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Overview

▶ Last lecture, we saw the VCG mechanism, which has a
tremendous number of nice features, and achieves them all in
a very general setting.

▶ However, the VCG mechanism was particular to maximizing
social welfare:

∑
i vi (a).

▶ What if we want to design an auction to maximize some other
objective?
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How far can we generalize?

One thing we can do is (slightly) generalize VCG to maximize any
affine objective function:

n∑
i=1

αivi (a) + β(a).

You will prove this generalization on the homework.
What else can we do? In simple settings we can completely
characterize the set of objective functions we can optimize
truthfully.
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Simple Settings

Definition (Single Parameter Domain)

A single parameter domain with a set of alternatives A is defined
by a public value summarization function:

wi : A → R

such that agent i ’s valuation function is parameterized by a real
number vi ∈ R, and values outcome a at vi · wi (a)

i.e. single parameter domains are simple settings in which an
agent’s valuation can be described by a single real number
representing her relative preferences over outcomes.
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Examples
1. Single item auctions.

wi (a) =

{
1, a = i ;
0, otherwise.

2. Buying a path in a network: agents are to edges in a network,
experience cost if used. Mechanism would like to buy service
from a set of agents that form a path, to optimize some
objective. a is a set of edges and:

we(a) =

{
1, e ∈ A;
0, otherwise.

3. Online Advertising: Each alternative a allocates a set of
advertising slots. aij = 1 if slot j is allocated to advertiser i .
Advertisers have utility vi for each unique viewer. Let Ej be
the set of viewers who see slot j . Here:

wi (a) =

∣∣∣∣∣∣
⋃

j :xij=1

Ej

∣∣∣∣∣∣
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Key Concept: Monotone Choice Rules

Definition (Monotone Choice Rule)

A choice rule X for a single parameter domain is
monotone-non-decreasing in vi if for all v−i ∈ Rn−1, and for every
v ′i ≥ vi :

wi (X (vi , v−i )) ≤ wi (X (v ′i , v−i ))

For example, in a single item auction: if an agent wins at bid vi , he
also wins at all bids v ′i > vi .
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Main Theorem

We will prove that an allocation rule can be made truthful (by
pairing it with an appropriate payment rule) if and only if it is
monotone.

Theorem
A mechanism defined in a single parameter domain can be made
truthful if and only if X (v) is monotone non-decreasing for all vi .
In this case, it can be made truthful by using payment rule:

P(v)i = viwi (a
∗)−

∫ vi

0
wi (X (z , v−i ))dz

where a∗ = X (v).
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Proof

Simpler notation: fix some agent i and v−i , write v for vi , and
write y(v) for w(x(v)).

(i.e. in a single item auction, we now write y(v) = 1 if i is
allocated at bid v , and 0 otherwise).
First the backwards direction: assuming X (v) is monotone
non-decreasing and the payment rule is as given, the auction is
truthful.
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Proof

To show: For all v ′:

v · y(v)− P(v)i ≥ v · y(v ′)− P(v ′)i

Plugging in the payment rule, this is:

v · y(v)− v · y(v) +
∫ v

0
y(z)dz ≥ vy(v ′)− v ′y(v ′) +

∫ v ′

0
y(z)dz

Which is equivalent to showing:∫ v

0
y(z)dz ≥

∫ v ′

0
y(z)dz − (v ′ − v)y(v ′) (1)
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Consider two cases:

1. Case 1: v ′ > v . In this case, equation 1 becomes:∫ v ′

v
y(z)dz ≤ (v ′ − v)y(v ′)

But this is true by monotonicity. We know that y(v ′) ≥ y(z)
for all z ≤ v ′, and so:∫ v ′

v
y(z)dz ≤

∫ v ′

v
y(v ′)dz = (v ′ − v)y(v ′)

(See Picture)
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1. Case 2: v ′ < v . In this case, equation 1 becomes:∫ v
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Again, this follows from monotonicity since we know that
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Proof

Now, the forward direction.

To show: Given a truthful mechanism defining y ,P, its allocation
rule must be monotone.
Fix any v ′ > v . By truthfulness, we must have:

v · y(v)− P(v)i ≥ v · y(v ′)− P(v ′)i

since a bidder with valuation v cannot benefit by misreporting
value v ′.
We also know that a bidder with valuation v ′ cannot benefit by
misreporting v :

v ′ · y(v ′)− P(v ′)i ≥ v ′ · y(v)− P(v)i
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Proof

Adding these two inequalities, we get:

v · y(v) + v ′ · y(v ′) ≥ v · y(v ′) + v ′ · y(v)

Rearranging, we get:

(v ′ − v)y(v ′) ≥ (v ′ − v)y(v)

Since v ′ − v > 0, we can divide to obtain:

y(v ′) ≥ y(v).

So the allocation rule must be monotone!
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Thanks!

See you next class — stay healthy!


