Approximation in Mechanism Design

Aaron Roth
University of Pennsylvania

March 282024

Overview

1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.

Overview

1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.
2. This lecture: We grapple with computational complexity.

Overview

1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.
2. This lecture: We grapple with computational complexity.
3. Recall the VCG mechanism must solve:

$$
X(v)=\arg \max _{a \in A} \sum_{i} v_{i}(a)
$$

Overview

1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.
2. This lecture: We grapple with computational complexity.
3. Recall the VCG mechanism must solve:

$$
X(v)=\arg \max _{a \in A} \sum_{i} v_{i}(a)
$$

4. What do we do when this problem is hard to solve - e.g. NP-complete?

Approximation Algorithms

1. For many NP-complete problems we have good approximation algorithms - but this is not enough.

Approximation Algorithms

1. For many NP-complete problems we have good approximation algorithms - but this is not enough.
2. Recall: truthfulness and individual rationality of VCG depended on the choice rule being exactly welfare maximizing.

Approximation Algorithms

1. For many NP-complete problems we have good approximation algorithms - but this is not enough.
2. Recall: truthfulness and individual rationality of VCG depended on the choice rule being exactly welfare maximizing.
3. If we only find an alternative that achieves 99% of the optimal welfare, these guarantees break.

Approximation Algorithms

1. For many NP-complete problems we have good approximation algorithms - but this is not enough.
2. Recall: truthfulness and individual rationality of VCG depended on the choice rule being exactly welfare maximizing.
3. If we only find an alternative that achieves 99% of the optimal welfare, these guarantees break.
4. As a case study, we will consider Knapsack auctions.

Knapsack Auctions

Definition

In a knapsack auction:

- Each bidder $i \in\{1, \ldots, n\}$ has a public size $w_{i} \in \mathbb{R}_{\geq 0}$.

Knapsack Auctions

Definition

In a knapsack auction:

- Each bidder $i \in\{1, \ldots, n\}$ has a public size $w_{i} \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public budget $B \in \mathbb{R}_{\geq 0}$.

Knapsack Auctions

Definition

In a knapsack auction:

- Each bidder $i \in\{1, \ldots, n\}$ has a public size $w_{i} \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public budget $B \in \mathbb{R}_{\geq 0}$.
- The feasible alternatives are all subsets of bidders of size $\leq B$:

$$
A=\left\{S \subseteq\{1, \ldots, n\}: \sum_{i \in S} w_{i} \leq B\right\}
$$

Knapsack Auctions

Definition

In a knapsack auction:

- Each bidder $i \in\{1, \ldots, n\}$ has a public size $w_{i} \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public budget $B \in \mathbb{R}_{\geq 0}$.
- The feasible alternatives are all subsets of bidders of size $\leq B$:

$$
A=\left\{S \subseteq\{1, \ldots, n\}: \sum_{i \in S} w_{i} \leq B\right\}
$$

- For each $a \in A$ we write $a_{i}=1$ if $i \in a$.

Knapsack Auctions

Definition

In a knapsack auction:

- Each bidder $i \in\{1, \ldots, n\}$ has a public size $w_{i} \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public budget $B \in \mathbb{R}_{\geq 0}$.
- The feasible alternatives are all subsets of bidders of size $\leq B$:

$$
A=\left\{S \subseteq\{1, \ldots, n\}: \sum_{i \in S} w_{i} \leq B\right\}
$$

- For each $a \in A$ we write $a_{i}=1$ if $i \in a$.
- These are single parameter domains. Each bidder i has a real value $v_{i} \in \mathbb{R}_{\geq 0}$, and their value for alternative a is $v_{i} \cdot a_{i}$

Knapsack Auctions

- Called a knapsack auction because solving:

$$
\arg \max _{S \in A} \sum_{i \in S} v_{i}
$$

is the NP-hard knapsack problem.

Knapsack Auctions

- Called a knapsack auction because solving:

$$
\arg \max _{S \in A} \sum_{i \in S} v_{i}
$$

is the NP-hard knapsack problem.

- So: likely no polynomial time algorithm for this task.

Knapsack Auctions

- Called a knapsack auction because solving:

$$
\arg \max _{S \in A} \sum_{i \in S} v_{i}
$$

is the NP-hard knapsack problem.

- So: likely no polynomial time algorithm for this task.
- A natural problem, modelling e.g. selling seats on an airplane to people who have different sized parties.

Knapsack Auctions

So what should we do?

- We could find a choice rule which approximates the social welfare objective and a pricing rule which makes it dominant strategy truthful.

Knapsack Auctions

So what should we do?

- We could find a choice rule which approximates the social welfare objective and a pricing rule which makes it dominant strategy truthful.
- We know that the only way to do this we have to find a monotone non-decreasing approximation algorithm.

Approximation

Definition
For a set of values and weights $v, w \in \mathbb{R}_{\geq 0}^{n}$, let:

$$
\operatorname{OPT}(v, w)=\max _{S \subseteq[n]: \sum_{i \in S} w_{i} \leq B} \sum_{i \in S} v_{i}
$$

Approximation

Definition

For a set of values and weights $v, w \in \mathbb{R}_{\geq 0}^{n}$, let:

$$
\operatorname{OPT}(v, w)=\max _{S \subseteq[n]: \sum_{i \in S} w_{i} \leq B} \sum_{i \in S} v_{i}
$$

A is an α-approximation algorithm for the Knapsack problem if for every $v, w \in \mathbb{R}_{\geq 0}^{n}, A(v, w)=S$ such that:

1. S is a feasible solution: $\sum_{i \in S} w_{i} \leq B$
2. S approximates OPT to within a factor of α :

$$
\sum_{i \in S} v_{i} \geq \frac{\mathrm{OPT}(v, w)}{\alpha}
$$

Approximation

Definition

For a set of values and weights $v, w \in \mathbb{R}_{\geq 0}^{n}$, let:

$$
\operatorname{OPT}(v, w)=\max _{S \subseteq[n]: \sum_{i \in S} w_{i} \leq B} \sum_{i \in S} v_{i}
$$

A is an α-approximation algorithm for the Knapsack problem if for every $v, w \in \mathbb{R}_{\geq 0}^{n}, A(v, w)=S$ such that:

1. S is a feasible solution: $\sum_{i \in S} w_{i} \leq B$
2. S approximates OPT to within a factor of α :

$$
\sum_{i \in S} v_{i} \geq \frac{\mathrm{OPT}(v, w)}{\alpha}
$$

Monotone Non Decreasing: for every $v, w \in \mathbb{R}_{\geq 0}^{n}$, and for every i and $v_{i}^{\prime}>v_{i}$, if $S=A(v, w)$ and $S^{\prime}=A\left(\left(v_{i}^{\prime}, v_{-i}\right), w\right)$, then:

$$
i \in S \Rightarrow i \in S^{\prime} .
$$

Our Goal

- Goal: Come up with a monotone algorithm A that is also an α-approximation algorithm for the Knapsack problem.

Our Goal

- Goal: Come up with a monotone algorithm A that is also an α-approximation algorithm for the Knapsack problem.
- Observation: We can write the knapsack problem in the following integer linear optimization form:

$$
\begin{gathered}
\operatorname{maximize} \sum_{i=1}^{n} x_{i} \cdot v_{i} \\
\text { such that: } \\
\sum_{i=1}^{n} x_{i} \cdot w_{i} \leq B \\
x_{i} \in\{0,1\} \quad \forall i
\end{gathered}
$$

A Complication

- Solving the integer program is NP hard. So...

A Complication

- Solving the integer program is NP hard. So...
- We are unlikely to be able to reason about structure of the optimal solution.

A Complication

- Solving the integer program is NP hard. So...
- We are unlikely to be able to reason about structure of the optimal solution.
- Instead, consider the following "relaxed" problem in which the x_{i} can be fractional:

$$
\begin{gathered}
\operatorname{maximize} \sum_{i=1}^{n} x_{i} \cdot v_{i} \\
\text { such that: } \\
\sum_{i=1}^{n} x_{i} \cdot w_{i} \leq B \\
x_{i} \in[0,1] \quad \forall i
\end{gathered}
$$

The Fractional Problem

- Write $\operatorname{OPT}_{F}(v, w)$ for the optimal value of this "fractional" problem.

The Fractional Problem

- Write $\operatorname{OPT}_{F}(v, w)$ for the optimal value of this "fractional" problem.
- Not the problem we want - but maybe we can understand its structure:

Lemma
For all $v, w \in \mathbb{R}_{\geq 0}^{n}$:

$$
\operatorname{OPT}_{F}(v, w) \geq \operatorname{OPT}(v, w)
$$

The Fractional Problem

- Write $\operatorname{OPT}_{F}(v, w)$ for the optimal value of this "fractional" problem.
- Not the problem we want - but maybe we can understand its structure:

Lemma
For all $v, w \in \mathbb{R}_{\geq 0}^{n}$:

$$
\operatorname{OPT}_{F}(v, w) \geq \operatorname{OPT}(v, w)
$$

Proof.
Any optimal solution to the integer version of the problem is a feasible solution to the fractional version, so
$\operatorname{OPT}_{F}(v, w) \geq \operatorname{OPT}(v, w)$

Understanding the Fractional Problem

- If we can obtain an α-approximation to $\operatorname{OPT}_{F}(v, w)$ then we also get (at least!) an α-approximation to $\operatorname{OPT}(v, w)$.

Understanding the Fractional Problem

- If we can obtain an α-approximation to $\operatorname{OPT}_{F}(v, w)$ then we also get (at least!) an α-approximation to $\operatorname{OPT}(v, w)$.
- The fractional relaxation is simpler/easier to understand:

Lemma

Let x be a fractional solution obtaining value $\mathrm{OPT}_{F}(v, w)$ in the fractional knapsack problem. Let $i, j \in[n]$ be any pair of agents such that:

$$
\frac{v_{i}}{w_{i}}>\frac{v_{j}}{w_{j}}
$$

Then $x_{j}>0 \rightarrow x_{i}=1$

Understanding the Fractional Problem

- Suppose otherwise: there is such an i, j pair with $x_{j}>0$ but $x_{i}<1$.

Understanding the Fractional Problem

- Suppose otherwise: there is such an i, j pair with $x_{j}>0$ but $x_{i}<1$.
- Define $\delta>0$ by $\delta=\min \left(\left(1-x_{i}\right) \frac{w_{i}}{w_{j}}, x_{j}\right)$.

Understanding the Fractional Problem

- Suppose otherwise: there is such an i, j pair with $x_{j}>0$ but $x_{i}<1$.
- Define $\delta>0$ by $\delta=\min \left(\left(1-x_{i}\right) \frac{w_{i}}{w_{j}}, x_{j}\right)$.
- Plan: Define a new solution x^{\prime} and argue that it:

Understanding the Fractional Problem

- Suppose otherwise: there is such an i, j pair with $x_{j}>0$ but $x_{i}<1$.
- Define $\delta>0$ by $\delta=\min \left(\left(1-x_{i}\right) \frac{w_{i}}{w_{j}}, x_{j}\right)$.
- Plan: Define a new solution x^{\prime} and argue that it:

1. Is feasible, and

Understanding the Fractional Problem

- Suppose otherwise: there is such an i, j pair with $x_{j}>0$ but $x_{i}<1$.
- Define $\delta>0$ by $\delta=\min \left(\left(1-x_{i}\right) \frac{w_{i}}{w_{j}}, x_{j}\right)$.
- Plan: Define a new solution x^{\prime} and argue that it:

1. Is feasible, and
2. Has higher objective value, contradicting the optimality of x.

Understanding the Fractional Problem

- Let $x_{\ell}^{\prime}=x_{\ell}$ for all $\ell \notin\{i, j\}$, and let

$$
x_{j}^{\prime}=x_{j}-\delta
$$

and

$$
x_{i}^{\prime}=x_{i}+\delta \frac{w_{j}}{w_{i}}
$$

Understanding the Fractional Problem

- Let $x_{\ell}^{\prime}=x_{\ell}$ for all $\ell \notin\{i, j\}$, and let

$$
x_{j}^{\prime}=x_{j}-\delta
$$

and

$$
x_{i}^{\prime}=x_{i}+\delta \frac{w_{j}}{w_{i}}
$$

- Note that x^{\prime} continues to satisfy the knapsack constraint: the change in size of the bundle was:

$$
\left(\delta \frac{w_{j}}{w_{i}}\right) \cdot w_{i}-\delta w_{j}=\delta w_{j}-\delta w_{j}=0
$$

Understanding the Fractional Problem

- Let $x_{\ell}^{\prime}=x_{\ell}$ for all $\ell \notin\{i, j\}$, and let

$$
x_{j}^{\prime}=x_{j}-\delta
$$

and

$$
x_{i}^{\prime}=x_{i}+\delta \frac{w_{j}}{w_{i}}
$$

- Note that x^{\prime} continues to satisfy the knapsack constraint: the change in size of the bundle was:

$$
\left(\delta \frac{w_{j}}{w_{i}}\right) \cdot w_{i}-\delta w_{j}=\delta w_{j}-\delta w_{j}=0
$$

- By definition of $\delta: x_{j}^{\prime} \geq x_{j}-x_{j}=0$ and

$$
x_{i}^{\prime} \leq x_{i}+\left(\left(1-x_{i}\right) \frac{w_{i}}{w_{j}}\right) \frac{w_{j}}{w_{i}}=1
$$

Understanding the Fractional Problem

- Let $x_{\ell}^{\prime}=x_{\ell}$ for all $\ell \notin\{i, j\}$, and let

$$
x_{j}^{\prime}=x_{j}-\delta
$$

and

$$
x_{i}^{\prime}=x_{i}+\delta \frac{w_{j}}{w_{i}}
$$

- Note that x^{\prime} continues to satisfy the knapsack constraint: the change in size of the bundle was:

$$
\left(\delta \frac{w_{j}}{w_{i}}\right) \cdot w_{i}-\delta w_{j}=\delta w_{j}-\delta w_{j}=0
$$

- By definition of $\delta: x_{j}^{\prime} \geq x_{j}-x_{j}=0$ and $x_{i}^{\prime} \leq x_{i}+\left(\left(1-x_{i}\right) \frac{w_{i}}{w_{j}}\right) \frac{w_{j}}{w_{i}}=1$.
- Hence (because x was feasible) x^{\prime} is feasible.

Understanding the Fractional Problem

- The change in value of the bundle is:

$$
\left(\delta \frac{w_{j}}{w_{i}}\right) \cdot v_{i}-\delta \cdot v_{j}>0
$$

Understanding the Fractional Problem

- The change in value of the bundle is:

$$
\left(\delta \frac{w_{j}}{w_{i}}\right) \cdot v_{i}-\delta \cdot v_{j}>0
$$

- This follows because by assumption:

$$
\frac{v_{i}}{w_{i}}>\frac{v_{j}}{w_{j}} \Rightarrow\left(\frac{w_{j}}{w_{i}}\right) \cdot v_{i}>v_{j}
$$

Understanding the Fractional Problem

- The change in value of the bundle is:

$$
\left(\delta \frac{w_{j}}{w_{i}}\right) \cdot v_{i}-\delta \cdot v_{j}>0
$$

- This follows because by assumption:

$$
\frac{v_{i}}{w_{i}}>\frac{v_{j}}{w_{j}} \Rightarrow\left(\frac{w_{j}}{w_{i}}\right) \cdot v_{i}>v_{j}
$$

- This contradicts the optimality of x.

Understanding the Fractional Problem

We can now give a simple combinatorial algorithm for the fractional version of the knapsack problem.

Understanding the Fractional Problem

We can now give a simple combinatorial algorithm for the fractional version of the knapsack problem.
Given our lemma, we know this algorithm must be optimal. FractionalKnapsack($v, w)$:

Sort bidders in decreasing order by $\frac{v_{i}}{w_{i}}$ and set size $\leftarrow 0$ and $i \leftarrow 1$.
while size $+w_{i} \leq B$ do
Set $x_{i} \leftarrow 1$, size \leftarrow size $+w_{i}, i \leftarrow i+1$.
end while
Set $x_{i} \leftarrow \frac{B \text {-size }}{w_{i}}$ and Set $x_{j}=0$ for all $j>i$.
Return x.

The Integer Problem

- Can we use this algorithm to get a solution to the integer knapsack problem?

The Integer Problem

- Can we use this algorithm to get a solution to the integer knapsack problem?
- Note: Until the last step, the algorithm constructs an integer solution.

The Integer Problem

- Can we use this algorithm to get a solution to the integer knapsack problem?
- Note: Until the last step, the algorithm constructs an integer solution.
- What if we just remove the last step? How does this do?

The Integer Problem

- Can we use this algorithm to get a solution to the integer knapsack problem?
- Note: Until the last step, the algorithm constructs an integer solution.
- What if we just remove the last step? How does this do?
- Terribly! Consider the following example.

Example

We have two agents with $w_{1}=v_{1}=10$ and $w_{2}=1$ and $v_{2}=1.1$. $B=10$. Note that $\operatorname{OPT}(v, w)=10$ However, $v_{2} / w_{2}>v_{1} / w_{1}$, so the algorithm first picks agent 2, and then has no remaining space for agent 1 . So the algorithm's solution has value only 1.1 . We could extend this example to make the algorithm's solution arbitrarily worse!

The Integer Problem

- The problem: Leaving off the fractional portion of the solution may leave almost the entire knapsack empty.

The Integer Problem

- The problem: Leaving off the fractional portion of the solution may leave almost the entire knapsack empty.
- Lets try again. Note that WLOG, we can assume that for all $i, w_{i} \leq B$.
Greedy2($v, w)$:

Sort bidders in decreasing order by $\frac{v_{i}}{w_{i}}$ and set size $\leftarrow 0$ and $i \leftarrow 1$. Set $S \leftarrow \emptyset$.
while size $+w_{i} \leq B$ do
Set $S \leftarrow S \cup\{i\}$, size \leftarrow size $+w_{i}, i \leftarrow i+1$.
end while
if $\sum_{j \in S} v_{j} \geq v_{i}$ then Output S.
else
Output $\left\{i^{*}\right\}$ where $i^{*}=\arg \max _{i} v_{i}$.
end if

The Integer Problem

Theorem
Greedy2 achieves a 2-approximation algorithm for the Knapsack problem.

The Integer Problem

- By construction, for every agent j :

$$
j \notin S \cup\{i\} \Rightarrow x_{j}^{*}=0
$$

where x^{*} is the optimal fractional solution to the fractional knapsack instance (v, w).

The Integer Problem

- By construction, for every agent j :

$$
j \notin S \cup\{i\} \Rightarrow x_{j}^{*}=0
$$

where x^{*} is the optimal fractional solution to the fractional knapsack instance (v, w).

- Hence:

$$
\sum_{j \in S} v_{j}+v_{i} \geq \operatorname{OPT}_{F}(v, w) \geq \mathrm{OPT}(v, w)
$$

The Integer Problem

- By construction, for every agent j :

$$
j \notin S \cup\{i\} \Rightarrow x_{j}^{*}=0
$$

where x^{*} is the optimal fractional solution to the fractional knapsack instance (v, w).

- Hence:

$$
\sum_{j \in S} v_{j}+v_{i} \geq \operatorname{OPT}_{F}(v, w) \geq \mathrm{OPT}(v, w)
$$

- Therefore:

$$
\max \left(\sum_{j \in S} v_{j}, v_{i}\right) \geq \frac{O P T(v, w)}{2}
$$

The Integer Problem

- By construction, for every agent j :

$$
j \notin S \cup\{i\} \Rightarrow x_{j}^{*}=0
$$

where x^{*} is the optimal fractional solution to the fractional knapsack instance (v, w).

- Hence:

$$
\sum_{j \in S} v_{j}+v_{i} \geq \operatorname{OPT}_{F}(v, w) \geq \mathrm{OPT}(v, w)
$$

- Therefore:

$$
\max \left(\sum_{j \in S} v_{j}, v_{i}\right) \geq \frac{O P T(v, w)}{2}
$$

- And $v_{i^{*}} \geq v_{i}$ by definition. So:

$$
\max \left(\sum_{i \in S} v_{i}, v_{i^{*}}\right) \geq \frac{O P T(v, w)}{2}
$$

Establishing Truthfulness

Theorem
Greedy2 is monotone non-decreasing for every agent i.

Establishing Truthfulness

Theorem
Greedy2 is monotone non-decreasing for every agent i.
Hence, there is a dominant strategy truthful 2-approximation algorithm for the Knapsack Auction problem.

Establishing Truthfulness

- Fix any $w, v \in \mathbb{R}_{>0}^{n}$, any agent i, and let $v_{i}^{\prime}>v_{i}$. Write $v^{\prime}=\left(v_{i}^{\prime}, v_{-i}\right)$. Let $T=\operatorname{Greedy} 2(v, w)$ and $T^{\prime}=\operatorname{Greedy} 2\left(v^{\prime}, w\right)$.

Establishing Truthfulness

- Fix any $w, v \in \mathbb{R}_{>0}^{n}$, any agent i, and let $v_{i}^{\prime}>v_{i}$. Write $v^{\prime}=\left(v_{i}^{\prime}, v_{-i}\right)$. Let $T=\operatorname{Greedy} 2(v, w)$ and $T^{\prime}=\operatorname{Greedy} 2\left(v^{\prime}, w\right)$.
- To show: $i \in T \Rightarrow i \in T^{\prime}$.

Establishing Truthfulness

- Fix any $w, v \in \mathbb{R}_{\geq 0}^{n}$, any agent i, and let $v_{i}^{\prime}>v_{i}$. Write $v^{\prime}=\left(v_{i}^{\prime}, v_{-i}\right)$. Let $T=\operatorname{Greedy} 2(v, w)$ and $T^{\prime}=\operatorname{Greedy} 2\left(v^{\prime}, w\right)$.
- To show: $i \in T \Rightarrow i \in T^{\prime}$.
- Write $S \doteq S(v, w)$ and $S^{\prime} \doteq S\left(v^{\prime}, w\right)$ for the intermediate sets S generated by Greedy2 on each instance.

Establishing Truthfulness

- Fix any $w, v \in \mathbb{R}_{\geq 0}^{n}$, any agent i, and let $v_{i}^{\prime}>v_{i}$. Write $v^{\prime}=\left(v_{i}^{\prime}, v_{-i}\right)$. Let $T=\operatorname{Greedy} 2(v, w)$ and $T^{\prime}=\operatorname{Greedy} 2\left(v^{\prime}, w\right)$.
- To show: $i \in T \Rightarrow i \in T^{\prime}$.
- Write $S \doteq S(v, w)$ and $S^{\prime} \doteq S\left(v^{\prime}, w\right)$ for the intermediate sets S generated by Greedy2 on each instance.
- First we argue:

$$
i \in S \Rightarrow i \in S^{\prime}
$$

Establishing Truthfulness

- Note: S and S^{\prime} represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{v_{j}}{w_{j}}$.

Establishing Truthfulness

- Note: S and S^{\prime} represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{v_{j}}{w_{j}}$.
- When agent i increases his value from v_{i} to v_{i}^{\prime} he can only move earlier in this sorted ordering.

Establishing Truthfulness

- Note: S and S^{\prime} represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{v_{j}}{w_{j}}$.
- When agent i increases his value from v_{i} to v_{i}^{\prime} he can only move earlier in this sorted ordering.
- So: if he was in the prefix S he is still in the prefix S^{\prime}.

Establishing Truthfulness

- Note: S and S^{\prime} represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{v_{j}}{w_{j}}$.
- When agent i increases his value from v_{i} to v_{i}^{\prime} he can only move earlier in this sorted ordering.
- So: if he was in the prefix S he is still in the prefix S^{\prime}.
- Hence: If $T=S$ and $T^{\prime}=S^{\prime}$, then on this instance, the algorithm is monotone.

Establishing Truthfulness

- Note also that if $i \in S$, then $\sum_{j \in S^{\prime}} v_{j}^{\prime} \geq \sum_{j \in S} v_{j}$. Hence, if $i \in S$, then if $T=S, T^{\prime}=S$.

Establishing Truthfulness

- Note also that if $i \in S$, then $\sum_{j \in S^{\prime}} v_{j}^{\prime} \geq \sum_{j \in S} v_{j}$. Hence, if $i \in S$, then if $T=S, T^{\prime}=S$.
- The other case: $i=i^{*}$ and $v_{i}>\sum_{j \in S} v_{j}$.

Establishing Truthfulness

- Note also that if $i \in S$, then $\sum_{j \in S^{\prime}} v_{j}^{\prime} \geq \sum_{j \in S} v_{j}$. Hence, if $i \in S$, then if $T=S, T^{\prime}=S$.
- The other case: $i=i^{*}$ and $v_{i}>\sum_{j \in S} v_{j}$.
- Here we also have $i \in T^{\prime}$. i remains the highest bidder, and so is either output as $T^{\prime}=\left\{i^{*}\right\}$ or is output as $T^{\prime}=S^{\prime}$ with $i \in S^{\prime}$.

Establishing Truthfulness

- Note also that if $i \in S$, then $\sum_{j \in S^{\prime}} v_{j}^{\prime} \geq \sum_{j \in S} v_{j}$. Hence, if $i \in S$, then if $T=S, T^{\prime}=S$.
- The other case: $i=i^{*}$ and $v_{i}>\sum_{j \in S} v_{j}$.
- Here we also have $i \in T^{\prime}$. i remains the highest bidder, and so is either output as $T^{\prime}=\left\{i^{*}\right\}$ or is output as $T^{\prime}=S^{\prime}$ with $i \in S^{\prime}$.
- So: we have shown that there exists a polynomial time 2-approximation for the Knapsack problem that makes truthful bidding a dominant strategy for all players.

Thanks!

See you next class - stay healthy!

