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» This lecture: a case study for single item auctions.
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Reasonable Benchmarks?

» The VCG mechanism was remarkable: we could always
maximize welfare ex-post.

» What about for revenue? Not so simple.

» Consider a single bidder, single item auction. Offering a fixed
price p is always dominant strategy truthful.

» Revenue is p if v; > p, 0 otherwise.

» So ex-post, the revenue-optimal auction sets p = v;... But
ex-ante, we don't have enough information.
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The Average Case

» Suppose we know that bidders have valuations v; ~ D for
some distribution D.

» We know D, but we don't know v;...

» In a single item, single bidder auction, a fixed price p yields
expected revenue:

Rev(p) = p- (1 - F(p))
Where F(p) = Pr,..p[v < p].
» E.g. if D is uniform on [0, 1], then F(p) = p and:

1 1
R =~ (1-2)=-
max Rev(p) = 5 - (1= 5) =
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Average Case: Many Bidders

» One item, many bidders.
» We want to design a truthful mechanism (X, P) that

maximizes:
> Pi(V)]
i=1

» For truthfulness, we need X to be monotone non-decreasing...
» And we know:

Pi(v) = vi- / Xz, v_;)

EVND"
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Myserson Optimal Auctions

» Lets assume monotonicity for now, and use our expression for
P to derive the optimal X.

> If we are lucky and derive a monotone X, we will be done!

» Plan: Find X to maximize:

Ey~pn [Z Pi(v)
i=1

» Notation: f(p) is the pdf of D.

n
= Z E, pr1[Eyp [Pi(vi, voi)]]
i=1

F(p) = Pr

[v<p]= /op f(v)dv
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Consider the inner term:
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Myserson Optimal Auctions
Consider the inner term:

E,[P(v)] = BE, [v, (Vi vei) /OX,zv_ }
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So: We want to maximize

o= (- 0= FO)

“Virtual Value”

Ey~pn [Z o(vi) - X(v)
i=1

» Our objective looks just like welfare with values replaced by
virtual values.

» (Pointwise) optimal allocation rule: Give the item to the
bidder i with highest ¢(v;) if it's positive. Otherwise give the
item to nobody.

» This is a monotone allocation rule if D is regular. ¢(v;) is
monotone.

> eg. if Dis uniform, ¢(vi) =v; — (1 —v;) =2v; — 1
> Note that ¢—1(0) recovers the optimal p = 1/2 for a single
bidder.
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Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when v; drawn
iid from regular D)

» We give the item to bidder i* = arg max; ¢(v;) when
o(vix) > 0.

> Because ¢ is monotone, i* = arg max; v;: the item goes to the
highest bidder when ¢(v;-) > 0.

» Winner pays v+ — fp‘ii* 1 = p*, where:
p* = max(r_‘r;éax vi, »1(0))
IEd

> i.e. its just a Vickrey auction with a reserve price of ¢~1(0)!

» Remarkable — Simple eBay style auction is the best possible.
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» Can be made to work even when D is not regular.

» Have to “iron” ¢(v) to make it monotone.

» Analysis required v;'s be drawn independently, but not
identically. Each bidder can have their own distribution D;.

» Each bidder has their own virtual valuation function ¢;(v;).
» Auction no longer so natural. e.g. high bidder no longer
necessarily wins.

» Doesn't extend beyond single parameter domains...

» Requires knowledge of D...
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One more thing

> If we care about revenue, should we give up on welfare?

» The Vickrey auction yields no revenue selling to a single
bidder, whereas when D is uniform over [0, 1] we can get
expected revenue 1/4.

» What about a Vickrey auction with 2 bidders?

Rev( VA) = EV17V2ND[min(v1, V2)] == 1/3

> So we might be better off maximizing welfare with more
bidders...
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The Bulow/Klemperer Theorem

Theorem

Consider bidders drawn i.i.d. from a regular distribution D. For
any n > 1, the Vickrey auction with n+ 1 bidders has higher
expected revenue than the revenue optimal auction with n bidders.
So recruiting just one extra bidder is worth more than optimizing
revenue for the current population.
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The Bulow/Klemperer Theorem

Consider the hypothetical auction A for n + 1 bidders:
1. Run the revenue optimal auction for the first n bidders.

2. If the auction fails to allocate the item, give it to bidder n + 1
for free.

Observations:

1. The revenue of A is exactly equal to the optimal revenue
obtainable from n bidders.

2. A always allocates the item.
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But...

Claim: The Vickrey mechanism is obtains the maximum
revenue amongst all mechanisms that always allocate the item.

Recall that E,[>; Pi(v)] = E[>_; ¢i(vi) - Xi(v)].

We can maximize the RHS (subject to always allocating the
item) by always allocating to arg max; ¢(v;).

Since D is regular, ¢ is monotone: this is arg max; v; — the
Vickrey allocation!

So: The Vickrey-auction with n+ 1 bidders has only higher
revenue than the optimal n bidder auction.



Thanks!

See you next class — stay healthy!



