Convergence of No-Regret Play to Nash Equilibrium

Aaron Roth

University of Pennsylvania
February 152024

Overview

- We've seen that two-player zero sum games are special.

Overview

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"

Overview

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation - don't need to reason about your opponent to compute a minmax strategy.

Overview

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation - don't need to reason about your opponent to compute a minmax strategy.
- But you need to understand the game extremely well and make careful calculations.

Overview

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation - don't need to reason about your opponent to compute a minmax strategy.
- But you need to understand the game extremely well and make careful calculations.
- Is there a natural dynamic that leads to Nash equilibrium if everyone uses it?

Overview

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation - don't need to reason about your opponent to compute a minmax strategy.
- But you need to understand the game extremely well and make careful calculations.
- Is there a natural dynamic that leads to Nash equilibrium if everyone uses it?
- How many of these properties depend on the "two player" caveat?

Two players?

Do these special properties carry over to general n player zero sum games?

Two players?

Do these special properties carry over to general n player zero sum games? We can certainly define such games:

Definition

An n player game is zero-sum if for every action profile $a \in A$, $\sum_{i=1}^{n} u_{i}(a)=0$.

Two players?

Do these special properties carry over to general n player zero sum games? We can certainly define such games:

Definition

An n player game is zero-sum if for every action profile $a \in A$, $\sum_{i=1}^{n} u_{i}(a)=0$.
The answer is no.
"Meta Theorem": n player zero-sum games don't have any special properties that $n-1$ player general sum games don't have.

In particular, we should not expect such games to have a value, nor that their equilibria should be easy to compute.

Two players?

Do these special properties carry over to general n player zero sum games? We can certainly define such games:

Definition

An n player game is zero-sum if for every action profile $a \in A$, $\sum_{i=1}^{n} u_{i}(a)=0$.
The answer is no.
"Meta Theorem": n player zero-sum games don't have any special properties that $n-1$ player general sum games don't have.

In particular, we should not expect such games to have a value, nor that their equilibria should be easy to compute.
"Proof": Any $n-1$ player game can be made into an n player zero sum game, by adding a new player n (with a trivial action set), and $u_{n}(a)=-\sum_{i=1}^{n-1} u_{i}(a)$. Since player n is payoff irrelevant to the $n-1$ other players, the equilibrium structure remains identical to the original game.

But we can generalize with more structure...

Definition

A separable graphical game is defined by a graph $G=(V, E)$. The set of players corresponds to the set of vertices: $P=V$. Each player's utility function is decomposable as a sum of neighbor-specific utility functions, one for each of his neighbors in G :

$$
u_{i}(a)=\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}, a_{j}\right)
$$

i.e. it is as if each player is playing a 2-player game with each of his neighbors - except he must pick a single action a_{i} to play simultaneously against each of his neighbors.

Separable Graphical Games

Separable Graphical Games

Zero sum separable graphical games have many of the properties of two player zero sum games:

Separable Graphical Games

Zero sum separable graphical games have many of the properties of two player zero sum games:

1. They continue to have a value

Separable Graphical Games

Zero sum separable graphical games have many of the properties of two player zero sum games:

1. They continue to have a value
2. Equilibria are easy to compute with efficient dynamics.

Separable Graphical Games

Zero sum separable graphical games have many of the properties of two player zero sum games:

1. They continue to have a value
2. Equilibria are easy to compute with efficient dynamics.
3. We don't require each of the constituent 2-player games are zero sum - just that the aggregate is.

Regret

Definition

A sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$ if for all players i and actions a_{i}^{*} we have:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{*}, a_{-i}^{t}\right)-\Delta(T)
$$

We say that such an action sequence is no-regret if $\Delta(T)=o_{T}(1)$.

Regret

Definition

A sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$ if for all players i and actions a_{i}^{*} we have:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{*}, a_{-i}^{t}\right)-\Delta(T)
$$

We say that such an action sequence is no-regret if $\Delta(T)=o_{T}(1)$.

1. How to generate a sequence of no-regret play?

Regret

Definition

A sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$ if for all players i and actions a_{i}^{*} we have:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{*}, a_{-i}^{t}\right)-\Delta(T)
$$

We say that such an action sequence is no-regret if $\Delta(T)=o_{T}(1)$.

1. How to generate a sequence of no-regret play?
2. Have every player play polynomial weights. Then

$$
\Delta(T)=O\left(2 \sqrt{\frac{\log k}{T}}\right)
$$

Regret

Definition

A sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$ if for all players i and actions a_{i}^{*} we have:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{*}, a_{-i}^{t}\right)-\Delta(T)
$$

We say that such an action sequence is no-regret if $\Delta(T)=o_{T}(1)$.

1. How to generate a sequence of no-regret play?
2. Have every player play polynomial weights. Then

$$
\Delta(T)=O\left(2 \sqrt{\frac{\log k}{T}}\right)
$$

3. But not the only way...

Regret

Definition

A sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$ if for all players i and actions a_{i}^{*} we have:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{*}, a_{-i}^{t}\right)-\Delta(T)
$$

We say that such an action sequence is no-regret if $\Delta(T)=o_{T}(1)$.

1. How to generate a sequence of no-regret play?
2. Have every player play polynomial weights. Then

$$
\Delta(T)=O\left(2 \sqrt{\frac{\log k}{T}}\right)
$$

3. But not the only way...
4. A permissive family of dynamics.

Dynamics

Given a sequence of action profiles a^{1}, \ldots, a^{T}, write $\bar{a}_{i}=\frac{1}{T} \sum_{i=1}^{T} a_{i}^{t}$ to denote the mixed strategy for player i that selects an action in $\left\{a_{i}^{1}, \ldots, a_{i}^{T}\right\}$ uniformly at random.

Dynamics

Given a sequence of action profiles a^{1}, \ldots, a^{T}, write $\bar{a}_{i}=\frac{1}{T} \sum_{i=1}^{T} a_{i}^{t}$ to denote the mixed strategy for player i that selects an action in $\left\{a_{i}^{1}, \ldots, a_{i}^{T}\right\}$ uniformly at random.
Theorem
Consider any zero sum separable graphical game G. If a sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$, then the mixed strategies:

$$
\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)
$$

forms an $n \Delta(T)$-approximate Nash equilibrium.

Dynamics

Given a sequence of action profiles a^{1}, \ldots, a^{T}, write $\bar{a}_{i}=\frac{1}{T} \sum_{i=1}^{T} a_{i}^{t}$ to denote the mixed strategy for player i that selects an action in $\left\{a_{i}^{1}, \ldots, a_{i}^{T}\right\}$ uniformly at random.
Theorem
Consider any zero sum separable graphical game G. If a sequence of action profiles a^{1}, \ldots, a^{T} has regret $\Delta(T)$, then the mixed strategies:

$$
\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)
$$

forms an $n \Delta(T)$-approximate Nash equilibrium.
If every player plays using polynomial weights, they converge to an ϵ-approximate Nash equilibrium by in:

$$
T=\frac{4 n^{2} \log k}{\epsilon^{2}}
$$

many rounds. In a two player game this is $T=16 \log (k) / \epsilon^{2}$ steps.

Proof

1. A useful fact: for every action $a_{i}^{*} \in A_{i}$ we have:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \sum_{(i, j) \in E} u_{i}^{i, j}\left(a_{i}^{*}, a_{j}^{t}\right) & =\sum_{(i, j) \in E} \sum_{t=1}^{T} \frac{1}{T} u_{i}^{i, j}\left(a_{i}^{*}, a_{j}^{t}\right) \\
& =\sum_{(i, j) \in E} u_{i}^{i, j}\left(a_{i}^{*}, \bar{a}_{j}\right)
\end{aligned}
$$

Proof

1. A useful fact: for every action $a_{i}^{*} \in A_{i}$ we have:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \sum_{(i, j) \in E} u_{i}^{i, j}\left(a_{i}^{*}, a_{j}^{t}\right) & =\sum_{(i, j) \in E} \sum_{t=1}^{T} \frac{1}{T} u_{i}^{i, j}\left(a_{i}^{*}, a_{j}^{t}\right) \\
& =\sum_{(i, j) \in E} u_{i}^{i, j}\left(a_{i}^{*}, \bar{a}_{j}\right)
\end{aligned}
$$

2. Suppose every player i is playing according to \bar{a}_{i}. Let a_{i}^{*} be the best response of player i to the distribution of his opponents. We know:

$$
\sum_{(i, j) \in E} u_{i}^{i, j}\left(a_{i}^{*}, \bar{a}_{j}\right) \geq \sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)
$$

Proof

1. We also know, since a^{1}, \ldots, a^{t} have $\Delta(T)$ regret, that for all $i \in P$:

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{t}, a_{j}^{t}\right)}_{\text {LHS }} \geq \underbrace{\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\Delta(T)}_{\text {RHS }}
$$

Proof

1. We also know, since a^{1}, \ldots, a^{t} have $\Delta(T)$ regret, that for all $i \in P$:

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{t}, a_{j}^{t}\right)}_{\text {LHS }} \geq \underbrace{\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\Delta(T)}_{\text {RHS }}
$$

2. Summing the LHS over all players:

$$
\text { LHS }=\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{t}, a_{j}^{t}\right)=\frac{1}{T} \sum_{t=1}^{T} 0=0
$$

(why?)

Proof

1. For all $i \in P$:

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{t}, a_{j}^{t}\right)}_{\text {LHS }} \geq \underbrace{\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\Delta(T)}_{\text {RHS }}
$$

Proof

1. For all $i \in P$:

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{t}, a_{j}^{t}\right)}_{\text {LHS }} \geq \underbrace{\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\Delta(T)}_{\text {RHS }}
$$

2. Now summing the RHS:

$$
R H S=\sum_{i=1}^{n} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-n \cdot \Delta(T)
$$

Proof

1. Combining the bounds (LHS > RHS):

Proof

1. Combining the bounds (LHS $>$ RHS):
2.

$$
n \Delta(T) \geq \sum_{i=1}^{n} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)
$$

Proof

1. Combining the bounds (LHS $>$ RHS):
2.

$$
\begin{aligned}
n \Delta(T) & \geq \sum_{i=1}^{n} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
\end{aligned}
$$

Proof

1. Combining the bounds (LHS $>$ RHS):
2.

$$
\begin{aligned}
n \Delta(T) & \geq \sum_{i=1}^{n} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
\end{aligned}
$$

3. (why?)

Proof

1. Combining the bounds (LHS $>$ RHS):
2.

$$
\begin{aligned}
n \Delta(T) & \geq \sum_{i=1}^{n} \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
\end{aligned}
$$

3. (why?)
4. Lets think about each term...

Proof

$$
n \Delta(T) \geq \sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
$$

Proof

$$
n \Delta(T) \geq \sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
$$

1. For each term we have:

$$
\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right) \geq 0
$$

(why?)

Proof

$$
n \Delta(T) \geq \sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
$$

1. For each term we have:

$$
\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right) \geq 0
$$

(why?)
2. So for each player i :

$$
\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right) \geq \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-n \Delta(T)
$$

(why?)

Proof

$$
n \Delta(T) \geq \sum_{i=1}^{n}\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right)
$$

1. For each term we have:

$$
\left(\sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right)\right) \geq 0
$$

(why?)
2. So for each player i :

$$
\sum_{(i, j) \in E} u_{i}^{i, j}\left(\bar{a}_{i}, \bar{a}_{j}\right) \geq \sum_{(i, j) \in E} u_{i}^{(i, j)}\left(a_{i}^{*}, \bar{a}_{j}\right)-n \Delta(T)
$$

(why?)
3. Tada!

Thanks!

See you next class - stay healthy!

