesian optimal benchmark.

Fixed Price Benchmarks

- At price p, everyone with value $v_{i} \geq p$ buys. We obtain revenue $p \cdot\left|\left\{i: v_{i} \geq p\right\}\right|$.

Fixed Price Benchmarks

- At price p, everyone with value $v_{i} \geq p$ buys. We obtain revenue $p \cdot\left|\left\{i: v_{i} \geq p\right\}\right|$.
- The best fixed price in hindsight is always $p \in\left\{v_{1}, \ldots, v_{n}\right\}$. (why?)

Fixed Price Benchmarks

- At price p, everyone with value $v_{i} \geq p$ buys. We obtain revenue $p \cdot\left|\left\{i: v_{i} \geq p\right\}\right|$.
- The best fixed price in hindsight is always $p \in\left\{v_{1}, \ldots, v_{n}\right\}$. (why?)
- The revenue of the best fixed price is therefore:

$$
\operatorname{OPT}(v)=\max _{i} v_{i} \cdot\left|\left\{j: v_{j} \geq v_{i}\right\}\right|=\max _{i}\left(i \cdot v_{(i)}\right)
$$

where $v_{(i)}$ is the i 'th highest valuation in sorted order.

Fixed Price Benchmarks

- At price p, everyone with value $v_{i} \geq p$ buys. We obtain revenue $p \cdot\left|\left\{i: v_{i} \geq p\right\}\right|$.
- The best fixed price in hindsight is always $p \in\left\{v_{1}, \ldots, v_{n}\right\}$. (why?)
- The revenue of the best fixed price is therefore:

$$
\operatorname{OPT}(v)=\max _{i} v_{i} \cdot\left|\left\{j: v_{j} \geq v_{i}\right\}\right|=\max _{i}\left(i \cdot v_{(i)}\right)
$$

where $v_{(i)}$ is the i 'th highest valuation in sorted order.

- ... But this isn't attainable by any truthful mechanism when $i=1$. Consider the case of $n=1$.

Fixed Price Benchmarks

- A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$
\mathrm{OPT}^{\geq 2}(v)=\max _{i \geq 2}\left(i \cdot v_{(i)}\right)
$$

Fixed Price Benchmarks

- A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$
\mathrm{OPT}^{\geq 2}(v)=\max _{i \geq 2}\left(i \cdot v_{(i)}\right)
$$

- We shouldn't think of this as a serious restriction in a large market...

Fixed Price Benchmarks

- A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$
\mathrm{OPT}^{\geq 2}(v)=\max _{i \geq 2}\left(i \cdot v_{(i)}\right)
$$

- We shouldn't think of this as a serious restriction in a large market...
- How should we obtain it?

Fixed Price Benchmarks

- A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$
\mathrm{OPT}^{\geq 2}(v)=\max _{i \geq 2}\left(i \cdot v_{(i)}\right)
$$

- We shouldn't think of this as a serious restriction in a large market...
- How should we obtain it?
- Attempt 1: Just compute the best fixed price v_{j} from the bids and use that. (Not truthful).

Fixed Price Benchmarks

- Attempt 2: Offer each i price p_{i} corresponding to $\mathrm{OPT}^{\geq 2}\left(v_{-i}\right)$ - i.e. the best fixed price excluding agent i.

Fixed Price Benchmarks

- Attempt 2: Offer each i price p_{i} corresponding to $\mathrm{OPT}^{\geq 2}\left(v_{-i}\right)$ - i.e. the best fixed price excluding agent i.
- This yields a truthful mechanism. How does it do with respect to the benchmark?

Fixed Price Benchmarks

- Attempt 2: Offer each i price p_{i} corresponding to $\operatorname{OPT}^{\geq 2}\left(v_{-i}\right)-$ i.e. the best fixed price excluding agent i.
- This yields a truthful mechanism. How does it do with respect to the benchmark?

Example

Suppose we have 90 "low value" agents with $v_{i}=1$, and 10 "high value" agents with $v_{i}=10 . \mathrm{OPT}^{\geq 2}(v)=100$, achieved by charging either $p=10$ or $p=1$. But for $v_{i}=1$, $\operatorname{OPT}^{\geq 2}\left(v_{-i}\right) \leftrightarrow p_{i}=10$, and for $v_{i}=10, \operatorname{OPT}^{\geq 2}\left(v_{-i}\right) \leftrightarrow p_{i}=1$. So this auction gets profit only 10... (And the ratio to OPT ${ }^{2}(v)$ can be made arbitrarily bad.)

Profit Extractors

- Lets start with an intermediate goal.

Profit Extractors

- Lets start with an intermediate goal.
- Given a target profit R, want a mechanism that will obtain profit R if $\mathrm{OPT}^{\geq 2}(v) \geq R$.

Profit Extractors

- Lets start with an intermediate goal.
- Given a target profit R, want a mechanism that will obtain profit R if $\mathrm{OPT}^{\geq 2}(v) \geq R$.
- Otherwise we won't require any revenue guarantee for the mechanism.

Profit Extractors

- Lets start with an intermediate goal.
- Given a target profit R, want a mechanism that will obtain profit R if $\mathrm{OPT}^{\geq 2}(v) \geq R$.
- Otherwise we won't require any revenue guarantee for the mechanism.

Definition

The digital goods profit extractor with target profit R
(Extract (R, v)) does the following: it finds the largest value k such that $v_{(k)} \geq R / k$, and then sells to the top k bidders at price R / k. If there is no such k, it sells to nobody.

Profit Extractors

- Lets start with an intermediate goal.
- Given a target profit R, want a mechanism that will obtain profit R if $\mathrm{OPT}^{\geq 2}(v) \geq R$.
- Otherwise we won't require any revenue guarantee for the mechanism.

Definition

The digital goods profit extractor with target profit R
(Extract (R, v)) does the following: it finds the largest value k such that $v_{(k)} \geq R / k$, and then sells to the top k bidders at price R / k. If there is no such k, it sells to nobody.

Lemma
Extract (R, v) is dominant strategy truthful.

Profit Extractors are Dominant Strategy IC

- View the profit extractor as running the following process:

Profit Extractors are Dominant Strategy IC

- View the profit extractor as running the following process:

1. Start with $k=n$, and offer a price of $p=R / k$ to the bidders.
2. If any bidder rejects the offer (i.e. $v_{(k)}<R_{i}$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of $p=R / k$ (now a higher offer, to 1 fewer bidders).
3. If all k bidders accept the offer, then they (the top k) bidders receive the good and pay the last offer price.

Profit Extractors are Dominant Strategy IC

- View the profit extractor as running the following process:

1. Start with $k=n$, and offer a price of $p=R / k$ to the bidders.
2. If any bidder rejects the offer (i.e. $v_{(k)}<R_{i}$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of $p=R / k$ (now a higher offer, to 1 fewer bidders).
3. If all k bidders accept the offer, then they (the top k) bidders receive the good and pay the last offer price.

- Note that if any bidder rejects the offer, she can never win in any future round.

Profit Extractors are Dominant Strategy IC

- View the profit extractor as running the following process:

1. Start with $k=n$, and offer a price of $p=R / k$ to the bidders.
2. If any bidder rejects the offer (i.e. $v_{(k)}<R_{i}$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of $p=R / k$ (now a higher offer, to 1 fewer bidders).
3. If all k bidders accept the offer, then they (the top k) bidders receive the good and pay the last offer price.

- Note that if any bidder rejects the offer, she can never win in any future round.
- So rejecting any offer of $p<v_{i}$ is a dominated strategy.

Profit Extractors are Dominant Strategy IC

- View the profit extractor as running the following process:

1. Start with $k=n$, and offer a price of $p=R / k$ to the bidders.
2. If any bidder rejects the offer (i.e. $v_{(k)}<R_{i}$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of $p=R / k$ (now a higher offer, to 1 fewer bidders).
3. If all k bidders accept the offer, then they (the top k) bidders receive the good and pay the last offer price.

- Note that if any bidder rejects the offer, she can never win in any future round.
- So rejecting any offer of $p<v_{i}$ is a dominated strategy.
- Similarly, accepting an offer of $p>v_{i}$ is a dominated strategy since prices only rise.

Profit Extractors are Dominant Strategy IC

- View the profit extractor as running the following process:

1. Start with $k=n$, and offer a price of $p=R / k$ to the bidders.
2. If any bidder rejects the offer (i.e. $v_{(k)}<R_{i}$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of $p=R / k$ (now a higher offer, to 1 fewer bidders).
3. If all k bidders accept the offer, then they (the top k) bidders receive the good and pay the last offer price.

- Note that if any bidder rejects the offer, she can never win in any future round.
- So rejecting any offer of $p<v_{i}$ is a dominated strategy.
- Similarly, accepting an offer of $p>v_{i}$ is a dominated strategy since prices only rise.
- Hence the dominant strategy for every bidder i is to report their true value.

Profit Extractors

Lemma
Extract (R, v) obtains revenue R if $\mathrm{OPT}^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0 .

Profit Extractors

Lemma
Extract (R, v) obtains revenue R if $\mathrm{OPT}^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0 .

Proof.

- Recall: $\mathrm{OPT}^{\geq 2}(v)=k \cdot v_{(k)}$ for some $k \in\{2, \ldots, n\}$.

Profit Extractors

Lemma
Extract (R, v) obtains revenue R if $\mathrm{OPT}^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0 .

Proof.

- Recall: $\mathrm{OPT}^{\geq 2}(v)=k \cdot v_{(k)}$ for some $k \in\{2, \ldots, n\}$.
- If $\mathrm{OPT}^{\geq 2}(v) \geq R$ then $v_{(k)} \geq \frac{R}{k}$.

Profit Extractors

Lemma

Extract (R, v) obtains revenue R if $\mathrm{OPT}^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0 .

Proof.

- Recall: $\mathrm{OPT}^{\geq 2}(v)=k \cdot v_{(k)}$ for some $k \in\{2, \ldots, n\}$.
- If $\mathrm{OPT}^{\geq 2}(v) \geq R$ then $v_{(k)} \geq \frac{R}{k}$.
- Hence, the profit extractor finds some $k^{\prime} \geq k$ such that $v_{\left(k^{\prime}\right)} \geq R / k^{\prime}$, and obtains profit $k^{\prime} \cdot R / k^{\prime}=R$.

Profit Extractors

Lemma

Extract (R, v) obtains revenue R if $\mathrm{OPT}^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0 .

Proof.

- Recall: $\mathrm{OPT}^{\geq 2}(v)=k \cdot v_{(k)}$ for some $k \in\{2, \ldots, n\}$.
- If $\mathrm{OPT}^{\geq 2}(v) \geq R$ then $v_{(k)} \geq \frac{R}{k}$.
- Hence, the profit extractor finds some $k^{\prime} \geq k$ such that $v_{\left(k^{\prime}\right)} \geq R / k^{\prime}$, and obtains profit $k^{\prime} \cdot R / k^{\prime}=R$.
- If $R>\mathrm{OPT}^{(2)}(v)=\max _{k} k \cdot v_{(k)}$, then there is no k such that $v_{(k)} \geq R / k$. So the mechanism halts without selling to anybody.

Using Profit Extractors

- We now have a useful tool.

Using Profit Extractors

- We now have a useful tool.
- We can obtain revenue R if we know that it is possible to obtain revenue R with a fixed price.

Using Profit Extractors

- We now have a useful tool.
- We can obtain revenue R if we know that it is possible to obtain revenue R with a fixed price.
- But we're not done, since we don't know R.

Using Profit Extractors

- We now have a useful tool.
- We can obtain revenue R if we know that it is possible to obtain revenue R with a fixed price.
- But we're not done, since we don't know R.
- We've reduced our problem to finding a good estimate of the true optimal revenue R^{*}.

Using Profit Extractors

- We now have a useful tool.
- We can obtain revenue R if we know that it is possible to obtain revenue R with a fixed price.
- But we're not done, since we don't know R.
- We've reduced our problem to finding a good estimate of the true optimal revenue R^{*}.
- For truthfulness, it is important that R is defined independently of the bidders we run the profit extractor on.

The Random Sampling Auction

Idea: Try and estimate R^{*} from a random sample of the bidders, and then run the profit extractor on the remaining bidders.

The Random Sampling Auction

Idea: Try and estimate R^{*} from a random sample of the bidders, and then run the profit extractor on the remaining bidders.

RS(v):
Randomly partition the agents by assigning each agent uniformly at random to one of two sets: S^{\prime} or $S^{\prime \prime}$.
Calculate $R^{\prime}=\mathrm{OPT}^{\geq 2}\left(v_{S^{\prime}}\right)$ and $R^{\prime \prime}=\mathrm{OPT}^{\geq 2}\left(v_{S^{\prime \prime}}\right)$. Run $\operatorname{Extract}\left(R^{\prime}, v_{S^{\prime \prime}}\right)$ on $S^{\prime \prime}$ and $\operatorname{Extract}\left(R^{\prime \prime}, v_{S^{\prime}}\right)$ on S^{\prime}.

The Random Sampling Auction

Theorem
The random sampling auction is dominant strategy truthful.

The Random Sampling Auction

Theorem
The random sampling auction is dominant strategy truthful.
Proof.
$\operatorname{Extract}(R, v)$ is truthful whenever it is run with a value R computed independently of the bidders it is run on.

The Random Sampling Auction

Lemma

The revenue of the random sampling auction is at least $\min \left(R^{\prime}, R^{\prime \prime}\right)$.

The Random Sampling Auction

Lemma

The revenue of the random sampling auction is at least $\min \left(R^{\prime}, R^{\prime \prime}\right)$.

Proof.
Either $R^{\prime} \geq R^{\prime \prime}$ or $R^{\prime \prime} \geq R^{\prime}$ (or possibly both). So at least one copy of Extract succeeds.

The Random Sampling Auction

Lemma

The revenue of the random sampling auction is at least
$\min \left(R^{\prime}, R^{\prime \prime}\right)$.
Proof.
Either $R^{\prime} \geq R^{\prime \prime}$ or $R^{\prime \prime} \geq R^{\prime}$ (or possibly both). So at least one copy of Extract succeeds.
So it remains to understand $\min \left(R^{\prime}, R^{\prime \prime}\right)$ as a function of $R:=\mathrm{OPT}^{\geq 2}(v)$.

Some Simple Math

Theorem
If we flip $k \geq 2$ coins, then $\mathbb{E}[\min (\# h e a d s, \# t a i l s)] \geq k / 4$.
Proof.

Some Simple Math

Theorem
If we flip $k \geq 2$ coins, then $\mathbb{E}[\min (\# h e a d s, \# t a i l s)] \geq k / 4$.
Proof.

- Let M_{i} be $\mathbb{E}[\min (\#$ heads, \#tails $)]$ after i coin flips.

Some Simple Math

Theorem
If we flip $k \geq 2$ coins, then $\mathbb{E}[\min (\# h e a d s, \# t a i l s)] \geq k / 4$.
Proof.

- Let M_{i} be $\mathbb{E}[\min (\#$ heads, \#tails) $]$ after i coin flips.
- Some direct calculations show: $M_{1}=0$ and $M_{2}=1 / 2$.

Some Simple Math

Theorem
If we flip $k \geq 2$ coins, then $\mathbb{E}[\min (\# h e a d s, \# t a i l s)] \geq k / 4$.
Proof.

- Let M_{i} be $\mathbb{E}[\min (\#$ heads, \#tails) $]$ after i coin flips.
- Some direct calculations show: $M_{1}=0$ and $M_{2}=1 / 2$.
- Now define $X_{i}:=M_{i}-M_{i-1}$, the expected change to \min (\#heads, \#tails) after we flip the i 'th coin.

Some Simple Math

Theorem
If we flip $k \geq 2$ coins, then $\mathbb{E}[\min (\# h e a d s, \# t a i l s)] \geq k / 4$.
Proof.

- Let M_{i} be $\mathbb{E}[\min (\#$ heads, \#tails) $]$ after i coin flips.
- Some direct calculations show: $M_{1}=0$ and $M_{2}=1 / 2$.
- Now define $X_{i}:=M_{i}-M_{i-1}$, the expected change to \min (\#heads, \#tails) after we flip the i 'th coin.
- By linearity of expectation:

$$
M_{k}=\sum_{i=1}^{k} X_{i}
$$

so we are done if we can compute X_{i} for all i.

Some Simple Math

There are two cases:

- Case 1: i is even. $i-1$ is odd, and so we have \#heads $\neq \#$ tails after $i-1$ coin flips.

Some Simple Math

There are two cases:

- Case 1: i is even. $i-1$ is odd, and so we have \#heads $\neq \#$ tails after $i-1$ coin flips.
- Hence $X_{i}=1 / 2$, since with probability $1 / 2$, the coin flip contributes to the smaller of the two quantities.

Some Simple Math

There are two cases:

- Case 1: i is even. $i-1$ is odd, and so we have \#heads $\neq \#$ tails after $i-1$ coin flips.
- Hence $X_{i}=1 / 2$, since with probability $1 / 2$, the coin flip contributes to the smaller of the two quantities.
- Case 2: i is odd. $X_{i} \geq 0$.

Some Simple Math

There are two cases:

- Case 1: i is even. $i-1$ is odd, and so we have $\#$ heads $\neq \#$ tails after $i-1$ coin flips.
- Hence $X_{i}=1 / 2$, since with probability $1 / 2$, the coin flip contributes to the smaller of the two quantities.
- Case 2: i is odd. $X_{i} \geq 0$.

So:

$$
M_{k}=\sum_{i=1}^{k} X_{k} \geq \frac{k}{2} \cdot \frac{1}{2}=\frac{k}{4}
$$

Some Simple Math

There are two cases:

- Case 1: i is even. $i-1$ is odd, and so we have $\#$ heads $\neq \#$ tails after $i-1$ coin flips.
- Hence $X_{i}=1 / 2$, since with probability $1 / 2$, the coin flip contributes to the smaller of the two quantities.
- Case 2: i is odd. $X_{i} \geq 0$.

So:

$$
M_{k}=\sum_{i=1}^{k} X_{k} \geq \frac{k}{2} \cdot \frac{1}{2}=\frac{k}{4}
$$

(Actually, we were a little sloppy... we only showed that $M_{k} \geq\left\lfloor\frac{k}{2}\right\rfloor \cdot \frac{1}{2}$, which might be a little less than $k / 4$. To be fully rigorous, we have to directly verify that $X_{3}=1 / 4$ which makes up the difference).

The Random Sampling Auction

Theorem
Let Rev be the expected revenue of the random sampling auction. Then:

$$
\operatorname{Rev} \geq \frac{\mathrm{OPT}^{\geq 2}(v)}{4}
$$

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

- We know that $\operatorname{OPT}^{\geq 2}(v)=k \cdot p$ for some $k \geq 2$ and some price p.

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

- We know that $\operatorname{OPT}^{\geq 2}(v)=k \cdot p$ for some $k \geq 2$ and some price p.
- Of the k winners when using price p, let k^{\prime} be the number in S^{\prime} and $k^{\prime \prime}$ be the number in $S^{\prime \prime}$. Observe that $R^{\prime} \geq k^{\prime} \cdot p$ and $R^{\prime \prime} \geq k^{\prime \prime} \cdot p$

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

- We know that $\operatorname{OPT}^{\geq 2}(v)=k \cdot p$ for some $k \geq 2$ and some price p.
- Of the k winners when using price p, let k^{\prime} be the number in S^{\prime} and $k^{\prime \prime}$ be the number in $S^{\prime \prime}$. Observe that $R^{\prime} \geq k^{\prime} \cdot p$ and $R^{\prime \prime} \geq k^{\prime \prime} \cdot p$
- Hence:

$$
\frac{\operatorname{Rev}}{\mathrm{OPT}^{2}(v)} \geq \frac{\mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]}{k \cdot p}
$$

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

- We know that $\operatorname{OPT}^{\geq 2}(v)=k \cdot p$ for some $k \geq 2$ and some price p.
- Of the k winners when using price p, let k^{\prime} be the number in S^{\prime} and $k^{\prime \prime}$ be the number in $S^{\prime \prime}$. Observe that $R^{\prime} \geq k^{\prime} \cdot p$ and $R^{\prime \prime} \geq k^{\prime \prime} \cdot p$
- Hence:

$$
\begin{aligned}
\frac{\operatorname{Rev}}{\mathrm{OPT}^{\geq 2}(v)} & \geq \frac{\mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]}{k \cdot p} \\
& \geq \frac{\mathbb{E}\left[\min \left(k^{\prime} \cdot p, k^{\prime \prime} \cdot p\right)\right]}{k \cdot p}
\end{aligned}
$$

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

- We know that $\operatorname{OPT}^{\geq 2}(v)=k \cdot p$ for some $k \geq 2$ and some price p.
- Of the k winners when using price p, let k^{\prime} be the number in S^{\prime} and $k^{\prime \prime}$ be the number in $S^{\prime \prime}$. Observe that $R^{\prime} \geq k^{\prime} \cdot p$ and $R^{\prime \prime} \geq k^{\prime \prime} \cdot p$
- Hence:

$$
\begin{aligned}
\frac{\operatorname{Rev}}{\mathrm{OPT}^{2}(v)} & \geq \frac{\mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]}{k \cdot p} \\
& \geq \frac{\mathbb{E}\left[\min \left(k^{\prime} \cdot p, k^{\prime \prime} \cdot p\right)\right]}{k \cdot p} \\
& \geq \frac{\mathbb{E}\left[\min \left(k^{\prime}, k^{\prime \prime}\right)\right]}{k}
\end{aligned}
$$

The Random Sampling Auction

- Recall:

$$
\operatorname{Rev} \geq \mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]
$$

- We know that $\operatorname{OPT}^{\geq 2}(v)=k \cdot p$ for some $k \geq 2$ and some price p.
- Of the k winners when using price p, let k^{\prime} be the number in S^{\prime} and $k^{\prime \prime}$ be the number in $S^{\prime \prime}$. Observe that $R^{\prime} \geq k^{\prime} \cdot p$ and $R^{\prime \prime} \geq k^{\prime \prime} \cdot p$
- Hence:

$$
\begin{aligned}
\frac{\operatorname{Rev}}{\mathrm{OPT}^{\geq 2}(v)} & \geq \frac{\mathbb{E}\left[\min \left(R^{\prime}, R^{\prime \prime}\right)\right]}{k \cdot p} \\
& \geq \frac{\mathbb{E}\left[\min \left(k^{\prime} \cdot p, k^{\prime \prime} \cdot p\right)\right]}{k \cdot p} \\
& \geq \frac{\mathbb{E}\left[\min \left(k^{\prime}, k^{\prime \prime}\right)\right]}{k} \\
& \geq \frac{1}{4}
\end{aligned}
$$

Summary

- So we can approximate the revenue of the optimal auction without knowing D.

Summary

- So we can approximate the revenue of the optimal auction without knowing D.
- We got a 4 approximation, but...

Summary

- So we can approximate the revenue of the optimal auction without knowing D.
- We got a 4 approximation, but...
- This was only because we needed to handle the case in which the optimal auction sold to only 2 people.

Summary

- So we can approximate the revenue of the optimal auction without knowing D.
- We got a 4 approximation, but...
- This was only because we needed to handle the case in which the optimal auction sold to only 2 people.
- Similar ideas lead to a $(1+\epsilon)$ approximation of $\mathrm{OPT}^{\geq k}(v)$ as k becomes large.

Thanks!

See you next class - stay healthy!

