Posted Pricings and Prophet Inequalities

Aaron Roth

University of Pennsylvania

April 4 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

But auctions are difficult to run. They require e.g. all participants to be present and coordinating.

Overview

We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
- Many things are instead sold via posted prices.

Overview

- We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
- Many things are instead sold via posted prices.
- This lecture: How to approximate the welfare and revenue of the optimal auction with posted prices

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Model:

 k recognizable types of buyers (based on demographics, purchase history, or anything else).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type *i* have valuation $v_i \sim D_i$, where D_i regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type *i* have valuation $v_i \sim D_i$, where D_i regular.

Buyers arrive one at a time until the item is sold.

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type *i* have valuation $v_i \sim D_i$, where D_i regular.
- Buyers arrive one at a time until the item is sold.
- ▶ Buyers of type *i* face price p_i. If v_i ≥ p_i they buy the item, and we get revenue p_i. Otherwise they pass.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type *i* have valuation $v_i \sim D_i$, where D_i regular.
- Buyers arrive one at a time until the item is sold.
- ▶ Buyers of type *i* face price p_i. If v_i ≥ p_i they buy the item, and we get revenue p_i. Otherwise they pass.

Are there choices of p_i that allow us to approximate the welfare or revenue of the optimal auction?

Consider the following game:

▶ In each of *n* steps $i \in \{1, ..., n\}$, you are offered a prize $\pi_i \sim G_i$. (The distributions G_i are known in advance).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider the following game:

- ▶ In each of *n* steps $i \in \{1, ..., n\}$, you are offered a prize $\pi_i \sim G_i$. (The distributions G_i are known in advance).
- At each step *i*, after seeing π_i, you can either choose to accept it and end the game or reject it and continue.

Consider the following game:

- ▶ In each of *n* steps $i \in \{1, ..., n\}$, you are offered a prize $\pi_i \sim G_i$. (The distributions G_i are known in advance).
- At each step *i*, after seeing π_i, you can either choose to accept it and end the game or reject it and continue.
- A prophet could forsee all of the prizes and make sure to always take the highest one. His expected profit would be:

 $Profit(Prophet) = \mathbb{E}[\max_{i} \pi_{i}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider the following game:

- In each of n steps i ∈ {1,..., n}, you are offered a prize π_i ~ G_i. (The distributions G_i are known in advance).
- At each step *i*, after seeing π_i, you can either choose to accept it and end the game or reject it and continue.
- A prophet could forsee all of the prizes and make sure to always take the highest one. His expected profit would be:

$$Profit(Prophet) = \mathbb{E}[\max_{i} \pi_{i}]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How well can you do?

Definition

A *threshold* strategy fixes some threshold t and accepts the first prize such that $\pi_i \ge t$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

A *threshold* strategy fixes some threshold t and accepts the first prize such that $\pi_i \ge t$.

An immediate connection to welfare: t corresponds to price p, accepting reward π_i corresponds to obtaining welfare v_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A *threshold* strategy fixes some threshold t and accepts the first prize such that $\pi_i \ge t$.

An immediate connection to welfare: t corresponds to price p, accepting reward π_i corresponds to obtaining welfare v_i .

Theorem

For every set of distributions G_1, \ldots, G_n , there is a threshold strategy that guarantees reward at least $\frac{1}{2} \mathbb{E}[\max_i \pi_i]$.

Notation:
$$z^+ = max(z, 0)$$
, $V^* = max_i \pi_i$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• Notation: $z^+ = max(z, 0)$, $V^* = max_i \pi_i$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• We'll use threshold $t = \frac{1}{2} E[V^*]$.

- Notation: $z^+ = max(z, 0)$, $V^* = max_i \pi_i$.
- We'll use threshold $t = \frac{1}{2} E[V^*]$.
- We'll use language of the economic application:
 - "item is unsold" "We don't accept any prizes"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"item is sold" "We accept a prize"

- Notation: $z^+ = max(z, 0)$, $V^* = max_i \pi_i$.
- We'll use threshold $t = \frac{1}{2} E[V^*]$.
- We'll use language of the economic application:
 - "item is unsold" "We don't accept any prizes"
 - "item is sold" "We accept a prize"
- We'll prove the prophet inequality by decomposing expected reward between:

- 1. Expected revenue, and
- 2. Expected buyer utility.

► To show: Expected welfare (reward) is large.

- ► To show: Expected welfare (reward) is large.
- Suppose we sell to buyer *i* at price *p* (select reward *i*):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We obtain revenue p
- ► Buyer obtains utility v_i − p.

- ► To show: Expected welfare (reward) is large.
- Suppose we sell to buyer *i* at price *p* (select reward *i*):

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We obtain revenue p
- ► Buyer obtains utility v_i − p.
- Welfare = Revenue + Buyer Utility.

- ► To show: Expected welfare (reward) is large.
- Suppose we sell to buyer *i* at price *p* (select reward *i*):
 - We obtain revenue p
 - Buyer obtains utility v_i p.
- ▶ Welfare = Revenue + Buyer Utility.
- Strategy: Prove lower bounds on expected revenue and buyer utility separately.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Expected Revenue:

 $E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Expected Revenue:

 $E[Revenue] = p \cdot \Pr[Item \text{ is sold}] = \frac{1}{2}E[V^*] \cdot \Pr[Item \text{ is sold}]$

Buyer Utility:

Expected Revenue:

 $E[Revenue] = p \cdot \Pr[Item \text{ is sold}] = \frac{1}{2}E[V^*] \cdot \Pr[Item \text{ is sold}]$

Buyer Utility:

If we get to buyer *i* before selling the item, she has opportunity to buy. So her utility is (v_i − p)⁺.

Expected Revenue:

 $E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}]$

Buyer Utility:

If we get to buyer *i* before selling the item, she has opportunity to buy. So her utility is (v_i − p)⁺.

So expected buyer utility is:

$$\mathbf{E}[\text{Utility}] = \sum_{i=1}^{n} \mathbf{E}[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Expected Revenue:

 $E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}]$

Buyer Utility:

If we get to buyer *i* before selling the item, she has opportunity to buy. So her utility is (v_i − p)⁺.

So expected buyer utility is:

$$E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i]$$
$$\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}]$$

Expected Revenue:

 $E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}]$

Buyer Utility:

If we get to buyer *i* before selling the item, she has opportunity to buy. So her utility is (v_i − p)⁺.

So expected buyer utility is:

$$E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i]$$

$$\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}]$$

$$\geq E[\max_i (v_i - p)^+] \cdot \Pr[\text{item is unsold}]$$

Expected Revenue:

 $E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}]$

Buyer Utility:

If we get to buyer *i* before selling the item, she has opportunity to buy. So her utility is (v_i − p)⁺.

So expected buyer utility is:

$$E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i]$$

$$\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}]$$

$$\geq E[\max_i (v_i - p)^+] \cdot \Pr[\text{item is unsold}]$$

$$\geq (E[\max_i v_i] - p) \cdot \Pr[\text{item is unsold}]$$

Expected Revenue:

 $E[Revenue] = p \cdot \Pr[Item \text{ is sold}] = \frac{1}{2}E[V^*] \cdot \Pr[Item \text{ is sold}]$

Buyer Utility:

If we get to buyer i before selling the item, she has opportunity to buy. So her utility is (v_i − p)⁺.

So expected buyer utility is:

 $E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i]$ $\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}]$ $\geq E[\max_i (v_i - p)^+] \cdot \Pr[\text{item is unsold}]$ $\geq (E[\max_i v_i] - p) \cdot \Pr[\text{item is unsold}]$ $= \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is unsold}]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So we can bound expected welfare/reward...

E[Welfare] = E[Revenue] + E[Utility]

So we can bound expected welfare/reward...

$$\begin{split} \mathbf{E}[\text{Welfare}] &= \mathbf{E}[\text{Revenue}] + \mathbf{E}[\text{Utility}] \\ &\geq \frac{1}{2}\mathbf{E}[V^*] \cdot \mathsf{Pr}[\text{Item is sold}] + \frac{1}{2}\mathbf{E}[V^*] \cdot \mathsf{Pr}[\text{Item is unsold}] \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

So we can bound expected welfare/reward...

$$\begin{split} \mathrm{E}[\mathrm{Welfare}] &= \mathrm{E}[\mathrm{Revenue}] + \mathrm{E}[\mathrm{Utility}] \\ &\geq \frac{1}{2}\mathrm{E}[V^*] \cdot \mathsf{Pr}[\mathrm{Item \ is \ sold}] + \frac{1}{2}\mathrm{E}[V^*] \cdot \mathsf{Pr}[\mathrm{Item \ is \ unsold}] \\ &= \frac{1}{2}\mathrm{E}[V^*] \cdot \left(\mathsf{Pr}[\mathrm{Item \ is \ sold}] + \mathsf{Pr}[\mathrm{Item \ is \ unsold}]\right) \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

So we can bound expected welfare/reward...

$$\begin{split} \mathrm{E}[\mathrm{Welfare}] &= \mathrm{E}[\mathrm{Revenue}] + \mathrm{E}[\mathrm{Utility}] \\ &\geq \frac{1}{2}\mathrm{E}[V^*] \cdot \Pr[\mathrm{Item \ is \ sold}] + \frac{1}{2}\mathrm{E}[V^*] \cdot \Pr[\mathrm{Item \ is \ unsold}] \\ &= \frac{1}{2}\mathrm{E}[V^*] \cdot \left(\Pr[\mathrm{Item \ is \ sold}] + \Pr[\mathrm{Item \ is \ unsold}]\right) \\ &= \frac{1}{2}\mathrm{E}[V^*] \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Welfare

Immediate implications for welfare maximization!

▶ Using a *single* fixed price $p = \frac{1}{2} E[V^*]$, can obtain half the expected welfare of the VCG mechanism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Welfare

Immediate implications for welfare maximization!

- ▶ Using a *single* fixed price $p = \frac{1}{2} E[V^*]$, can obtain half the expected welfare of the VCG mechanism.
- Without needing to gather all bidders ahead of time, and despite the uncertainty about realizations!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Welfare

Immediate implications for welfare maximization!

- ▶ Using a *single* fixed price $p = \frac{1}{2} E[V^*]$, can obtain half the expected welfare of the VCG mechanism.
- Without needing to gather all bidders ahead of time, and despite the uncertainty about realizations!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What about for revenue?

Recall that for monotone allocation rules X paired with truthful pricings P:

$$\mathbf{E}[\text{Revenue}] = \mathbf{E}[\sum_{i=1}^{n} \phi_i(v_i) X(v)]$$

(ロ)、(型)、(E)、(E)、 E) の(()

Recall that for monotone allocation rules X paired with truthful pricings P:

$$\mathbf{E}[\text{Revenue}] = \mathbf{E}[\sum_{i=1}^{n} \phi_i(v_i) X(v)]$$

• Optimal revenue is $OPT = E[max_i(\phi_i(v_i))^+]$.

Recall that for monotone allocation rules X paired with truthful pricings P:

$$\mathbf{E}[\text{Revenue}] = \mathbf{E}[\sum_{i=1}^{n} \phi_i(v_i) X(v)]$$

• Optimal revenue is $OPT = E[max_i(\phi_i(v_i))^+].$

• Define
$$\pi_i = (\phi_i(v_i))^+$$
. So $E[V^*] = OPT$.

Recall that for monotone allocation rules X paired with truthful pricings P:

$$\mathbf{E}[\text{Revenue}] = \mathbf{E}[\sum_{i=1}^{n} \phi_i(v_i) X(v)]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Optimal revenue is $OPT = E[max_i(\phi_i(v_i))^+]$.

• Define
$$\pi_i = (\phi_i(v_i))^+$$
. So $E[V^*] = OPT$.

• We can achieve *virtual value* at least $\frac{1}{2}$ OPT with threshold t =OPT/2.

Recall that for monotone allocation rules X paired with truthful pricings P:

$$\mathbf{E}[\text{Revenue}] = \mathbf{E}[\sum_{i=1}^{n} \phi_i(v_i) X(v)]$$

• Optimal revenue is $OPT = E[max_i(\phi_i(v_i))^+]$.

• Define
$$\pi_i = (\phi_i(v_i))^+$$
. So $E[V^*] = OPT$.

- We can achieve *virtual value* at least $\frac{1}{2}$ OPT with threshold t =OPT/2.
- ▶ This corresponds to setting threshold/price p_i = φ_i⁻¹ (OPT/2).
 ▶ (Note a fixed price corresponds to a monotone allocation rule with payment = price)

Recall that for monotone allocation rules X paired with truthful pricings P:

$$\mathbf{E}[\text{Revenue}] = \mathbf{E}[\sum_{i=1}^{n} \phi_i(v_i) X(v)]$$

• Optimal revenue is $OPT = E[max_i(\phi_i(v_i))^+]$.

• Define
$$\pi_i = (\phi_i(v_i))^+$$
. So $E[V^*] = OPT$.

- We can achieve *virtual value* at least $\frac{1}{2}$ OPT with threshold t =OPT/2.
- ▶ This corresponds to setting threshold/price p_i = φ_i⁻¹ (OPT/2).
 ▶ (Note a fixed price corresponds to a monotone allocation rule with payment = price)
- We need to use different prices for different types of bidders, but approximate optimal revenue.

Thanks!

See you next class — stay healthy!

