Walrasian Equilibrium

Aaron Roth
University of Pennsylvania

March 192024

Overview

- So far we have studied several mechanism design problems without money.

Overview

- So far we have studied several mechanism design problems without money.
- An "exchange" and a "matching" problem.

Overview

- So far we have studied several mechanism design problems without money.
- An "exchange" and a "matching" problem.
- This lecture: We'll bring money into the picture in a matching like problem.

Overview

- So far we have studied several mechanism design problems without money.
- An "exchange" and a "matching" problem.
- This lecture: We'll bring money into the picture in a matching like problem.
- And give a formalization of Adam Smith's "Invisible Hand"

Overview

- So far we have studied several mechanism design problems without money.
- An "exchange" and a "matching" problem.
- This lecture: We'll bring money into the picture in a matching like problem.
- And give a formalization of Adam Smith's "Invisible Hand"
- The thesis (in our simple model): simple, decentralized market dynamics lead to efficient outcomes.

A Model

Suppose we have:

A Model

Suppose we have:

1. m goods G for sale

A Model

Suppose we have:

1. m goods G for sale
2. n buyers i who each have valuation functions over bundles, $v_{i}: 2^{G} \rightarrow[0,1]$.

A Model

Suppose we have:

1. m goods G for sale
2. n buyers i who each have valuation functions over bundles, $v_{i}: 2^{G} \rightarrow[0,1]$.
Buyers have quasi-linear utility functions: If each good $j \in G$ has a price p_{j}, then a buyer i gets utility for buying a bundle $S \subseteq G$:

$$
u_{i}(S)=v_{i}(S)-\sum_{j \in S} p_{j}
$$

A Model

Suppose we have:

1. m goods G for sale
2. n buyers i who each have valuation functions over bundles, $v_{i}: 2^{G} \rightarrow[0,1]$.
Buyers have quasi-linear utility functions: If each good $j \in G$ has a price p_{j}, then a buyer i gets utility for buying a bundle $S \subseteq G$:

$$
u_{i}(S)=v_{i}(S)-\sum_{j \in S} p_{j}
$$

Questions: How we should price and allocate goods so that everyone is happy with their allocation. Is this even possible? If it is, can we do so and also achieve a high welfare allocation?

Some Definitions

First, feasibility:
Definition
An allocation $S_{1}, \ldots, S_{n} \subseteq G$ is feasible if for all $i \neq j, S_{i} \cap S_{j}=\emptyset$ We write OPT to denote the socially optimal feasible allocation:

$$
\mathrm{OPT}=\max _{S_{1}, \ldots, S_{n} \text { feasible }} \sum_{i} v_{i}(S)
$$

Some Definitions

First, feasibility:
Definition
An allocation $S_{1}, \ldots, S_{n} \subseteq G$ is feasible if for all $i \neq j, S_{i} \cap S_{j}=\emptyset$ We write OPT to denote the socially optimal feasible allocation:

$$
\mathrm{OPT}=\max _{S_{1}, \ldots, S_{n} \text { feasible }} \sum_{i} v_{i}(S)
$$

What is the right notion of equilibrium in a market?

Some Definitions

Definition

A set of prices p together with an allocation S_{1}, \ldots, S_{n} form an (ϵ-approximate) Walrasian equilibrium if:

1. S_{1}, \ldots, S_{n} is feasible, and
2. For all i, buyer i is receiving his (ϵ) most preferred bundle given the prices:

$$
v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j} \geq \max _{S^{*} \subseteq G}\left(v_{i}\left(S^{*}\right)-\sum_{j \in S^{*}} p_{j}\right)-\epsilon
$$

and,
3. All unallocated items have zero price: for all $j \notin S_{1} \cup \ldots \cup S_{n}$, $p_{j}=0$.

Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices - the only things that aren't selling can't sell (they already have price 0).

Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices - the only things that aren't selling can't sell (they already have price 0).

Some Questions:

Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices - the only things that aren't selling can't sell (they already have price 0).

Some Questions:

1. Do Walrasian equilibria always exist?

Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices - the only things that aren't selling can't sell (they already have price 0).

Some Questions:

1. Do Walrasian equilibria always exist?
2. If so, are they compatible with social welfare maximization?

The 2nd Question 1st

Theorem
If S_{1}, \ldots, S_{n} form an ϵ-Walrasian equilibrium allocation, then they achieve nearly optimal welfare. In particular:

$$
\sum_{i} v_{i}\left(S_{i}\right) \geq \mathrm{OPT}-\epsilon n
$$

1. Let p be the corresponding Walrasian equilibrium prices, and let $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$ be any other feasible allocation.

Proof

1. Let p be the corresponding Walrasian equilibrium prices, and let $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$ be any other feasible allocation.
2. We know from the 2 nd Walrasian equilibrium condition that for every player i, we have:

$$
v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j} \geq v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{i}^{\prime}} p_{j}-\epsilon
$$

Proof

1. Let p be the corresponding Walrasian equilibrium prices, and let $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$ be any other feasible allocation.
2. We know from the 2nd Walrasian equilibrium condition that for every player i, we have:

$$
v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j} \geq v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{i}^{\prime}} p_{j}-\epsilon
$$

3. Summing over buyers:

$$
\sum_{i}\left(v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j}\right) \geq \sum_{i}\left(v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{i}^{\prime}} p_{j}\right)-\epsilon n
$$

Proof

1. Let p be the corresponding Walrasian equilibrium prices, and let $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$ be any other feasible allocation.
2. We know from the 2nd Walrasian equilibrium condition that for every player i, we have:

$$
v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j} \geq v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{i}^{\prime}} p_{j}-\epsilon
$$

3. Summing over buyers:

$$
\sum_{i}\left(v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j}\right) \geq \sum_{i}\left(v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{i}^{\prime}} p_{j}\right)-\epsilon n
$$

4. Reordering:

$$
\sum_{i} v_{i}\left(S_{i}\right)-\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j} \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}-\epsilon n
$$

Proof

$$
\sum_{i} v_{i}\left(S_{i}\right)-\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j} \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}-\epsilon n
$$

Proof

$$
\sum_{i} v_{i}\left(S_{i}\right)-\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j} \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}-\epsilon n
$$

1. for any $j \notin S_{1} \cup \ldots \cup S_{n}$, we must have $p_{j}=0$. So, on the LHS we have: $\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j}=\sum_{j} p_{j}$

Proof

$$
\sum_{i} v_{i}\left(S_{i}\right)-\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j} \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}-\epsilon n
$$

1. for any $j \notin S_{1} \cup \ldots \cup S_{n}$, we must have $p_{j}=0$. So, on the LHS we have: $\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j}=\sum_{j} p_{j}$
2. Rewriting:

$$
\sum_{i} v_{i}\left(S_{i}\right) \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)+\left(\sum_{j} p_{j}-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}\right)-\epsilon n \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\epsilon n
$$

Proof

$$
\sum_{i} v_{i}\left(S_{i}\right)-\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j} \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}-\epsilon n
$$

1. for any $j \notin S_{1} \cup \ldots \cup S_{n}$, we must have $p_{j}=0$. So, on the LHS we have: $\sum_{j \in S_{1} \cup \ldots \cup S_{n}} p_{j}=\sum_{j} p_{j}$
2. Rewriting:

$$
\sum_{i} v_{i}\left(S_{i}\right) \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)+\left(\sum_{j} p_{j}-\sum_{j \in S_{1}^{\prime} \cup \ldots \cup S_{n}^{\prime}} p_{j}\right)-\epsilon n \geq \sum_{i} v_{i}\left(S_{i}^{\prime}\right)-\epsilon n
$$

3. Finally, taking $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$ to be the optimal allocation gives the theorem. (Tada!)

Walrasian Equilibrium are Great! Do They Exist?

1. We'll start with a simple case: unit demand buyers (want to buy only 1 item):

$$
v_{i}(S)=\max _{j \in S} v_{i}(\{j\})
$$

We can think about such a valuation function as being determined by just m numbers, one for each good: $v_{i, j} \equiv v_{i}(\{j\}) \leq 1$

Walrasian Equilibrium are Great! Do They Exist?

1. We'll start with a simple case: unit demand buyers (want to buy only 1 item):

$$
v_{i}(S)=\max _{j \in S} v_{i}(\{j\})
$$

We can think about such a valuation function as being determined by just m numbers, one for each good: $v_{i, j} \equiv v_{i}(\{j\}) \leq 1$
2. Note: Welfare maximization $=$ maximum weight bipartite matching.

Walrasian Equilibrium are Great! Do They Exist?

1. We'll start with a simple case: unit demand buyers (want to buy only 1 item):

$$
v_{i}(S)=\max _{j \in S} v_{i}(\{j\})
$$

We can think about such a valuation function as being determined by just m numbers, one for each good:

$$
v_{i, j} \equiv v_{i}(\{j\}) \leq 1
$$

2. Note: Welfare maximization $=$ maximum weight bipartite matching.

Theorem
For any set of unit demand buyers, a Walrasian equilibrium always exists.

Proof

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.

Proof

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic - can think of it as a model for market adjustments.

Proof

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic - can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0 . They take turns "bidding" on their most preferred item given prices.

Proof

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic - can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0 . They take turns "bidding" on their most preferred item given prices.
4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.

Proof

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic - can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0 . They take turns "bidding" on their most preferred item given prices.
4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
5. We're done when there is no more market movement.

Proof

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic - can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0 . They take turns "bidding" on their most preferred item given prices.
4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
5. We're done when there is no more market movement.
6. Deferred acceptance like...

Proof

Algorithm 1 The Ascending Price Auction with increment ϵ.
For all $j \in G$, set $p_{j}=0, \mu(j)=\emptyset$.
while There exist any unmatched bidders do
for Each unmatched bidder i do
i "bids" on $j^{*}=\arg \max _{j}\left(v_{i, j}-p_{j}\right)$ if $v_{i, j^{*}}-p_{j^{*}}>0$. Otherwise, bidder i drops out. (and is "matched" to nothing): $\mu\left(j^{*}\right)$ is now unmatched. Set $\mu\left(j^{*}\right) \leftarrow i$ $p_{j^{*}} \leftarrow p_{j^{*}}+\epsilon$
end for
end while
Output (p, μ).

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.
Proof:

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.
Proof:

1. Claim: At any point during the algorithm, we must have:

$$
\sum_{j} p_{j} \leq n
$$

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have: $\sum_{j} p_{j} \leq n$
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_{j}=0$.

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have: $\sum_{j} p_{j} \leq n$
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_{j}=0$.
3. For any fixed good $j, p_{j} \leq 1$. (no bidder bids on any good j such that $v_{i, j}-p_{j}<0$, and $v_{i, j} \leq 1$ for all i, j.)

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have: $\sum_{j} p_{j} \leq n$
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_{j}=0$.
3. For any fixed good $j, p_{j} \leq 1$. (no bidder bids on any good j such that $v_{i, j}-p_{j}<0$, and $v_{i, j} \leq 1$ for all i, j.)
4. Finally, since there are at most n agents, at most n goods are ever matched, and so at most n goods can have positive price.

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
$\sum_{j} p_{j} \leq n$
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_{j}=0$.
3. For any fixed good $j, p_{j} \leq 1$. (no bidder bids on any good j such that $v_{i, j}-p_{j}<0$, and $v_{i, j} \leq 1$ for all i, j.)
4. Finally, since there are at most n agents, at most n goods are ever matched, and so at most n goods can have positive price.
5. Finally, note that $\sum_{j} p_{j}$ increases by ϵ with each bid...

Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
$\sum_{j} p_{j} \leq n$
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_{j}=0$.
3. For any fixed good $j, p_{j} \leq 1$. (no bidder bids on any good j such that $v_{i, j}-p_{j}<0$, and $v_{i, j} \leq 1$ for all i, j.)
4. Finally, since there are at most n agents, at most n goods are ever matched, and so at most n goods can have positive price.
5. Finally, note that $\sum_{j} p_{j}$ increases by ϵ with each bid...
6. (Lemma Tada!)

Proof

Lemma

The output (p, μ) of the ascending price auction is an ϵ-approximate Walrasian equilibrium.

Proof

We'll verify the 3 conditions:

Proof

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.

Proof

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_{j}=0$.

Proof

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_{j}=0$.
3. Finally: $v_{i, \mu(i)}-p_{\mu(i)} \geq \max _{j}\left(v_{i, j}-p_{j}\right)-\epsilon$. This is because...

Proof

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_{j}=0$.
3. Finally: $v_{i, \mu(i)}-p_{\mu(i)} \geq \max _{j}\left(v_{i, j}-p_{j}\right)-\epsilon$. This is because...
4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$
\mu(i) \in \arg \max _{j}\left(v_{i, j}-p_{j}\right)
$$

Proof

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_{j}=0$.
3. Finally: $v_{i, \mu(i)}-p_{\mu(i)} \geq \max _{j}\left(v_{i, j}-p_{j}\right)-\epsilon$. This is because...
4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$
\mu(i) \in \arg \max _{j}\left(v_{i, j}-p_{j}\right)
$$

5. Since that time p_{j} increased by ϵ, no other price has decreased.

Proof

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_{j}=0$.
3. Finally: $v_{i, \mu(i)}-p_{\mu(i)} \geq \max _{j}\left(v_{i, j}-p_{j}\right)-\epsilon$. This is because...
4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$
\mu(i) \in \arg \max _{j}\left(v_{i, j}-p_{j}\right)
$$

5. Since that time p_{j} increased by ϵ, no other price has decreased.
6. Tada!

Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.

Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?

Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?

Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?
4. We can define the dynamics: each unsatisfied bidder bids on their most preferred bundle (Unsatisified $=$ not matched to her ϵ-most preferred bundle). For each unsatisfied bidder i :

Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?
4. We can define the dynamics: each unsatisfied bidder bids on their most preferred bundle (Unsatisified $=$ not matched to her ϵ-most preferred bundle). For each unsatisfied bidder i :
$4.1 i$ bids on every item she is not the high bidder on in a set

$$
S^{*} \in \arg \max _{S \subseteq G}\left(v_{i}(S)-\sum_{j \in S} p_{j}\right)
$$

Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?
4. We can define the dynamics: each unsatisfied bidder bids on their most preferred bundle (Unsatisified $=$ not matched to her ϵ-most preferred bundle). For each unsatisfied bidder i :
$4.1 i$ bids on every item she is not the high bidder on in a set $S^{*} \in \arg \max _{S \subseteq G}\left(v_{i}(S)-\sum_{j \in S} p_{j}\right)$
4.2 For all $j \in S^{*}, \mu(j) \leftarrow i, p_{j} \leftarrow p_{j}+\epsilon / m$.

Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).

Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).

Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).
3. So we do not want that when a bidder i bids, she abandons any of the goods she is currently matched to.

Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).
3. So we do not want that when a bidder i bids, she abandons any of the goods she is currently matched to.
4. We can formalize this.

Beyond Unit Demand Valuations

1. For price vectors p, p^{\prime}, write $p \preceq p^{\prime}$ to mean that $p_{j} \leq p_{j}^{\prime}$ for all j. Let $w_{i}(p)=\arg \max \subseteq \subseteq G\left(v_{i}(S)-\sum_{j \in S} p_{j}\right)$ be player i 's demand set at prices p.

Definition

Valuation function v_{i} satisfies the gross substitutes property if for every $p \preceq p^{\prime}$ and for every $S \in w_{i}(p)$, if $S^{\prime}=\left\{j \in S: p_{j}=p_{j}^{\prime}\right\}$, then there exits $S^{*} \in w_{i}\left(p^{\prime}\right)$ such that $S^{\prime} \subseteq S^{*}$. In other words, "Raising the prices on goods $j \neq i$ doesn't decrease a bidder's demand for good j ".

Beyond Unit Demand Valuations

1. For price vectors p, p^{\prime}, write $p \preceq p^{\prime}$ to mean that $p_{j} \leq p_{j}^{\prime}$ for all j. Let $w_{i}(p)=\arg \max \operatorname{S\subseteq G}^{(}\left(v_{i}(S)-\sum_{j \in S} p_{j}\right)$ be player i 's demand set at prices p.

Definition

Valuation function v_{i} satisfies the gross substitutes property if for every $p \preceq p^{\prime}$ and for every $S \in w_{i}(p)$, if $S^{\prime}=\left\{j \in S: p_{j}=p_{j}^{\prime}\right\}$, then there exits $S^{*} \in w_{i}\left(p^{\prime}\right)$ such that $S^{\prime} \subseteq S^{*}$.
In other words, "Raising the prices on goods $j \neq i$ doesn't decrease a bidder's demand for good j ".
2. This is what we need: Any good for which bidder i has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder i's demand set.

Beyond Unit Demand Valuations

1. For price vectors p, p^{\prime}, write $p \preceq p^{\prime}$ to mean that $p_{j} \leq p_{j}^{\prime}$ for all j. Let $w_{i}(p)=\arg \max \operatorname{S\subseteq G}^{(}\left(v_{i}(S)-\sum_{j \in S} p_{j}\right)$ be player i 's demand set at prices p.

Definition

Valuation function v_{i} satisfies the gross substitutes property if for every $p \preceq p^{\prime}$ and for every $S \in w_{i}(p)$, if $S^{\prime}=\left\{j \in S: p_{j}=p_{j}^{\prime}\right\}$, then there exits $S^{*} \in w_{i}\left(p^{\prime}\right)$ such that $S^{\prime} \subseteq S^{*}$.
In other words, "Raising the prices on goods $j \neq i$ doesn't decrease a bidder's demand for good j ".
2. This is what we need: Any good for which bidder i has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder i's demand set.
3. Hence, we have:

Theorem

In any market in which all buyers satisfy the gross substitutes condition, Walrasian equilibria exist.

Thanks!

See you next class - stay healthy!

