Auction Design

Aaron Roth

University of Pennsylvania

March 21 2024

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Overview

Last lecture, we studied *pricing equilibria*. In this lecture, we continue our study of money as a means of exchange, from the perspective of mechanism design. Specifically, we begin our study of how to design *auctions*, which will be mechanisms for choosing outcomes, while managing the incentives of individuals to report to the mechanism their true preferences.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We will consider a very general setting:

We have a set of possible *alternatives A* that we want to choose from.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We will consider a very general setting:

- We have a set of possible *alternatives A* that we want to choose from.
- We have a set of *n* agents *i* each of whom have a valuation function v_i ∈ V. Each valuation function v_i : A → ℝ_{>0}.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We will consider a very general setting:

- We have a set of possible *alternatives A* that we want to choose from.
- We have a set of *n* agents *i* each of whom have a valuation function v_i ∈ V. Each valuation function v_i : A → ℝ_{≥0}.
- An outcome o = (a, p) denotes an alternative a ∈ A together with a payment vector p = (p₁,..., p_n) ∈ ℝⁿ specifying a payment p_i for each agent.

We will consider a very general setting:

- We have a set of possible *alternatives A* that we want to choose from.
- We have a set of *n* agents *i* each of whom have a valuation function v_i ∈ V. Each valuation function v_i : A → ℝ_{≥0}.
- An outcome o = (a, p) denotes an alternative a ∈ A together with a payment vector p = (p₁,..., p_n) ∈ ℝⁿ specifying a payment p_i for each agent.
- Agents have quasilinear utility functions. The utility that agent *i* experiences for outcome o = (a, p) is:

$$u_i(o)=v_i(a)-p_i$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This could represent many things. e.g.

- A single item allocation problem. a represents who gets the good.
- A multi-item allocation problem. a represents a mapping from people to goods.
- A public goods problem. a represents whether or not a library is built.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• ...

A *mechanism* is a method of mapping agent's reported valuations to an outcome:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A *mechanism* is a method of mapping agent's reported valuations to an outcome:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A mechanism is a pair of functions:

- 1. A choice rule $X : V^n \rightarrow A$
- 2. A payment rule $P: V^n \to \mathbb{R}^n$

A *mechanism* is a method of mapping agent's reported valuations to an outcome:

Definition

A mechanism is a pair of functions:

- 1. A choice rule $X : V^n \to A$
- 2. A payment rule $P: V^n \to \mathbb{R}^n$

Any choice of these two functions yields some mechanism or auction.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A *mechanism* is a method of mapping agent's reported valuations to an outcome:

Definition

A mechanism is a pair of functions:

- 1. A choice rule $X : V^n \to A$
- 2. A payment rule $P: V^n \to \mathbb{R}^n$

Any choice of these two functions yields some mechanism or auction.

Lets lay out a "wish list" of desiderata that our dream auction would satisfy:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Individual Rationality)

A mechanism is individually rational (IR) if for every agent *i* and for every $v \in V^n$:

$$v_i(X(v)) \geq P(v)_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

i.e. nobody is ever asked to pay more than their (reported) value for the outcome.

Definition (Dominant Strategy Truthfulness)

A mechanism is *dominant strategy truthful* if for every agent *i*, for every $v \in V^n$, and for every alternative report $v'_i \in V$, we have:

$$u_i(X(v), P(v)) \ge u_i(X(v'_i, v_{-i}), P(v'_i, v_{-i}))$$

or equivalently:

$$v_i(X(v)) - P(v)_i \ge v_i(X(v'_i, v_{-i})) - P(v'_i, v_{-i})_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Desideratum 3: Outcome Quality

Definition (Allocative Efficiency)

A mechanism is allocatively efficient, or "Social Welfare Maximizing", if for all $v \in V^n$, if a = X(v), then for all $a' \in A$ we have:

$$\sum_i v_i(a) \geq \sum_i v_i(a')$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Desideratum 4: Budget Balance

Definition (No Deficit)

A mechanism is *no deficit* if for all $v \in V^n$:

$$\sum_i P(v)_i \ge 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

i.e. in total, the mechanism does not have to pay to run the auction.

1. A = [n] (representing which of the *n* agents get the single item for sale).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. A = [n] (representing which of the *n* agents get the single item for sale).
- 2. Valuations are single dimensional. Abusing notation: $V = \mathbb{R}_{\geq 0}$, which we will take to mean:

$$v_i(a) = \begin{cases} v_i, & a = i; \\ 0, & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. A = [n] (representing which of the *n* agents get the single item for sale).
- 2. Valuations are single dimensional. Abusing notation: $V = \mathbb{R}_{\geq 0}$, which we will take to mean:

$$v_i(a) = \begin{cases} v_i, & a = i; \\ 0, & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So - can we satisfy all of our desiderata?

For allocative efficiency: must choose $X(v) = \arg \max_i v_i$. What about the payment rule?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For allocative efficiency: must choose $X(v) = \arg \max_i v_i$. What about the payment rule?

 By individual rationality, we must have p(v)_j ≤ 0 for all j ≠ X(v). Lets try p(v)_j = 0, so it only remains to fix p(v)_i for i = X(v). Similarly, we know p(v)_i ≤ v_i.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For allocative efficiency: must choose $X(v) = \arg \max_i v_i$. What about the payment rule?

1. By individual rationality, we must have $p(v)_j \leq 0$ for all $j \neq X(v)$. Lets try $p(v)_j = 0$, so it only remains to fix $p(v)_i$ for i = X(v). Similarly, we know $p(v)_i \leq v_i$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. We could try $p(v)_i = v_i$. Does this lead to an incentive compatible auction?

For allocative efficiency: must choose $X(v) = \arg \max_i v_i$. What about the payment rule?

- 1. By individual rationality, we must have $p(v)_j \leq 0$ for all $j \neq X(v)$. Lets try $p(v)_j = 0$, so it only remains to fix $p(v)_i$ for i = X(v). Similarly, we know $p(v)_i \leq v_i$.
- 2. We could try $p(v)_i = v_i$. Does this lead to an incentive compatible auction?
- What about p(v)_i = arg max_{j≠X(v)} v_j. Is this incentive compatible?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Observe that this "second price" auction is also no deficit and so satisfies all of our desiderata. This is called the "Vickrey auction".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Observe that this "second price" auction is also no deficit and so satisfies all of our desiderata. This is called the "Vickrey auction".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note that its the same thing as the TV "English Auction"

- Observe that this "second price" auction is also no deficit and so satisfies all of our desiderata. This is called the "Vickrey auction".
- Note that its the same thing as the TV "English Auction"
- What about other pricing rules? What if the winner pays the 3rd highest price?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Observe that this "second price" auction is also no deficit and so satisfies all of our desiderata. This is called the "Vickrey auction".
- Note that its the same thing as the TV "English Auction"
- What about other pricing rules? What if the winner pays the 3rd highest price?
- Lets see if we can generalize this beyond single item auctions...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Groves Mechanism

Definition The *Groves Mechanism* has choice rule:

$$X(v) = \arg \max_{a \in A} \sum_{i} v_i(a)$$

and payment rule:

$$P(v)_i = h_i(v_{-i}) - \sum_{j \neq i} v_j(a^*)$$

where h_i is an arbitrary function (crucially, independent of v_i), and $a^* = X(v)$ is the socially optimal outcome.

Note that the Groves mechanism is a family of mechanisms, instantiated by a choice of h_i .

Theorem

The Groves mechanism is dominant strategy incentive compatible and Allocatively efficient.

Proof.

It is allocatively efficient by definition, so it remains to verify that it is dominant strategy incentive compatible.

Proof.

Fix any agent *i*, and reports v_{-i} of the other players. We have:

$$u_i(X(v), P(v)) = v_i(a^*) + \sum_{j \neq i} v_j(a^*) - h_i(v_{-i})$$

where $a^* = \arg \max_{a \in A} \left(\sum_{j \neq i} v_i(a) + v'_i(a) \right)$. Agent *i* wishes to report v'_i to maximize his utility.

Proof.

Fix any agent *i*, and reports v_{-i} of the other players. We have:

$$u_i(X(v), P(v)) = v_i(a^*) + \sum_{j \neq i} v_j(a^*) - h_i(v_{-i})$$

where $a^* = \arg \max_{a \in A} \left(\sum_{j \neq i} v_i(a) + v'_i(a) \right)$. Agent *i* wishes to report v'_i to maximize his utility.

Note that $h_i(v_{-i})$ has no dependence on his report, so equivalently, agent *i* wishes to report v'_i to maximize:

$$v_i(a^*) + \sum_{j \neq i} v_j(a^*) = \sum_i v_i(a^*)$$

Proof.

Fix any agent *i*, and reports v_{-i} of the other players. We have:

$$u_i(X(v), P(v)) = v_i(a^*) + \sum_{j \neq i} v_j(a^*) - h_i(v_{-i})$$

where $a^* = \arg \max_{a \in A} \left(\sum_{j \neq i} v_i(a) + v'_i(a) \right)$. Agent *i* wishes to report v'_i to maximize his utility.

Note that $h_i(v_{-i})$ has no dependence on his report, so equivalently, agent *i* wishes to report v'_i to maximize:

$$v_i(a^*) + \sum_{j \neq i} v_j(a^*) = \sum_i v_i(a^*)$$

But note that if agent *i* truthfully reports $v'_i = v_i$, then a^* maximizes this quantity by definition. Hence, it is a dominant strategy for all agents to report truthfully.

Intuition

The payment scheme aligns the incentives of the agents and the mechanism designer: both prefer higher social welfare outcomes.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

How should we pick *h*?

• Consider a single item auction (A = [n]).

How should we pick h?

• Consider a single item auction (A = [n]).

▶ Take $h_i(v_{-i}) = 0$ for all *i*. Suppose we have two bidders, with values for the item $v_1 = 5$ and $v_2 = 8$.

How should we pick h?

• Consider a single item auction (A = [n]).

- ▶ Take $h_i(v_{-i}) = 0$ for all *i*. Suppose we have two bidders, with values for the item $v_1 = 5$ and $v_2 = 8$.
- Truthful bidding results in X(v) = 2, resulting in social welfare 8. The payment rule mandates:

$$P(v)_1 = -8 \quad P(v)_2 = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How should we pick h?

• Consider a single item auction (A = [n]).

- ▶ Take $h_i(v_{-i}) = 0$ for all *i*. Suppose we have two bidders, with values for the item $v_1 = 5$ and $v_2 = 8$.
- Truthful bidding results in X(v) = 2, resulting in social welfare 8. The payment rule mandates:

$$P(v)_1 = -8 \quad P(v)_2 = 0$$

Both bidders get utility 8 and have no beneficial deviations. Individual rationality! But the auction is *not* no-deficit: pays the losing bidder \$8.

How should we pick h?

• Consider a single item auction (A = [n]).

- ▶ Take $h_i(v_{-i}) = 0$ for all *i*. Suppose we have two bidders, with values for the item $v_1 = 5$ and $v_2 = 8$.
- Truthful bidding results in X(v) = 2, resulting in social welfare 8. The payment rule mandates:

$$P(v)_1 = -8 \quad P(v)_2 = 0$$

- Both bidders get utility 8 and have no beneficial deviations. Individual rationality! But the auction is *not* no-deficit: pays the losing bidder \$8.
- How can we pick h_i to achieve the no-deficit property without breaking individual rationality?

Definition (The Vickrey-Clarke-Groves (VCG) Mechanism)

The VCG mechanism is an instantiation of the Groves mechanism with

$$h_i(v_{-i}) = \sum_{j \neq i} v_j(a_{-i}^*)$$

where $a_{-i}^* = \arg \max_{a \in A} \sum_{j \neq i} v_j(a)$ is the alternative that maximizes social welfare among all agents *other* than agent *i*. In other words, the VCG mechanism has payment rule:

$$\mathsf{P}(\mathsf{v})_i = \sum_{j
eq i} \mathsf{v}_j(\mathsf{a}^*_{-i}) - \sum_{j
eq i} \mathsf{v}_j(\mathsf{a}^*)$$

Definition (The Vickrey-Clarke-Groves (VCG) Mechanism)

The VCG mechanism is an instantiation of the Groves mechanism with

$$h_i(v_{-i}) = \sum_{j \neq i} v_j(a_{-i}^*)$$

where $a_{-i}^* = \arg \max_{a \in A} \sum_{j \neq i} v_j(a)$ is the alternative that maximizes social welfare among all agents *other* than agent *i*. In other words, the VCG mechanism has payment rule:

$$\mathsf{P}(\mathsf{v})_i = \sum_{j
eq i} \mathsf{v}_j(\mathsf{a}^*_{-i}) - \sum_{j
eq i} \mathsf{v}_j(\mathsf{a}^*)$$

Intuition: every agent i is charged the "negative externality" that he imposes on the market

Definition (The Vickrey-Clarke-Groves (VCG) Mechanism)

The VCG mechanism is an instantiation of the Groves mechanism with

$$h_i(v_{-i}) = \sum_{j \neq i} v_j(a_{-i}^*)$$

where $a_{-i}^* = \arg \max_{a \in A} \sum_{j \neq i} v_j(a)$ is the alternative that maximizes social welfare among all agents *other* than agent *i*. In other words, the VCG mechanism has payment rule:

$$\mathcal{P}(\mathbf{v})_i = \sum_{j
eq i} v_j(a^*_{-i}) - \sum_{j
eq i} v_j(a^*)$$

Intuition: every agent *i* is charged the "negative externality" that he imposes on the market We will show that the VCG mechanism satisfies all of our desiderata.

Theorem

The VCG mechanism is allocatively efficient and dominant strategy incentive compatible.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof.

It is an instantiation of the Groves mechanism.

Theorem

The VCG mechanism is individually rational.

Proof.

We need to show that Agent i's utility satisfies:

$$u_i(o) = v_i(a^*) + \sum_{j \neq i} v_i(a^*) - \sum_{j \neq i} v_i(a^*_{-i}) \ge 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

The VCG mechanism is individually rational.

Proof.

We need to show that Agent i's utility satisfies:

$$u_i(o) = v_i(a^*) + \sum_{j \neq i} v_i(a^*) - \sum_{j \neq i} v_i(a^*_{-i}) \ge 0$$

Or equivalently:

$$\sum_i v_i(a^*) \geq \sum_{j \neq i} v_i(a^*_{-i})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

The VCG mechanism is individually rational.

Proof.

We need to show that Agent *i*'s utility satisfies:

$$u_i(o) = v_i(a^*) + \sum_{j \neq i} v_i(a^*) - \sum_{j \neq i} v_i(a^*_{-i}) \ge 0$$

Or equivalently:

$$\sum_i v_i(a^*) \geq \sum_{j
eq i} v_i(a^*_{-i})$$

But note that if this is not the case, since v_i is non-negative, we would have:

$$\sum_{i} v_i(a_{-i}^*) \ge \sum_{j \neq i} v_i(a_{-i}^*) > \sum_{i} v_i(a^*)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

The VCG mechanism is individually rational.

Proof.

We need to show that Agent i's utility satisfies:

$$u_i(o) = v_i(a^*) + \sum_{j \neq i} v_i(a^*) - \sum_{j \neq i} v_i(a^*_{-i}) \ge 0$$

Or equivalently:

$$\sum_i v_i(a^*) \geq \sum_{j
eq i} v_i(a^*_{-i})$$

But note that if this is not the case, since v_i is non-negative, we would have:

$$\sum_{i} v_i(a_{-i}^*) \ge \sum_{j \neq i} v_i(a_{-i}^*) > \sum_{i} v_i(a^*)$$

But this would contradict the allocative efficiency of $a^*!_{a}$, a_{a} , a_{a} , a_{a}

Theorem The VCG mechanism is no-deficit.

Proof.

We will in fact show the stronger claim that for all *i*, $P(v)_i \ge 0$. Recall that:

$$P(\mathbf{v})_i = \sum_{j \neq i} v_j(a^*_{-i}) - \sum_{j \neq i} v_j(a^*)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Theorem The VCG mechanism is no-deficit.

Proof.

We will in fact show the stronger claim that for all *i*, $P(v)_i \ge 0$. Recall that:

$$P(\mathbf{v})_i = \sum_{j \neq i} v_j(a^*_{-i}) - \sum_{j \neq i} v_j(a^*)$$

This is non-negative whenever:

$$\sum_{j\neq i} v_j(a_{-i}^*) \geq \sum_{j\neq i} v_j(a^*)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem The VCG mechanism is no-deficit.

Proof.

We will in fact show the stronger claim that for all *i*, $P(v)_i \ge 0$. Recall that:

$$P(\mathbf{v})_i = \sum_{j \neq i} v_j(a^*_{-i}) - \sum_{j \neq i} v_j(a^*)$$

This is non-negative whenever:

$$\sum_{j\neq i} v_j(a_{-i}^*) \geq \sum_{j\neq i} v_j(a^*)$$

But note that this is always the case, since a_{-i}^* is explicitly defined to be the maximizer of $\sum_{j \neq i} v_j(a)$ over all $a \in A$.

Wrapping Up

So the VCG mechanism satisfies all of our wildest dreams, in an extremely general setting! Can end the class here?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Wrapping Up

- So the VCG mechanism satisfies all of our wildest dreams, in an extremely general setting! Can end the class here?
- Not quite we will see that the VCG mechanism still leaves a bit to be desired. It doesn't maximize other objectives (like e.g. revenue), and it isn't always computationally efficient.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thanks!

See you next class — stay healthy!

