Posted Pricings and Prophet Inequalities

Aaron Roth

University of Pennsylvania

April 42024

Overview

- We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.

Overview

- We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.

Overview

- We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
- Many things are instead sold via posted prices.

Overview

- We've seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
- Many things are instead sold via posted prices.
- This lecture: How to approximate the welfare and revenue of the optimal auction with posted prices

Pricing for a single item (e.g. a car)

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).

Pricing for a single item (e.g. a car)

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type i have valuation $v_{i} \sim D_{i}$, where D_{i} regular.

Pricing for a single item (e.g. a car)

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type i have valuation $v_{i} \sim D_{i}$, where D_{i} regular.
- Buyers arrive one at a time until the item is sold.

Pricing for a single item (e.g. a car)

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type i have valuation $v_{i} \sim D_{i}$, where D_{i} regular.
- Buyers arrive one at a time until the item is sold.
- Buyers of type i face price p_{i}. If $v_{i} \geq p_{i}$ they buy the item, and we get revenue p_{i}. Otherwise they pass.

Pricing for a single item (e.g. a car)

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type i have valuation $v_{i} \sim D_{i}$, where D_{i} regular.
- Buyers arrive one at a time until the item is sold.
- Buyers of type i face price p_{i}. If $v_{i} \geq p_{i}$ they buy the item, and we get revenue p_{i}. Otherwise they pass.
Are there choices of p_{i} that allow us to approximate the welfare or revenue of the optimal auction?

Prophets and Profits (an Interlude)

Consider the following game:

- In each of n steps $i \in\{1, \ldots, n\}$, you are offered a prize $\pi_{i} \sim G_{i}$. (The distributions G_{i} are known in advance).

Prophets and Profits (an Interlude)

Consider the following game:

- In each of n steps $i \in\{1, \ldots, n\}$, you are offered a prize $\pi_{i} \sim G_{i}$. (The distributions G_{i} are known in advance).
- At each step i, after seeing π_{i}, you can either choose to accept it and end the game or reject it and continue.

Prophets and Profits (an Interlude)

Consider the following game:

- In each of n steps $i \in\{1, \ldots, n\}$, you are offered a prize $\pi_{i} \sim G_{i}$. (The distributions G_{i} are known in advance).
- At each step i, after seeing π_{i}, you can either choose to accept it and end the game or reject it and continue.
- A prophet could forsee all of the prizes and make sure to always take the highest one. His expected profit would be:

$$
\operatorname{Profit}(\text { Prophet })=\mathrm{E}\left[\max _{i} \pi_{i}\right]
$$

Prophets and Profits (an Interlude)

Consider the following game:

- In each of n steps $i \in\{1, \ldots, n\}$, you are offered a prize $\pi_{i} \sim G_{i}$. (The distributions G_{i} are known in advance).
- At each step i, after seeing π_{i}, you can either choose to accept it and end the game or reject it and continue.
- A prophet could forsee all of the prizes and make sure to always take the highest one. His expected profit would be:

$$
\operatorname{Profit}(\text { Prophet })=\mathrm{E}\left[\max _{i} \pi_{i}\right]
$$

- How well can you do?

The Prophet Inequality

Definition

A threshold strategy fixes some threshold t and accepts the first prize such that $\pi_{i} \geq t$.

The Prophet Inequality

Definition

A threshold strategy fixes some threshold t and accepts the first prize such that $\pi_{i} \geq t$.
An immediate connection to welfare: t corresponds to price p, accepting reward π_{i} corresponds to obtaining welfare v_{i}.

The Prophet Inequality

Definition

A threshold strategy fixes some threshold t and accepts the first prize such that $\pi_{i} \geq t$.
An immediate connection to welfare: t corresponds to price p, accepting reward π_{i} corresponds to obtaining welfare v_{i}.

Theorem
For every set of distributions G_{1}, \ldots, G_{n}, there is a threshold strategy that guarantees reward at least $\frac{1}{2} \mathrm{E}\left[\max _{i} \pi_{i}\right]$.

The Prophet Inequality

- Notation: $z^{+}=\max (z, 0), V^{*}=\max _{i} \pi_{i}$.

The Prophet Inequality

- Notation: $z^{+}=\max (z, 0), V^{*}=\max _{i} \pi_{i}$.
- We'll use threshold $t=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$.

The Prophet Inequality

- Notation: $z^{+}=\max (z, 0), V^{*}=\max _{i} \pi_{i}$.
- We'll use threshold $t=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$.
- We'll use language of the economic application:
- "item is unsold" \Leftrightarrow "We don't accept any prizes"
- "item is sold" \Leftrightarrow "We accept a prize"

The Prophet Inequality

- Notation: $z^{+}=\max (z, 0), V^{*}=\max _{i} \pi_{i}$.
- We'll use threshold $t=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$.
- We'll use language of the economic application:
- "item is unsold" \Leftrightarrow "We don't accept any prizes"
- "item is sold" \Leftrightarrow "We accept a prize"
- We'll prove the prophet inequality by decomposing expected reward between:

1. Expected revenue, and
2. Expected buyer utility.

The Prophet Inequality

- To show: Expected welfare (reward) is large.

The Prophet Inequality

- To show: Expected welfare (reward) is large.
- Suppose we sell to buyer i at price p (select reward i):
- We obtain revenue p
- Buyer obtains utility $v_{i}-p$.

The Prophet Inequality

- To show: Expected welfare (reward) is large.
- Suppose we sell to buyer i at price p (select reward i):
- We obtain revenue p
- Buyer obtains utility $v_{i}-p$.
- Welfare $=$ Revenue + Buyer Utility.

The Prophet Inequality

- To show: Expected welfare (reward) is large.
- Suppose we sell to buyer i at price p (select reward i):
- We obtain revenue p
- Buyer obtains utility $v_{i}-p$.
- Welfare $=$ Revenue + Buyer Utility.
- Strategy: Prove lower bounds on expected revenue and buyer utility separately.

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:
- If we get to buyer i before selling the item, she has opportunity to buy. So her utility is $\left(v_{i}-p\right)^{+}$.

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:
- If we get to buyer i before selling the item, she has opportunity to buy. So her utility is $\left(v_{i}-p\right)^{+}$.
- So expected buyer utility is:

$$
\mathrm{E}[\mathrm{Utility}]=\sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold before } i]
$$

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:
- If we get to buyer i before selling the item, she has opportunity to buy. So her utility is $\left(v_{i}-p\right)^{+}$.
- So expected buyer utility is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{Utility}] & =\sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold before } i] \\
& \geq \sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }]
\end{aligned}
$$

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:
- If we get to buyer i before selling the item, she has opportunity to buy. So her utility is $\left(v_{i}-p\right)^{+}$.
- So expected buyer utility is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{Utility}] & =\sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold before } i] \\
& \geq \sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }] \\
& \geq \mathrm{E}\left[\max _{i}\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }]
\end{aligned}
$$

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:
- If we get to buyer i before selling the item, she has opportunity to buy. So her utility is $\left(v_{i}-p\right)^{+}$.
- So expected buyer utility is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{Utility}] & =\sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold before } i] \\
& \geq \sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }] \\
& \geq \mathrm{E}\left[\max _{i}\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }] \\
& \geq\left(\mathrm{E}\left[\max _{i} v_{i}\right]-p\right) \cdot \operatorname{Pr}[\text { item is unsold }]
\end{aligned}
$$

The Prophet Inequality

- Expected Revenue:
$\mathrm{E}[$ Revenue $]=p \cdot \operatorname{Pr}[$ Item is sold $]=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]$
- Buyer Utility:
- If we get to buyer i before selling the item, she has opportunity to buy. So her utility is $\left(v_{i}-p\right)^{+}$.
- So expected buyer utility is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{Utility}] & =\sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold before } i] \\
& \geq \sum_{i=1}^{n} \mathrm{E}\left[\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }] \\
& \geq \mathrm{E}\left[\max _{i}\left(v_{i}-p\right)^{+}\right] \cdot \operatorname{Pr}[\text { item is unsold }] \\
& \geq\left(\mathrm{E}\left[\max _{i} v_{i}\right]-p\right) \cdot \operatorname{Pr}[\text { item is unsold }] \\
& =\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[\text { Item is unsold }]
\end{aligned}
$$

The Prophet Inequality

So we can bound expected welfare/reward...
$\mathrm{E}[$ Welfare $]=\mathrm{E}[$ Revenue $]+\mathrm{E}[$ Utility $]$

The Prophet Inequality

So we can bound expected welfare/reward...
$\mathrm{E}[$ Welfare $]=\mathrm{E}[$ Revenue $]+\mathrm{E}[$ Utility $]$
$\geq \frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]+\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is unsold $]$

The Prophet Inequality

So we can bound expected welfare/reward...
$\mathrm{E}[$ Welfare $]=\mathrm{E}[$ Revenue $]+\mathrm{E}[$ Utility $]$
$\geq \frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]+\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is unsold $]$
$=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot(\operatorname{Pr}[$ Item is sold $]+\operatorname{Pr}[$ Item is unsold $])$

The Prophet Inequality

So we can bound expected welfare/reward...
$\mathrm{E}[$ Welfare $]=\mathrm{E}[$ Revenue $]+\mathrm{E}[$ Utility $]$
$\geq \frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is sold $]+\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot \operatorname{Pr}[$ Item is unsold $]$
$=\frac{1}{2} \mathrm{E}\left[V^{*}\right] \cdot(\operatorname{Pr}[$ Item is sold $]+\operatorname{Pr}[$ Item is unsold $])$
$=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$

Welfare

Immediate implications for welfare maximization!

- Using a single fixed price $p=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$, can obtain half the expected welfare of the VCG mechanism.

Welfare

Immediate implications for welfare maximization!

- Using a single fixed price $p=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$, can obtain half the expected welfare of the VCG mechanism.
- Without needing to gather all bidders ahead of time, and despite the uncertainty about realizations!

Welfare

Immediate implications for welfare maximization!

- Using a single fixed price $p=\frac{1}{2} \mathrm{E}\left[V^{*}\right]$, can obtain half the expected welfare of the VCG mechanism.
- Without needing to gather all bidders ahead of time, and despite the uncertainty about realizations!
- What about for revenue?

Revenue

Recall that for monotone allocation rules X paired with truthful pricings P :

$$
\mathrm{E}[\text { Revenue }]=\mathrm{E}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) X(v)\right]
$$

Revenue

Recall that for monotone allocation rules X paired with truthful pricings P :

$$
\mathrm{E}[\text { Revenue }]=\mathrm{E}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) X(v)\right]
$$

- Optimal revenue is $\mathrm{OPT}=\mathrm{E}\left[\max _{i}\left(\phi_{i}\left(v_{i}\right)\right)^{+}\right]$.

Revenue

Recall that for monotone allocation rules X paired with truthful pricings P :

$$
\mathrm{E}[\text { Revenue }]=\mathrm{E}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) X(v)\right]
$$

- Optimal revenue is $\mathrm{OPT}=\mathrm{E}\left[\max _{i}\left(\phi_{i}\left(v_{i}\right)\right)^{+}\right]$.
- Define $\pi_{i}=\left(\phi_{i}\left(v_{i}\right)\right)^{+}$. So $\mathrm{E}\left[V^{*}\right]=$ OPT.

Revenue

Recall that for monotone allocation rules X paired with truthful pricings P :

$$
\mathrm{E}[\text { Revenue }]=\mathrm{E}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) X(v)\right]
$$

- Optimal revenue is $\mathrm{OPT}=\mathrm{E}\left[\max _{i}\left(\phi_{i}\left(v_{i}\right)\right)^{+}\right]$.
- Define $\pi_{i}=\left(\phi_{i}\left(v_{i}\right)\right)^{+}$. So $\mathrm{E}\left[V^{*}\right]=\mathrm{OPT}$.
- We can achieve virtual value at least $\frac{1}{2}$ OPT with threshold $t=\mathrm{OPT} / 2$.

Revenue

Recall that for monotone allocation rules X paired with truthful pricings P :

$$
\mathrm{E}[\text { Revenue }]=\mathrm{E}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) X(v)\right]
$$

- Optimal revenue is $\mathrm{OPT}=\mathrm{E}\left[\max _{i}\left(\phi_{i}\left(v_{i}\right)\right)^{+}\right]$.
- Define $\pi_{i}=\left(\phi_{i}\left(v_{i}\right)\right)^{+}$. So $\mathrm{E}\left[V^{*}\right]=$ OPT.
- We can achieve virtual value at least $\frac{1}{2}$ OPT with threshold $t=\mathrm{OPT} / 2$.
- This corresponds to setting threshold/price $p_{i}=\phi_{i}^{-1}\left(\frac{\mathrm{OPT}}{2}\right)$.
- (Note a fixed price corresponds to a monotone allocation rule with payment $=$ price)

Revenue

Recall that for monotone allocation rules X paired with truthful pricings P :

$$
\mathrm{E}[\text { Revenue }]=\mathrm{E}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) X(v)\right]
$$

- Optimal revenue is OPT $=\mathrm{E}\left[\max _{i}\left(\phi_{i}\left(v_{i}\right)\right)^{+}\right]$.
- Define $\pi_{i}=\left(\phi_{i}\left(v_{i}\right)\right)^{+}$. So $\mathrm{E}\left[V^{*}\right]=$ OPT.
- We can achieve virtual value at least $\frac{1}{2}$ OPT with threshold $t=\mathrm{OPT} / 2$.
- This corresponds to setting threshold/price $p_{i}=\phi_{i}^{-1}\left(\frac{\mathrm{OPT}}{2}\right)$.
- (Note a fixed price corresponds to a monotone allocation rule with payment = price)
- We need to use different prices for different types of bidders, but approximate optimal revenue.

Thanks!

See you next class - stay healthy!

