Maximizing Revenue in Expectation

Aaron Roth

University of Pennsylvania

April 22024

Overview

- We've spent a lot of time discussing welfare maximization.

Overview

- We've spent a lot of time discussing welfare maximization.
- But many auctions have a more pecuniary goal. What if we want to maximize revenue?

Overview

- We've spent a lot of time discussing welfare maximization.
- But many auctions have a more pecuniary goal. What if we want to maximize revenue?
- What does that mean? What is our benchmark?

Overview

- We've spent a lot of time discussing welfare maximization.
- But many auctions have a more pecuniary goal. What if we want to maximize revenue?
- What does that mean? What is our benchmark?
- This lecture: a case study for single item auctions.

Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare ex-post.

Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare ex-post.
- What about for revenue? Not so simple.

Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare ex-post.
- What about for revenue? Not so simple.
- Consider a single bidder, single item auction. Offering a fixed price p is always dominant strategy truthful.

Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare ex-post.
- What about for revenue? Not so simple.
- Consider a single bidder, single item auction. Offering a fixed price p is always dominant strategy truthful.
- Revenue is p if $v_{i} \geq p, 0$ otherwise.

Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare ex-post.
- What about for revenue? Not so simple.
- Consider a single bidder, single item auction. Offering a fixed price p is always dominant strategy truthful.
- Revenue is p if $v_{i} \geq p, 0$ otherwise.
- So ex-post, the revenue-optimal auction sets $p=v_{i} \ldots$ But ex-ante, we don't have enough information.

The Average Case

- Suppose we know that bidders have valuations $v_{i} \sim D$ for some distribution D.

The Average Case

- Suppose we know that bidders have valuations $v_{i} \sim D$ for some distribution D.
- We know D, but we don't know $v_{i} \ldots$

The Average Case

- Suppose we know that bidders have valuations $v_{i} \sim D$ for some distribution D.
- We know D, but we don't know $v_{i} \ldots$
- In a single item, single bidder auction, a fixed price p yields expected revenue:

$$
\operatorname{Rev}(p)=p \cdot(1-F(p))
$$

Where $F(p)=\operatorname{Pr}_{v \sim D}[v \leq p]$.

The Average Case

- Suppose we know that bidders have valuations $v_{i} \sim D$ for some distribution D.
- We know D, but we don't know $v_{i} \ldots$
- In a single item, single bidder auction, a fixed price p yields expected revenue:

$$
\operatorname{Rev}(p)=p \cdot(1-F(p))
$$

Where $F(p)=\operatorname{Pr}_{v \sim D}[v \leq p]$.

- E.g. if D is uniform on $[0,1]$, then $F(p)=p$ and:

$$
\max _{p} \operatorname{Rev}(p)=\frac{1}{2} \cdot\left(1-\frac{1}{2}\right)=\frac{1}{4}
$$

Average Case: Many Bidders

- One item, many bidders.

Average Case: Many Bidders

- One item, many bidders.
- We want to design a truthful mechanism (X, P) that maximizes:

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} P_{i}(v)\right]
$$

Average Case: Many Bidders

- One item, many bidders.
- We want to design a truthful mechanism (X, P) that maximizes:

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} P_{i}(v)\right]
$$

- For truthfulness, we need X to be monotone non-decreasing...

Average Case: Many Bidders

- One item, many bidders.
- We want to design a truthful mechanism (X, P) that maximizes:

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} P_{i}(v)\right]
$$

- For truthfulness, we need X to be monotone non-decreasing...
- And we know:

$$
P_{i}(v)=v_{i} \cdot X_{i}(v)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z
$$

Myserson Optimal Auctions

- Lets assume monotonicity for now, and use our expression for P to derive the optimal X.

Myserson Optimal Auctions

- Lets assume monotonicity for now, and use our expression for P to derive the optimal X.
- If we are lucky and derive a monotone X, we will be done!

Myserson Optimal Auctions

- Lets assume monotonicity for now, and use our expression for P to derive the optimal X.
- If we are lucky and derive a monotone X, we will be done!
- Plan: Find X to maximize:

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} P_{i}(v)\right]=\sum_{i=1}^{n} \mathrm{E}_{v_{-i} \sim D^{n-1}}\left[\mathrm{E}_{v_{i} \sim D}\left[P_{i}\left(v_{i}, v_{-i}\right)\right]\right]
$$

Myserson Optimal Auctions

- Lets assume monotonicity for now, and use our expression for P to derive the optimal X.
- If we are lucky and derive a monotone X, we will be done!
- Plan: Find X to maximize:

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} P_{i}(v)\right]=\sum_{i=1}^{n} \mathrm{E}_{v_{-i} \sim D^{n-1}}\left[\mathrm{E}_{v_{i} \sim D}\left[P_{i}\left(v_{i}, v_{-i}\right)\right]\right]
$$

- Notation: $f(p)$ is the pdf of D.

$$
F(p)=\operatorname{Pr}_{v \sim D}[v \leq p]=\int_{0}^{p} f(v) d v
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right]=\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right]
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right]
\end{aligned}
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} f\left(v_{i}\right) \int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z d v_{i}
\end{aligned}
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} f\left(v_{i}\right) \int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(z, v_{-i}\right) \int_{z}^{1} f\left(v_{i}\right) d v_{i} d z
\end{aligned}
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} f\left(v_{i}\right) \int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(z, v_{-i}\right) \int_{z}^{1} f\left(v_{i}\right) d v_{i} d z \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right) \int_{v_{i}}^{1} f(z) d z d v_{i}
\end{aligned}
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} f\left(v_{i}\right) \int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(z, v_{-i}\right) \int_{z}^{1} f\left(v_{i}\right) d v_{i} d z \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right) \int_{v_{i}}^{1} f(z) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right)\left(1-F\left(v_{i}\right)\right) d v_{i}
\end{aligned}
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} f\left(v_{i}\right) \int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(z, v_{-i}\right) \int_{z}^{1} f\left(v_{i}\right) d v_{i} d z \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right) \int_{v_{i}}^{1} f(z) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right)\left(1-F\left(v_{i}\right)\right) d v_{i} \\
& =\int_{0}^{1}\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right) X\left(v_{i}, v_{-i}\right) f\left(v_{i}\right) d v_{i}
\end{aligned}
$$

Myserson Optimal Auctions

Consider the inner term:

$$
\begin{aligned}
\mathrm{E}_{v_{i}}\left[P_{i}(v)\right] & =\mathrm{E}_{v_{i}}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\mathrm{E}\left[v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right)\right]-\mathrm{E}\left[\int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z\right] \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} f\left(v_{i}\right) \int_{0}^{v_{i}} X_{i}\left(z, v_{-i}\right) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(z, v_{-i}\right) \int_{z}^{1} f\left(v_{i}\right) d v_{i} d z \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right) \int_{v_{i}}^{1} f(z) d z d v_{i} \\
& =\int_{0}^{1} v_{i} \cdot X_{i}\left(v_{i}, v_{-i}\right) \cdot f\left(v_{i}\right) d v_{i}-\int_{0}^{1} X_{i}\left(v_{i}, v_{-i}\right)\left(1-F\left(v_{i}\right)\right) d v_{i} \\
& =\int_{0}^{1}\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right) X\left(v_{i}, v_{-i}\right) f\left(v_{i}\right) d v_{i} \\
& =\mathrm{E}_{v_{i}}\left[\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right) X\left(v_{i}, v_{-i}\right)\right]
\end{aligned}
$$

Myserson Optimal Auctions

So: We want to maximize

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} \phi\left(v_{i}\right) \cdot X(v)\right] \underbrace{\phi\left(v_{i}\right)=\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right)}_{\text {"Virtual Value" }}
$$

Myserson Optimal Auctions

So: We want to maximize

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} \phi\left(v_{i}\right) \cdot X(v)\right] \underbrace{\phi\left(v_{i}\right)=\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right)}_{\text {"Virtual Value" }}
$$

- Our objective looks just like welfare with values replaced by virtual values.

Myserson Optimal Auctions

So: We want to maximize

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} \phi\left(v_{i}\right) \cdot X(v)\right] \underbrace{\phi\left(v_{i}\right)=\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right)}_{\text {"Virtual Value" }}
$$

- Our objective looks just like welfare with values replaced by virtual values.
- (Pointwise) optimal allocation rule: Give the item to the bidder i with highest $\phi\left(v_{i}\right)$ if it's positive. Otherwise give the item to nobody.

Myserson Optimal Auctions

So: We want to maximize

$$
\mathrm{E}_{v \sim D^{n}}\left[\sum_{i=1}^{n} \phi\left(v_{i}\right) \cdot X(v)\right] \underbrace{\phi\left(v_{i}\right)=\left(v_{i}-\frac{\left(1-F\left(v_{i}\right)\right)}{f\left(v_{i}\right)}\right)}_{\text {"Virtual Value" }}
$$

- Our objective looks just like welfare with values replaced by virtual values.
- (Pointwise) optimal allocation rule: Give the item to the bidder i with highest $\phi\left(v_{i}\right)$ if it's positive. Otherwise give the item to nobody.
- This is a monotone allocation rule if D is regular: $\phi\left(v_{i}\right)$ is monotone.
- e.g. if D is uniform, $\phi\left(v_{i}\right)=v_{i}-\left(1-v_{i}\right)=2 v_{i}-1$
- Note that $\phi^{-1}(0)$ recovers the optimal $p=1 / 2$ for a single bidder.

Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when v_{i} drawn iid from regular D)

- We give the item to bidder $i^{*}=\arg \max _{i} \phi\left(v_{i}\right)$ when $\phi\left(v_{i^{*}}\right) \geq 0$.

Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when v_{i} drawn
iid from regular D)

- We give the item to bidder $i^{*}=\arg \max _{i} \phi\left(v_{i}\right)$ when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Because ϕ is monotone, $i^{*}=\arg \max _{i} v_{i}$: the item goes to the highest bidder when $\phi\left(v_{i^{*}}\right) \geq 0$.

Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when v_{i} drawn iid from regular D)

- We give the item to bidder $i^{*}=\arg \max _{i} \phi\left(v_{i}\right)$ when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Because ϕ is monotone, $i^{*}=\arg \max _{i} v_{i}$: the item goes to the highest bidder when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Winner pays $v_{i^{*}}-\int_{p^{*}}^{v_{i}} 1=p^{*}$, where:

$$
p^{*}=\max \left(\max _{i \neq i^{*}} v_{i}, \phi^{-1}(0)\right)
$$

Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when v_{i} drawn iid from regular D)

- We give the item to bidder $i^{*}=\arg \max _{i} \phi\left(v_{i}\right)$ when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Because ϕ is monotone, $i^{*}=\arg \max _{i} v_{i}$: the item goes to the highest bidder when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Winner pays $v_{i^{*}}-\int_{p^{*}}^{v_{i^{*}}} 1=p^{*}$, where:

$$
p^{*}=\max \left(\max _{i \neq i^{*}} v_{i}, \phi^{-1}(0)\right)
$$

- i.e. its just a Vickrey auction with a reserve price of $\phi^{-1}(0)$!

Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when v_{i} drawn iid from regular D)

- We give the item to bidder $i^{*}=\arg \max _{i} \phi\left(v_{i}\right)$ when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Because ϕ is monotone, $i^{*}=\arg \max _{i} v_{i}$: the item goes to the highest bidder when $\phi\left(v_{i^{*}}\right) \geq 0$.
- Winner pays $v_{i^{*}}-\int_{p^{*}}^{v_{i}} 1=p^{*}$, where:

$$
p^{*}=\max \left(\max _{i \neq i^{*}} v_{i}, \phi^{-1}(0)\right)
$$

- i.e. its just a Vickrey auction with a reserve price of $\phi^{-1}(0)$!
- Remarkable - Simple eBay style auction is the best possible.

Extensions/Limitations

- Can be made to work even when D is not regular.

Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to "iron" $\phi(v)$ to make it monotone.

Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to "iron" $\phi(v)$ to make it monotone.
- Analysis required v_{i} 's be drawn independently, but not identically. Each bidder can have their own distribution D_{i}.
- Each bidder has their own virtual valuation function $\phi_{i}\left(v_{i}\right)$.
- Auction no longer so natural. e.g. high bidder no longer necessarily wins.

Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to "iron" $\phi(v)$ to make it monotone.
- Analysis required v_{i} 's be drawn independently, but not identically. Each bidder can have their own distribution D_{i}.
- Each bidder has their own virtual valuation function $\phi_{i}\left(v_{i}\right)$.
- Auction no longer so natural. e.g. high bidder no longer necessarily wins.
- Doesn't extend beyond single parameter domains...

Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to "iron" $\phi(v)$ to make it monotone.
- Analysis required v_{i} 's be drawn independently, but not identically. Each bidder can have their own distribution D_{i}.
- Each bidder has their own virtual valuation function $\phi_{i}\left(v_{i}\right)$.
- Auction no longer so natural. e.g. high bidder no longer necessarily wins.
- Doesn't extend beyond single parameter domains...
- Requires knowledge of D...

One more thing

- If we care about revenue, should we give up on welfare?

One more thing

- If we care about revenue, should we give up on welfare?
- The Vickrey auction yields no revenue selling to a single bidder, whereas when D is uniform over $[0,1]$ we can get expected revenue $1 / 4$.

One more thing

- If we care about revenue, should we give up on welfare?
- The Vickrey auction yields no revenue selling to a single bidder, whereas when D is uniform over $[0,1]$ we can get expected revenue $1 / 4$.
- What about a Vickrey auction with 2 bidders?

$$
\operatorname{Rev}(V A)=\mathrm{E}_{v_{1}, v_{2} \sim D}\left[\min \left(v_{1}, v_{2}\right)\right]=1 / 3
$$

One more thing

- If we care about revenue, should we give up on welfare?
- The Vickrey auction yields no revenue selling to a single bidder, whereas when D is uniform over $[0,1]$ we can get expected revenue $1 / 4$.
- What about a Vickrey auction with 2 bidders?

$$
\operatorname{Rev}(V A)=\mathrm{E}_{v_{1}, v_{2} \sim D}\left[\min \left(v_{1}, v_{2}\right)\right]=1 / 3
$$

- So we might be better off maximizing welfare with more bidders...

The Bulow/Klemperer Theorem

Theorem
Consider bidders drawn i.i.d. from a regular distribution D. For any $n \geq 1$, the Vickrey auction with $n+1$ bidders has higher expected revenue than the revenue optimal auction with n bidders.

The Bulow/Klemperer Theorem

Theorem
Consider bidders drawn i.i.d. from a regular distribution D. For any $n \geq 1$, the Vickrey auction with $n+1$ bidders has higher expected revenue than the revenue optimal auction with n bidders. So recruiting just one extra bidder is worth more than optimizing revenue for the current population.

The Bulow/Klemperer Theorem

Consider the hypothetical auction A for $n+1$ bidders:

1. Run the revenue optimal auction for the first n bidders.

The Bulow/Klemperer Theorem

Consider the hypothetical auction A for $n+1$ bidders:

1. Run the revenue optimal auction for the first n bidders.
2. If the auction fails to allocate the item, give it to bidder $n+1$ for free.

The Bulow/Klemperer Theorem

Consider the hypothetical auction A for $n+1$ bidders:

1. Run the revenue optimal auction for the first n bidders.
2. If the auction fails to allocate the item, give it to bidder $n+1$ for free.
Observations:
3. The revenue of A is exactly equal to the optimal revenue obtainable from n bidders.
4. A always allocates the item.

But...

- Claim: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.

But...

- Claim: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $\mathrm{E}_{v}\left[\sum_{i} P_{i}(v)\right]=\mathrm{E}\left[\sum_{i} \phi_{i}\left(v_{i}\right) \cdot X_{i}(v)\right]$.

But...

- Claim: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $\mathrm{E}_{v}\left[\sum_{i} P_{i}(v)\right]=\mathrm{E}\left[\sum_{i} \phi_{i}\left(v_{i}\right) \cdot X_{i}(v)\right]$.
- We can maximize the RHS (subject to always allocating the item) by always allocating to $\arg \max _{i} \phi\left(v_{i}\right)$.

But...

- Claim: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $\mathrm{E}_{v}\left[\sum_{i} P_{i}(v)\right]=\mathrm{E}\left[\sum_{i} \phi_{i}\left(v_{i}\right) \cdot X_{i}(v)\right]$.
- We can maximize the RHS (subject to always allocating the item) by always allocating to $\arg \max _{i} \phi\left(v_{i}\right)$.
- Since D is regular, ϕ is monotone: this is $\arg \max _{i} v_{i}$ - the Vickrey allocation!

But...

- Claim: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $\mathrm{E}_{v}\left[\sum_{i} P_{i}(v)\right]=\mathrm{E}\left[\sum_{i} \phi_{i}\left(v_{i}\right) \cdot X_{i}(v)\right]$.
- We can maximize the RHS (subject to always allocating the item) by always allocating to $\arg \max _{i} \phi\left(v_{i}\right)$.
- Since D is regular, ϕ is monotone: this is arg $\max _{i} v_{i}$ - the Vickrey allocation!
- So: The Vickrey-auction with $n+1$ bidders has only higher revenue than the optimal n bidder auction.

Thanks!

See you next class - stay healthy!

