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Overview

▶ We’ve spent a lot of time discussing welfare maximization.

▶ But many auctions have a more pecuniary goal. What if we
want to maximize revenue?

▶ What does that mean? What is our benchmark?

▶ This lecture: a case study for single item auctions.
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Reasonable Benchmarks?

▶ The VCG mechanism was remarkable: we could always
maximize welfare ex-post.

▶ What about for revenue? Not so simple.

▶ Consider a single bidder, single item auction. Offering a fixed
price p is always dominant strategy truthful.

▶ Revenue is p if vi ≥ p, 0 otherwise.

▶ So ex-post, the revenue-optimal auction sets p = vi ... But
ex-ante, we don’t have enough information.
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The Average Case

▶ Suppose we know that bidders have valuations vi ∼ D for
some distribution D.

▶ We know D, but we don’t know vi ...

▶ In a single item, single bidder auction, a fixed price p yields
expected revenue:

Rev(p) = p · (1− F (p))

Where F (p) = Prv∼D [v ≤ p].

▶ E.g. if D is uniform on [0, 1], then F (p) = p and:

max
p

Rev(p) =
1

2
· (1− 1

2
) =

1

4
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Average Case: Many Bidders

▶ One item, many bidders.

▶ We want to design a truthful mechanism (X ,P) that
maximizes:

Ev∼Dn

[
n∑

i=1

Pi (v)

]
▶ For truthfulness, we need X to be monotone non-decreasing...

▶ And we know:

Pi (v) = vi · Xi (v)−
∫ vi

0
Xi (z , v−i )dz
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Myserson Optimal Auctions

▶ Lets assume monotonicity for now, and use our expression for
P to derive the optimal X .

▶ If we are lucky and derive a monotone X , we will be done!

▶ Plan: Find X to maximize:

Ev∼Dn

[
n∑

i=1

Pi (v)

]
=

n∑
i=1

Ev−i∼Dn−1 [Evi∼D [Pi (vi , v−i )]]

▶ Notation: f (p) is the pdf of D.

F (p) = Pr
v∼D

[v ≤ p] =
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Myserson Optimal Auctions

So: We want to maximize

Ev∼Dn

[
n∑

i=1

ϕ(vi ) · X (v)

]
ϕ(vi ) =

(
vi −

(1− F (vi ))

f (vi )

)
︸ ︷︷ ︸

“Virtual Value”

▶ Our objective looks just like welfare with values replaced by
virtual values.

▶ (Pointwise) optimal allocation rule: Give the item to the
bidder i with highest ϕ(vi ) if it’s positive. Otherwise give the
item to nobody.

▶ This is a monotone allocation rule if D is regular: ϕ(vi ) is
monotone.
▶ e.g. if D is uniform, ϕ(vi ) = vi − (1− vi ) = 2vi − 1
▶ Note that ϕ−1(0) recovers the optimal p = 1/2 for a single

bidder.
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Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when vi drawn
iid from regular D)

▶ We give the item to bidder i∗ = argmaxi ϕ(vi ) when
ϕ(vi∗) ≥ 0.

▶ Because ϕ is monotone, i∗ = argmaxi vi : the item goes to the
highest bidder when ϕ(vi∗) ≥ 0.

▶ Winner pays vi∗ −
∫ vi∗
p∗ 1 = p∗, where:

p∗ = max(max
i ̸=i∗

vi , ϕ
−1(0))

▶ i.e. its just a Vickrey auction with a reserve price of ϕ−1(0)!

▶ Remarkable — Simple eBay style auction is the best possible.
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▶ i.e. its just a Vickrey auction with a reserve price of ϕ−1(0)!

▶ Remarkable — Simple eBay style auction is the best possible.



Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when vi drawn
iid from regular D)

▶ We give the item to bidder i∗ = argmaxi ϕ(vi ) when
ϕ(vi∗) ≥ 0.

▶ Because ϕ is monotone, i∗ = argmaxi vi : the item goes to the
highest bidder when ϕ(vi∗) ≥ 0.

▶ Winner pays vi∗ −
∫ vi∗
p∗ 1 = p∗, where:

p∗ = max(max
i ̸=i∗

vi , ϕ
−1(0))

▶ i.e. its just a Vickrey auction with a reserve price of ϕ−1(0)!

▶ Remarkable — Simple eBay style auction is the best possible.



Extensions/Limitations

▶ Can be made to work even when D is not regular.

▶ Have to “iron” ϕ(v) to make it monotone.
▶ Analysis required vi ’s be drawn independently, but not

identically. Each bidder can have their own distribution Di .
▶ Each bidder has their own virtual valuation function ϕi (vi ).
▶ Auction no longer so natural. e.g. high bidder no longer

necessarily wins.

▶ Doesn’t extend beyond single parameter domains...

▶ Requires knowledge of D...
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One more thing

▶ If we care about revenue, should we give up on welfare?

▶ The Vickrey auction yields no revenue selling to a single
bidder, whereas when D is uniform over [0, 1] we can get
expected revenue 1/4.

▶ What about a Vickrey auction with 2 bidders?

▶
Rev(VA) = Ev1,v2∼D [min(v1, v2)] = 1/3

▶ So we might be better off maximizing welfare with more
bidders...
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The Bulow/Klemperer Theorem

Theorem
Consider bidders drawn i.i.d. from a regular distribution D. For
any n ≥ 1, the Vickrey auction with n + 1 bidders has higher
expected revenue than the revenue optimal auction with n bidders.

So recruiting just one extra bidder is worth more than optimizing
revenue for the current population.
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The Bulow/Klemperer Theorem

Consider the hypothetical auction A for n + 1 bidders:

1. Run the revenue optimal auction for the first n bidders.

2. If the auction fails to allocate the item, give it to bidder n + 1
for free.

Observations:

1. The revenue of A is exactly equal to the optimal revenue
obtainable from n bidders.

2. A always allocates the item.
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But...

▶ Claim: The Vickrey mechanism is obtains the maximum
revenue amongst all mechanisms that always allocate the item.

▶ Recall that Ev [
∑

i Pi (v)] = E[
∑

i ϕi (vi ) · Xi (v)].

▶ We can maximize the RHS (subject to always allocating the
item) by always allocating to argmaxi ϕ(vi ).

▶ Since D is regular, ϕ is monotone: this is argmaxi vi — the
Vickrey allocation!

▶ So: The Vickrey-auction with n + 1 bidders has only higher
revenue than the optimal n bidder auction.
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Thanks!

See you next class — stay healthy!


