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Overview

▶ In this class we’ll consider a two sided matching model.

▶ There are two sides of the market: students and schools, who
each have preferences over the other.

▶ For simplicity we’ll assume each student can be matched to
exactly one school and vice versa — but easy to generalize to
schools that enroll multiple students.

▶ We will again prohibit the use of money...

▶ Used in practice to match medical students to residencies,
pledges to sororities, students to public schools in various
districts.
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A Model

1. Let M and W denote sets of students and schools
respectively. Assume |M| = |W | = n.

2. A Matching:

Definition
A matching µ : M ∪W → M ∪W is an assignment of students to
schools so that each student is assigned to exactly one school and
vice versa. For each m ∈ M and w ∈W , µ(m) = w if and only if
µ(w) = m.

3. Each m ∈ M has a strict preference ordering ≻m over the set
W , and each w ∈W has a strict preference ordering ≻w over
the set M.
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Goals

▶ Just as in last lecture, we have two desiderate:

1. We would like the matching that we compute to be good in
some sense, and

2. We would like to incentivize participants to reveal their true
preferences to the mechanism.

▶ We’ll be able to find “good” matchings — and will have
limited success managing preferences.
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What makes a Matching Reasonable

1. Minimal requirement: Stability. We can suggest the matching,
but can’t force people into matchings.

2. An equilibrium like condition:

Definition
A matching µ is unstable if there exists an m ∈ M and w ∈W
such that µ(m) ̸= w , but:

w ≻m µ(m) and m ≻w µ(w)

We call such an (m,w) pair a blocking pair for µ. (A blocking pair
witnesses instability because m and w could mutually benefit by
leaving their proposed partners and pairing with one another).
A matching µ is stable if it has no blocking pairs.

3. We might more ambitiously want to compute the “best”
stable matching – but do they even exist?
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They Do Exist!

Theorem (Gale and Shapley)

For any set of preferences (≻m1 , . . . ,≻mn ,≻w1 , . . . ,≻wn), a stable
matching µ exists.

1. An algorithmic proof: we’ll prove existence by showing how to
find one.

2. The student applying deferred acceptance algorithm.
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Algorithm 1 The Deferred Acceptance Algorithm (Student Applying
Version)

DeferredAcceptance(≻):
Initially, µ(m) = ∅ for all m ∈ M. (i.e. nobody is yet matched).
Each student m ∈ M applies to his most preferred w ∈ W . For
each school w ∈ W , let m′ be its most preferred student among
the set that applied to it, and set µ(m′)← w . All other students
are rejected (and hence unmatched).
while There exists any unmatched student m ∈ M: do

m applies to his most preferred w ∈ W that he has not yet
applied to.
If m ≻w µ(w), then µ(µ(w)) ← ∅ and µ(w) ← m (i.e. w
rejects its current match and instead matches to m). Else, m
is rejected.

end while
Return µ



Proof

1. The algorithm halts: every school receives at least one
application over the course of the algorithm. (If there is a
school without an application, there is an unmatched student,
and the algorithm has not halted unless he has applied to all
schools). Once a school has received an application, it
becomes matched, and stays matched for the rest of the
algorithm.

2. Since |W | = |M|, once all schools are matched, all students
are matched.

3. So the algorithm halts after at most n2 applications, since no
student applies to the same school twice.



Proof

1. The algorithm halts: every school receives at least one
application over the course of the algorithm. (If there is a
school without an application, there is an unmatched student,
and the algorithm has not halted unless he has applied to all
schools). Once a school has received an application, it
becomes matched, and stays matched for the rest of the
algorithm.

2. Since |W | = |M|, once all schools are matched, all students
are matched.

3. So the algorithm halts after at most n2 applications, since no
student applies to the same school twice.



Proof

1. The algorithm halts: every school receives at least one
application over the course of the algorithm. (If there is a
school without an application, there is an unmatched student,
and the algorithm has not halted unless he has applied to all
schools). Once a school has received an application, it
becomes matched, and stays matched for the rest of the
algorithm.

2. Since |W | = |M|, once all schools are matched, all students
are matched.

3. So the algorithm halts after at most n2 applications, since no
student applies to the same school twice.



Proof

1. The final matching µ cannot have any blocking pairs.

2. Suppose otherwise: there is a blocking pair (m1,w1) with
µ(m1) ̸= w1, but w1 ≻m1 µ(m1) and m1 ≻w1 µ(w1).

3. Since w1 ≻m1 µ(m1), m1 must have applied to w1 before he
applied to µ(m1).

4. Since µ(m1) ̸= w1, m1 must have been rejected by w1 in favor
of some other student m′.

5. Since schools only ever change who they are matched to in
favor of more preferred students, we must have:

µ(w1) ⪰w1 m
′ ≻w1 m1

which contradicts m1 ≻w1 µ(w1).

6. Tada!
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Good matchings?

1. What is a good matching? Not everyone can receive their
favorite match.

2. Define:

Definition
For m ∈ M and w ∈W , we say that w is achievable for m (and
vice versa) if there exists a stable matching µ such that µ(m) = w .

3. Optimality: The best among all achievable matchings:

Definition
A matching µ is student optimal if for every achievable pair (m,w),
µ(m) ⪰m w Similarly, we can define school optimal matchings, and
student and school pessimal matchings. (A matching µ is school
pessimal if for every achievable pair (m,w), m ⪰w µ(w))
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Its Good to be on the Applying Side

Theorem
The stable matching µ output by the student-applying deferred
acceptance algorithm is student optimal.



Proof

1. Suppose otherwise. There must be some first round k at
which a student m is rejected by his most preferred achievable
school w , in favor of m′. m′ ≻w m.

2. Since w is achievable for m, there must be some stable
matching µ such that µ(m) = w and µ(m′) = w ′ (and hence
w ′ is achievable for m′).

3. We must have w ≻m′ w ′ (since m′ applied to w , and can’t
have been rejected by any achievable school since by
assumption, k was the first round at which a student was
rejected by an achievable school.)

4. Combining:
m′ ≻w m w ≻m′ w ′

5. (m′,w) form a blocking pair for µ, contradicting stability.

6. Tada!
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Its Bad to be on the Receiving Side

Theorem
The stable matching produced by the student-applying deferred
acceptance algorithm is school pessimal.



Proof

1. In fact: every student-optimal stable matching µ is school
pessimal. Suppose otherwise.

2. There exists some w with µ(w) = m, and m ≻w m′ for some
other achievable student m′.

3. So there must exist a different stable matching µ′ with
µ′(m′) = w , and µ′(m) = w ′

4. But we must have w ≻m w ′ = µ′(m) because µ is
student-optimal and w ′ is achievable for m.

5. So (m,w) are a blocking pair for µ′, which contradicts its
stability.

6. Tada!
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What about Incentives?

Theorem
The student applying deferred acceptance algorithm is dominant
strategy incentive compatible for the students. (i.e. reporting their
true preferences ≻m is a dominant strategy for each m ∈ M).



Proof
1. Suppose otherwise: there is a set of preferences
≻= (≻m1 , . . . ,≻mn ,≻w1 , . . . ,≻wn) and a deviation ≻′

m1
such

that if µ = DE (≻) and µ′ = DE (≻′) (where
≻′= (≻′

m1
,≻−m1)), then:

µ′(m1) ≻m1 µ(m1).

2. We know that µ is stable and student optimal with respect to
preferences ≻, and µ′ is stable and student optimal with
respect to preferences ≻′

3. Define two sets:

3.1 The set of students who prefer µ′ to µ:

R = {m : µ′(m) ≻m µ(m)}

3.2 The set of schools whose matches in µ′ are in R (and so prefer
them to their match in µ):

T = {w : µ′(w) ∈ R}
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them to their match in µ):

T = {w : µ′(w) ∈ R}
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1. Suppose otherwise: there is a set of preferences
≻= (≻m1 , . . . ,≻mn ,≻w1 , . . . ,≻wn) and a deviation ≻′

m1
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that if µ = DE (≻) and µ′ = DE (≻′) (where
≻′= (≻′
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them to their match in µ):
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Proof

1. We will show:

1.1 w ∈ T ⇔ µ(w) ∈ R. (i.e. if a school’s partner in µ′ prefers µ′

to µ, so does its partner in µ), and from this derive that:
1.2 There exists a wℓ ∈ T and a mr ∈ R such that (wℓ,mr ) form a

blocking pair in µ′ with respect to ≻′, a contradiction.

2. We’ll start with the first claim...
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Proof

Claim

w ∈ T ⇔ µ(w) ∈ R

1. For any m ∈ R, let w = µ′(m) ∈ T . Let m′ = µ(w) be w ’s
partner in µ.

2. If m′ = m1, we are done. Otherwise we can assume m′ ̸= m1,
and therefore that ≻m′=≻′

m′ .

3. Since m ∈ R, we know that: w = µ′(m) ≻m µ(m).

4. Since µ is stable w.r.t ≻, it must be that µ(w) = m′ ≻w m.

5. Because µ′ is stable w.r.t. ≻′, it must be that
µ′(m′) ≻m′ µ(m′) = w .

6. Hence m′ ∈ R as we wanted
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Proof

Claim
There exists a wℓ ∈ T and a mr ∈ R such that (wℓ,mr ) form a
blocking pair in µ′ with respect to ≻′

1. Since for every m ∈ R, µ′(m) ≻m µ(m), by stability, it must
be that for all w ∈ T : µ(w) ≻w µ′(w).

2. So when running DE(≻), it must be that every m ∈ R applies
to µ′(m), and is rejected by µ′(m) at some round.

3. Let mℓ be the last m ∈ R who applies during the DE
algorithm. This application must be to µ(mℓ) ≡ wℓ.

4. By the first claim, since mℓ ∈ R, wℓ ∈ T .

5. It must be that wℓ rejected µ′(wℓ) at a strictly earlier round
(since mℓ is the last m ∈ R to apply), and hence when mℓ

applies to wℓ, wℓ rejects some mr ̸∈ R such that:
mr ≻wℓ

µ′(wℓ)
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Proof

mr ≻wℓ
µ′(wℓ)

1. Since mr had applied to wℓ before µ(mr ), it must be that:

wℓ ≻mr µ(mr )

2. Hence:
wℓ ≻mr µ

′(mr )

3. Together with the above, this means (mr ,wℓ) form a blocking
pair for µ′, a contradiction.

4. Tada!



Proof

mr ≻wℓ
µ′(wℓ)

1. Since mr had applied to wℓ before µ(mr ), it must be that:

wℓ ≻mr µ(mr )

2. Hence:
wℓ ≻mr µ

′(mr )

3. Together with the above, this means (mr ,wℓ) form a blocking
pair for µ′, a contradiction.

4. Tada!



Proof

mr ≻wℓ
µ′(wℓ)

1. Since mr had applied to wℓ before µ(mr ), it must be that:

wℓ ≻mr µ(mr )

2. Hence:
wℓ ≻mr µ

′(mr )

3. Together with the above, this means (mr ,wℓ) form a blocking
pair for µ′, a contradiction.

4. Tada!



Proof

mr ≻wℓ
µ′(wℓ)

1. Since mr had applied to wℓ before µ(mr ), it must be that:

wℓ ≻mr µ(mr )

2. Hence:
wℓ ≻mr µ

′(mr )

3. Together with the above, this means (mr ,wℓ) form a blocking
pair for µ′, a contradiction.

4. Tada!



Proof

mr ≻wℓ
µ′(wℓ)

1. Since mr had applied to wℓ before µ(mr ), it must be that:

wℓ ≻mr µ(mr )

2. Hence:
wℓ ≻mr µ

′(mr )

3. Together with the above, this means (mr ,wℓ) form a blocking
pair for µ′, a contradiction.

4. Tada!



Thanks!

See you next class — stay healthy!


