
Approximation in Mechanism Design

Aaron Roth

University of Pennsylvania

March 28 2024



Overview

1. Last lecture: how far can we go beyond the VCG mechanism
when we want to optimize non-welfare objectives.

2. This lecture: We grapple with computational complexity.

3. Recall the VCG mechanism must solve:

X (v) = argmax
a∈A

∑
i

vi (a)

4. What do we do when this problem is hard to solve – e.g.
NP-complete?



Overview

1. Last lecture: how far can we go beyond the VCG mechanism
when we want to optimize non-welfare objectives.

2. This lecture: We grapple with computational complexity.

3. Recall the VCG mechanism must solve:

X (v) = argmax
a∈A

∑
i

vi (a)

4. What do we do when this problem is hard to solve – e.g.
NP-complete?



Overview

1. Last lecture: how far can we go beyond the VCG mechanism
when we want to optimize non-welfare objectives.

2. This lecture: We grapple with computational complexity.

3. Recall the VCG mechanism must solve:

X (v) = argmax
a∈A

∑
i

vi (a)

4. What do we do when this problem is hard to solve – e.g.
NP-complete?



Overview

1. Last lecture: how far can we go beyond the VCG mechanism
when we want to optimize non-welfare objectives.

2. This lecture: We grapple with computational complexity.

3. Recall the VCG mechanism must solve:

X (v) = argmax
a∈A

∑
i

vi (a)

4. What do we do when this problem is hard to solve – e.g.
NP-complete?



Approximation Algorithms

1. For many NP-complete problems we have good approximation
algorithms — but this is not enough.

2. Recall: truthfulness and individual rationality of VCG
depended on the choice rule being exactly welfare maximizing.

3. If we only find an alternative that achieves 99% of the optimal
welfare, these guarantees break.

4. As a case study, we will consider Knapsack auctions.



Approximation Algorithms

1. For many NP-complete problems we have good approximation
algorithms — but this is not enough.

2. Recall: truthfulness and individual rationality of VCG
depended on the choice rule being exactly welfare maximizing.

3. If we only find an alternative that achieves 99% of the optimal
welfare, these guarantees break.

4. As a case study, we will consider Knapsack auctions.



Approximation Algorithms

1. For many NP-complete problems we have good approximation
algorithms — but this is not enough.

2. Recall: truthfulness and individual rationality of VCG
depended on the choice rule being exactly welfare maximizing.

3. If we only find an alternative that achieves 99% of the optimal
welfare, these guarantees break.

4. As a case study, we will consider Knapsack auctions.



Approximation Algorithms

1. For many NP-complete problems we have good approximation
algorithms — but this is not enough.

2. Recall: truthfulness and individual rationality of VCG
depended on the choice rule being exactly welfare maximizing.

3. If we only find an alternative that achieves 99% of the optimal
welfare, these guarantees break.

4. As a case study, we will consider Knapsack auctions.



Knapsack Auctions

Definition
In a knapsack auction:

▶ Each bidder i ∈ {1, . . . , n} has a public size wi ∈ R≥0.

▶ The mechanism has a public budget B ∈ R≥0.

▶ The feasible alternatives are all subsets of bidders of size ≤ B:

A = {S ⊆ {1, . . . , n} :
∑
i∈S

wi ≤ B}

▶ For each a ∈ A we write ai = 1 if i ∈ a.

▶ These are single parameter domains. Each bidder i has a real
value vi ∈ R≥0, and their value for alternative a is vi · ai



Knapsack Auctions

Definition
In a knapsack auction:

▶ Each bidder i ∈ {1, . . . , n} has a public size wi ∈ R≥0.

▶ The mechanism has a public budget B ∈ R≥0.

▶ The feasible alternatives are all subsets of bidders of size ≤ B:

A = {S ⊆ {1, . . . , n} :
∑
i∈S

wi ≤ B}

▶ For each a ∈ A we write ai = 1 if i ∈ a.

▶ These are single parameter domains. Each bidder i has a real
value vi ∈ R≥0, and their value for alternative a is vi · ai



Knapsack Auctions

Definition
In a knapsack auction:

▶ Each bidder i ∈ {1, . . . , n} has a public size wi ∈ R≥0.

▶ The mechanism has a public budget B ∈ R≥0.

▶ The feasible alternatives are all subsets of bidders of size ≤ B:

A = {S ⊆ {1, . . . , n} :
∑
i∈S

wi ≤ B}

▶ For each a ∈ A we write ai = 1 if i ∈ a.

▶ These are single parameter domains. Each bidder i has a real
value vi ∈ R≥0, and their value for alternative a is vi · ai



Knapsack Auctions

Definition
In a knapsack auction:

▶ Each bidder i ∈ {1, . . . , n} has a public size wi ∈ R≥0.

▶ The mechanism has a public budget B ∈ R≥0.

▶ The feasible alternatives are all subsets of bidders of size ≤ B:

A = {S ⊆ {1, . . . , n} :
∑
i∈S

wi ≤ B}

▶ For each a ∈ A we write ai = 1 if i ∈ a.

▶ These are single parameter domains. Each bidder i has a real
value vi ∈ R≥0, and their value for alternative a is vi · ai



Knapsack Auctions

Definition
In a knapsack auction:

▶ Each bidder i ∈ {1, . . . , n} has a public size wi ∈ R≥0.

▶ The mechanism has a public budget B ∈ R≥0.

▶ The feasible alternatives are all subsets of bidders of size ≤ B:

A = {S ⊆ {1, . . . , n} :
∑
i∈S

wi ≤ B}

▶ For each a ∈ A we write ai = 1 if i ∈ a.

▶ These are single parameter domains. Each bidder i has a real
value vi ∈ R≥0, and their value for alternative a is vi · ai



Knapsack Auctions

▶ Called a knapsack auction because solving:

argmax
S∈A

∑
i∈S

vi

is the NP-hard knapsack problem.

▶ So: likely no polynomial time algorithm for this task.

▶ A natural problem, modelling e.g. selling seats on an airplane
to people who have different sized parties.



Knapsack Auctions

▶ Called a knapsack auction because solving:

argmax
S∈A

∑
i∈S

vi

is the NP-hard knapsack problem.

▶ So: likely no polynomial time algorithm for this task.

▶ A natural problem, modelling e.g. selling seats on an airplane
to people who have different sized parties.



Knapsack Auctions

▶ Called a knapsack auction because solving:

argmax
S∈A

∑
i∈S

vi

is the NP-hard knapsack problem.

▶ So: likely no polynomial time algorithm for this task.

▶ A natural problem, modelling e.g. selling seats on an airplane
to people who have different sized parties.



Knapsack Auctions

So what should we do?

▶ We could find a choice rule which approximates the social
welfare objective and a pricing rule which makes it dominant
strategy truthful.

▶ We know that the only way to do this we have to find a
monotone non-decreasing approximation algorithm.



Knapsack Auctions

So what should we do?

▶ We could find a choice rule which approximates the social
welfare objective and a pricing rule which makes it dominant
strategy truthful.

▶ We know that the only way to do this we have to find a
monotone non-decreasing approximation algorithm.



Approximation

Definition
For a set of values and weights v ,w ∈ Rn

≥0, let:

OPT(v ,w) = max
S⊆[n]:

∑
i∈S wi≤B

∑
i∈S

vi

A is an α-approximation algorithm for the Knapsack problem if for
every v ,w ∈ Rn

≥0, A(v ,w) = S such that:

1. S is a feasible solution:
∑

i∈S wi ≤ B

2. S approximates OPT to within a factor of α:∑
i∈S vi ≥

OPT(v ,w)
α

Monotone Non Decreasing: for every v ,w ∈ Rn
≥0, and for every i

and v ′i > vi , if S = A(v ,w) and S ′ = A((v ′i , v−i ),w), then:

i ∈ S ⇒ i ∈ S ′.



Approximation

Definition
For a set of values and weights v ,w ∈ Rn

≥0, let:

OPT(v ,w) = max
S⊆[n]:

∑
i∈S wi≤B

∑
i∈S

vi

A is an α-approximation algorithm for the Knapsack problem if for
every v ,w ∈ Rn

≥0, A(v ,w) = S such that:

1. S is a feasible solution:
∑

i∈S wi ≤ B

2. S approximates OPT to within a factor of α:∑
i∈S vi ≥

OPT(v ,w)
α

Monotone Non Decreasing: for every v ,w ∈ Rn
≥0, and for every i

and v ′i > vi , if S = A(v ,w) and S ′ = A((v ′i , v−i ),w), then:

i ∈ S ⇒ i ∈ S ′.



Approximation

Definition
For a set of values and weights v ,w ∈ Rn

≥0, let:

OPT(v ,w) = max
S⊆[n]:

∑
i∈S wi≤B

∑
i∈S

vi

A is an α-approximation algorithm for the Knapsack problem if for
every v ,w ∈ Rn

≥0, A(v ,w) = S such that:

1. S is a feasible solution:
∑

i∈S wi ≤ B

2. S approximates OPT to within a factor of α:∑
i∈S vi ≥

OPT(v ,w)
α

Monotone Non Decreasing: for every v ,w ∈ Rn
≥0, and for every i

and v ′i > vi , if S = A(v ,w) and S ′ = A((v ′i , v−i ),w), then:

i ∈ S ⇒ i ∈ S ′.



Our Goal

▶ Goal: Come up with a monotone algorithm A that is also an
α-approximation algorithm for the Knapsack problem.

▶ Observation: We can write the knapsack problem in the
following integer linear optimization form:

maximize
n∑

i=1

xi · vi

such that:
n∑

i=1

xi · wi ≤ B

xi ∈ {0, 1} ∀i



Our Goal

▶ Goal: Come up with a monotone algorithm A that is also an
α-approximation algorithm for the Knapsack problem.

▶ Observation: We can write the knapsack problem in the
following integer linear optimization form:

maximize

n∑
i=1

xi · vi

such that:
n∑

i=1

xi · wi ≤ B

xi ∈ {0, 1} ∀i



A Complication

▶ Solving the integer program is NP hard. So...

▶ We are unlikely to be able to reason about structure of the
optimal solution.

▶ Instead, consider the following “relaxed” problem in which the
xi can be fractional:

maximize
n∑

i=1

xi · vi

such that:
n∑

i=1

xi · wi ≤ B

xi ∈ [0, 1] ∀i



A Complication

▶ Solving the integer program is NP hard. So...

▶ We are unlikely to be able to reason about structure of the
optimal solution.

▶ Instead, consider the following “relaxed” problem in which the
xi can be fractional:

maximize
n∑

i=1

xi · vi

such that:
n∑

i=1

xi · wi ≤ B

xi ∈ [0, 1] ∀i



A Complication

▶ Solving the integer program is NP hard. So...

▶ We are unlikely to be able to reason about structure of the
optimal solution.

▶ Instead, consider the following “relaxed” problem in which the
xi can be fractional:

maximize

n∑
i=1

xi · vi

such that:
n∑

i=1

xi · wi ≤ B

xi ∈ [0, 1] ∀i



The Fractional Problem

▶ Write OPTF (v ,w) for the optimal value of this “fractional”
problem.

▶ Not the problem we want — but maybe we can understand its
structure:

Lemma
For all v ,w ∈ Rn

≥0:

OPTF (v ,w) ≥ OPT(v ,w)

Proof.
Any optimal solution to the integer version of the problem is a
feasible solution to the fractional version, so
OPTF (v ,w) ≥ OPT(v ,w)



The Fractional Problem

▶ Write OPTF (v ,w) for the optimal value of this “fractional”
problem.

▶ Not the problem we want — but maybe we can understand its
structure:

Lemma
For all v ,w ∈ Rn

≥0:

OPTF (v ,w) ≥ OPT(v ,w)

Proof.
Any optimal solution to the integer version of the problem is a
feasible solution to the fractional version, so
OPTF (v ,w) ≥ OPT(v ,w)



The Fractional Problem

▶ Write OPTF (v ,w) for the optimal value of this “fractional”
problem.

▶ Not the problem we want — but maybe we can understand its
structure:

Lemma
For all v ,w ∈ Rn

≥0:

OPTF (v ,w) ≥ OPT(v ,w)

Proof.
Any optimal solution to the integer version of the problem is a
feasible solution to the fractional version, so
OPTF (v ,w) ≥ OPT(v ,w)



Understanding the Fractional Problem

▶ If we can obtain an α-approximation to OPTF (v ,w) then we
also get (at least!) an α-approximation to OPT(v ,w).

▶ The fractional relaxation is simpler/easier to understand:

Lemma
Let x be a fractional solution obtaining value OPTF (v ,w) in the
fractional knapsack problem. Let i , j ∈ [n] be any pair of agents
such that:

vi
wi

>
vj
wj

.

Then xj > 0→ xi = 1



Understanding the Fractional Problem

▶ If we can obtain an α-approximation to OPTF (v ,w) then we
also get (at least!) an α-approximation to OPT(v ,w).

▶ The fractional relaxation is simpler/easier to understand:

Lemma
Let x be a fractional solution obtaining value OPTF (v ,w) in the
fractional knapsack problem. Let i , j ∈ [n] be any pair of agents
such that:

vi
wi

>
vj
wj

.

Then xj > 0→ xi = 1



Understanding the Fractional Problem

▶ Suppose otherwise: there is such an i , j pair with xj > 0 but
xi < 1.

▶ Define δ > 0 by δ = min((1− xi )
wi
wj
, xj).

▶ Plan: Define a new solution x ′ and argue that it:

1. Is feasible, and
2. Has higher objective value, contradicting the optimality of x .



Understanding the Fractional Problem

▶ Suppose otherwise: there is such an i , j pair with xj > 0 but
xi < 1.

▶ Define δ > 0 by δ = min((1− xi )
wi
wj
, xj).

▶ Plan: Define a new solution x ′ and argue that it:

1. Is feasible, and
2. Has higher objective value, contradicting the optimality of x .



Understanding the Fractional Problem

▶ Suppose otherwise: there is such an i , j pair with xj > 0 but
xi < 1.

▶ Define δ > 0 by δ = min((1− xi )
wi
wj
, xj).

▶ Plan: Define a new solution x ′ and argue that it:

1. Is feasible, and
2. Has higher objective value, contradicting the optimality of x .



Understanding the Fractional Problem

▶ Suppose otherwise: there is such an i , j pair with xj > 0 but
xi < 1.

▶ Define δ > 0 by δ = min((1− xi )
wi
wj
, xj).

▶ Plan: Define a new solution x ′ and argue that it:

1. Is feasible, and

2. Has higher objective value, contradicting the optimality of x .



Understanding the Fractional Problem

▶ Suppose otherwise: there is such an i , j pair with xj > 0 but
xi < 1.

▶ Define δ > 0 by δ = min((1− xi )
wi
wj
, xj).

▶ Plan: Define a new solution x ′ and argue that it:

1. Is feasible, and
2. Has higher objective value, contradicting the optimality of x .



Understanding the Fractional Problem

▶ Let x ′ℓ = xℓ for all ℓ ̸∈ {i , j}, and let

x ′j = xj − δ

and
x ′i = xi + δ

wj

wi
.

▶ Note that x ′ continues to satisfy the knapsack constraint: the
change in size of the bundle was:

(δ
wj

wi
) · wi − δwj = δwj − δwj = 0

▶ By definition of δ: x ′j ≥ xj − xj = 0 and

x ′i ≤ xi + ((1− xi )
wi
wj
)
wj

wi
= 1.

▶ Hence (because x was feasible) x ′ is feasible.



Understanding the Fractional Problem

▶ Let x ′ℓ = xℓ for all ℓ ̸∈ {i , j}, and let

x ′j = xj − δ

and
x ′i = xi + δ

wj

wi
.

▶ Note that x ′ continues to satisfy the knapsack constraint: the
change in size of the bundle was:

(δ
wj

wi
) · wi − δwj = δwj − δwj = 0

▶ By definition of δ: x ′j ≥ xj − xj = 0 and

x ′i ≤ xi + ((1− xi )
wi
wj
)
wj

wi
= 1.

▶ Hence (because x was feasible) x ′ is feasible.



Understanding the Fractional Problem

▶ Let x ′ℓ = xℓ for all ℓ ̸∈ {i , j}, and let

x ′j = xj − δ

and
x ′i = xi + δ

wj

wi
.

▶ Note that x ′ continues to satisfy the knapsack constraint: the
change in size of the bundle was:

(δ
wj

wi
) · wi − δwj = δwj − δwj = 0

▶ By definition of δ: x ′j ≥ xj − xj = 0 and

x ′i ≤ xi + ((1− xi )
wi
wj
)
wj

wi
= 1.

▶ Hence (because x was feasible) x ′ is feasible.



Understanding the Fractional Problem

▶ Let x ′ℓ = xℓ for all ℓ ̸∈ {i , j}, and let

x ′j = xj − δ

and
x ′i = xi + δ

wj

wi
.

▶ Note that x ′ continues to satisfy the knapsack constraint: the
change in size of the bundle was:

(δ
wj

wi
) · wi − δwj = δwj − δwj = 0

▶ By definition of δ: x ′j ≥ xj − xj = 0 and

x ′i ≤ xi + ((1− xi )
wi
wj
)
wj

wi
= 1.

▶ Hence (because x was feasible) x ′ is feasible.



Understanding the Fractional Problem

▶ The change in value of the bundle is:

(δ
wj

wi
) · vi − δ · vj > 0

▶ This follows because by assumption:

vi
wi

>
vj
wj
⇒ (

wj

wi
) · vi > vj

▶ This contradicts the optimality of x .



Understanding the Fractional Problem

▶ The change in value of the bundle is:

(δ
wj

wi
) · vi − δ · vj > 0

▶ This follows because by assumption:

vi
wi

>
vj
wj
⇒ (

wj

wi
) · vi > vj

▶ This contradicts the optimality of x .



Understanding the Fractional Problem

▶ The change in value of the bundle is:

(δ
wj

wi
) · vi − δ · vj > 0

▶ This follows because by assumption:

vi
wi

>
vj
wj
⇒ (

wj

wi
) · vi > vj

▶ This contradicts the optimality of x .



Understanding the Fractional Problem

We can now give a simple combinatorial algorithm for the
fractional version of the knapsack problem.

Given our lemma, we know this algorithm must be optimal.
FractionalKnapsack(v ,w):

Sort bidders in decreasing order by vi
wi

and set size ← 0 and
i ← 1.
while size+wi ≤ B do
Set xi ← 1, size← size+ wi , i ← i + 1.

end while
Set xi ← B−size

wi
and Set xj = 0 for all j > i .

Return x .



Understanding the Fractional Problem

We can now give a simple combinatorial algorithm for the
fractional version of the knapsack problem.
Given our lemma, we know this algorithm must be optimal.
FractionalKnapsack(v ,w):

Sort bidders in decreasing order by vi
wi

and set size ← 0 and
i ← 1.
while size+wi ≤ B do

Set xi ← 1, size← size+ wi , i ← i + 1.
end while
Set xi ← B−size

wi
and Set xj = 0 for all j > i .

Return x .



The Integer Problem

▶ Can we use this algorithm to get a solution to the integer
knapsack problem?

▶ Note: Until the last step, the algorithm constructs an integer
solution.

▶ What if we just remove the last step? How does this do?

▶ Terribly! Consider the following example.

Example

We have two agents with w1 = v1 = 10 and w2 = 1 and v2 = 1.1.
B = 10. Note that OPT(v ,w) = 10 However, v2/w2 > v1/w1, so
the algorithm first picks agent 2, and then has no remaining space
for agent 1. So the algorithm’s solution has value only 1.1. We
could extend this example to make the algorithm’s solution
arbitrarily worse!



The Integer Problem

▶ Can we use this algorithm to get a solution to the integer
knapsack problem?

▶ Note: Until the last step, the algorithm constructs an integer
solution.

▶ What if we just remove the last step? How does this do?

▶ Terribly! Consider the following example.

Example

We have two agents with w1 = v1 = 10 and w2 = 1 and v2 = 1.1.
B = 10. Note that OPT(v ,w) = 10 However, v2/w2 > v1/w1, so
the algorithm first picks agent 2, and then has no remaining space
for agent 1. So the algorithm’s solution has value only 1.1. We
could extend this example to make the algorithm’s solution
arbitrarily worse!



The Integer Problem

▶ Can we use this algorithm to get a solution to the integer
knapsack problem?

▶ Note: Until the last step, the algorithm constructs an integer
solution.

▶ What if we just remove the last step? How does this do?

▶ Terribly! Consider the following example.

Example

We have two agents with w1 = v1 = 10 and w2 = 1 and v2 = 1.1.
B = 10. Note that OPT(v ,w) = 10 However, v2/w2 > v1/w1, so
the algorithm first picks agent 2, and then has no remaining space
for agent 1. So the algorithm’s solution has value only 1.1. We
could extend this example to make the algorithm’s solution
arbitrarily worse!



The Integer Problem

▶ Can we use this algorithm to get a solution to the integer
knapsack problem?

▶ Note: Until the last step, the algorithm constructs an integer
solution.

▶ What if we just remove the last step? How does this do?

▶ Terribly! Consider the following example.

Example

We have two agents with w1 = v1 = 10 and w2 = 1 and v2 = 1.1.
B = 10. Note that OPT(v ,w) = 10 However, v2/w2 > v1/w1, so
the algorithm first picks agent 2, and then has no remaining space
for agent 1. So the algorithm’s solution has value only 1.1. We
could extend this example to make the algorithm’s solution
arbitrarily worse!



The Integer Problem

▶ The problem: Leaving off the fractional portion of the solution
may leave almost the entire knapsack empty.

▶ Lets try again. Note that WLOG, we can assume that for all
i , wi ≤ B.
Greedy2(v ,w):

Sort bidders in decreasing order by vi
wi

and set size ← 0 and
i ← 1. Set S ← ∅.
while size+wi ≤ B do
Set S ← S ∪ {i}, size← size+ wi , i ← i + 1.

end while
if

∑
j∈S vj ≥ vi then

Output S .
else

Output {i∗} where i∗ = argmaxi vi .
end if



The Integer Problem

▶ The problem: Leaving off the fractional portion of the solution
may leave almost the entire knapsack empty.

▶ Lets try again. Note that WLOG, we can assume that for all
i , wi ≤ B.
Greedy2(v ,w):

Sort bidders in decreasing order by vi
wi

and set size ← 0 and
i ← 1. Set S ← ∅.
while size+wi ≤ B do
Set S ← S ∪ {i}, size← size+ wi , i ← i + 1.

end while
if

∑
j∈S vj ≥ vi then

Output S .
else
Output {i∗} where i∗ = argmaxi vi .

end if



The Integer Problem

Theorem
Greedy2 achieves a 2-approximation algorithm for the Knapsack
problem.



The Integer Problem
▶ By construction, for every agent j :

j ̸∈ S ∪ {i} ⇒ x∗j = 0

where x∗ is the optimal fractional solution to the fractional
knapsack instance (v ,w).

▶ Hence: ∑
j∈S

vj + vi ≥ OPTF (v ,w) ≥ OPT(v ,w).

▶ Therefore:

max(
∑
j∈S

vj , vi ) ≥
OPT (v ,w)

2

▶ And vi∗ ≥ vi by definition. So:

max(
∑
i∈S

vi , vi∗) ≥
OPT (v ,w)

2



The Integer Problem
▶ By construction, for every agent j :

j ̸∈ S ∪ {i} ⇒ x∗j = 0

where x∗ is the optimal fractional solution to the fractional
knapsack instance (v ,w).

▶ Hence: ∑
j∈S

vj + vi ≥ OPTF (v ,w) ≥ OPT(v ,w).

▶ Therefore:

max(
∑
j∈S

vj , vi ) ≥
OPT (v ,w)

2

▶ And vi∗ ≥ vi by definition. So:

max(
∑
i∈S

vi , vi∗) ≥
OPT (v ,w)

2



The Integer Problem
▶ By construction, for every agent j :

j ̸∈ S ∪ {i} ⇒ x∗j = 0

where x∗ is the optimal fractional solution to the fractional
knapsack instance (v ,w).

▶ Hence: ∑
j∈S

vj + vi ≥ OPTF (v ,w) ≥ OPT(v ,w).

▶ Therefore:

max(
∑
j∈S

vj , vi ) ≥
OPT (v ,w)

2

▶ And vi∗ ≥ vi by definition. So:

max(
∑
i∈S

vi , vi∗) ≥
OPT (v ,w)

2



The Integer Problem
▶ By construction, for every agent j :

j ̸∈ S ∪ {i} ⇒ x∗j = 0

where x∗ is the optimal fractional solution to the fractional
knapsack instance (v ,w).

▶ Hence: ∑
j∈S

vj + vi ≥ OPTF (v ,w) ≥ OPT(v ,w).

▶ Therefore:

max(
∑
j∈S

vj , vi ) ≥
OPT (v ,w)

2

▶ And vi∗ ≥ vi by definition. So:

max(
∑
i∈S

vi , vi∗) ≥
OPT (v ,w)

2



Establishing Truthfulness

Theorem
Greedy2 is monotone non-decreasing for every agent i .

Hence, there is a dominant strategy truthful 2-approximation
algorithm for the Knapsack Auction problem.



Establishing Truthfulness

Theorem
Greedy2 is monotone non-decreasing for every agent i .

Hence, there is a dominant strategy truthful 2-approximation
algorithm for the Knapsack Auction problem.



Establishing Truthfulness

▶ Fix any w , v ∈ Rn
≥0, any agent i , and let v ′i > vi . Write

v ′ = (v ′i , v−i ). Let T = Greedy2(v ,w) and
T ′ = Greedy2(v ′,w).

▶ To show: i ∈ T ⇒ i ∈ T ′.

▶ Write S
.
= S(v ,w) and S ′ .

= S(v ′,w) for the intermediate
sets S generated by Greedy2 on each instance.

▶ First we argue:

i ∈ S ⇒ i ∈ S ′



Establishing Truthfulness

▶ Fix any w , v ∈ Rn
≥0, any agent i , and let v ′i > vi . Write

v ′ = (v ′i , v−i ). Let T = Greedy2(v ,w) and
T ′ = Greedy2(v ′,w).

▶ To show: i ∈ T ⇒ i ∈ T ′.

▶ Write S
.
= S(v ,w) and S ′ .

= S(v ′,w) for the intermediate
sets S generated by Greedy2 on each instance.

▶ First we argue:

i ∈ S ⇒ i ∈ S ′



Establishing Truthfulness

▶ Fix any w , v ∈ Rn
≥0, any agent i , and let v ′i > vi . Write

v ′ = (v ′i , v−i ). Let T = Greedy2(v ,w) and
T ′ = Greedy2(v ′,w).

▶ To show: i ∈ T ⇒ i ∈ T ′.

▶ Write S
.
= S(v ,w) and S ′ .

= S(v ′,w) for the intermediate
sets S generated by Greedy2 on each instance.

▶ First we argue:

i ∈ S ⇒ i ∈ S ′



Establishing Truthfulness

▶ Fix any w , v ∈ Rn
≥0, any agent i , and let v ′i > vi . Write

v ′ = (v ′i , v−i ). Let T = Greedy2(v ,w) and
T ′ = Greedy2(v ′,w).

▶ To show: i ∈ T ⇒ i ∈ T ′.

▶ Write S
.
= S(v ,w) and S ′ .

= S(v ′,w) for the intermediate
sets S generated by Greedy2 on each instance.

▶ First we argue:

i ∈ S ⇒ i ∈ S ′



Establishing Truthfulness

▶ Note: S and S ′ represent the prefix of the bidders of total size
≤ B when sorted in decreasing order of

vj
wj
.

▶ When agent i increases his value from vi to v ′i he can only
move earlier in this sorted ordering.

▶ So: if he was in the prefix S he is still in the prefix S ′.

▶ Hence: If T = S and T ′ = S ′, then on this instance, the
algorithm is monotone.



Establishing Truthfulness

▶ Note: S and S ′ represent the prefix of the bidders of total size
≤ B when sorted in decreasing order of

vj
wj
.

▶ When agent i increases his value from vi to v ′i he can only
move earlier in this sorted ordering.

▶ So: if he was in the prefix S he is still in the prefix S ′.

▶ Hence: If T = S and T ′ = S ′, then on this instance, the
algorithm is monotone.



Establishing Truthfulness

▶ Note: S and S ′ represent the prefix of the bidders of total size
≤ B when sorted in decreasing order of

vj
wj
.

▶ When agent i increases his value from vi to v ′i he can only
move earlier in this sorted ordering.

▶ So: if he was in the prefix S he is still in the prefix S ′.

▶ Hence: If T = S and T ′ = S ′, then on this instance, the
algorithm is monotone.



Establishing Truthfulness

▶ Note: S and S ′ represent the prefix of the bidders of total size
≤ B when sorted in decreasing order of

vj
wj
.

▶ When agent i increases his value from vi to v ′i he can only
move earlier in this sorted ordering.

▶ So: if he was in the prefix S he is still in the prefix S ′.

▶ Hence: If T = S and T ′ = S ′, then on this instance, the
algorithm is monotone.



Establishing Truthfulness

▶ Note also that if i ∈ S , then
∑

j∈S ′ v ′j ≥
∑

j∈S vj . Hence, if
i ∈ S , then if T = S , T ′ = S .

▶ The other case: i = i∗ and vi >
∑

j∈S vj .

▶ Here we also have i ∈ T ′. i remains the highest bidder, and
so is either output as T ′ = {i∗} or is output as T ′ = S ′ with
i ∈ S ′.

▶ So: we have shown that there exists a polynomial time
2-approximation for the Knapsack problem that makes
truthful bidding a dominant strategy for all players.



Establishing Truthfulness

▶ Note also that if i ∈ S , then
∑

j∈S ′ v ′j ≥
∑

j∈S vj . Hence, if
i ∈ S , then if T = S , T ′ = S .

▶ The other case: i = i∗ and vi >
∑

j∈S vj .

▶ Here we also have i ∈ T ′. i remains the highest bidder, and
so is either output as T ′ = {i∗} or is output as T ′ = S ′ with
i ∈ S ′.

▶ So: we have shown that there exists a polynomial time
2-approximation for the Knapsack problem that makes
truthful bidding a dominant strategy for all players.



Establishing Truthfulness

▶ Note also that if i ∈ S , then
∑

j∈S ′ v ′j ≥
∑

j∈S vj . Hence, if
i ∈ S , then if T = S , T ′ = S .

▶ The other case: i = i∗ and vi >
∑

j∈S vj .

▶ Here we also have i ∈ T ′. i remains the highest bidder, and
so is either output as T ′ = {i∗} or is output as T ′ = S ′ with
i ∈ S ′.

▶ So: we have shown that there exists a polynomial time
2-approximation for the Knapsack problem that makes
truthful bidding a dominant strategy for all players.



Establishing Truthfulness

▶ Note also that if i ∈ S , then
∑

j∈S ′ v ′j ≥
∑

j∈S vj . Hence, if
i ∈ S , then if T = S , T ′ = S .

▶ The other case: i = i∗ and vi >
∑

j∈S vj .

▶ Here we also have i ∈ T ′. i remains the highest bidder, and
so is either output as T ′ = {i∗} or is output as T ′ = S ′ with
i ∈ S ′.

▶ So: we have shown that there exists a polynomial time
2-approximation for the Knapsack problem that makes
truthful bidding a dominant strategy for all players.



Thanks!

See you next class — stay healthy!


